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Abstract 

 
Research has demonstrated that self-

explanation hones students’ metacognitive skills 
and increases their performance. We have found 
however, that not all self-explanation is 
substantive. Our goal is to develop 
computational techniques capable of 
determining whether a student’s explanation is 
relevant or not. This will then enable us, for 
example, to create an interactive tutoring system 
capable of prompting students to continue their 
explanations when necessary. This is a tractable 
task as self-explanations typically contain a 
small number of possible concepts. The 
language used to express these concepts can 
vary greatly, but our task is only to identify the 
existence of the concepts, not to perform general 
machine interpretation. In this paper, we present 
early work on the automatic understanding of 
students’ handwritten self-explanation of their 
solutions to homework problems in an 
engineering statics course. We employ an open 
information extraction technique popularly used 
to identify relations present in broadcast news 
transcripts. In our study, this technique achieved 
up to 97% accuracy at identifying when the 
content of a student’s self-explanation did not 
match the concepts used by experts in 
explaining their own work on the same problem. 
 

Introduction 
 

Research has demonstrated that self-
explanation hones students’ metacognitive skills 
and increases student performance. We have 
found, however, that not all self-explanation is 
substantive. Our goal is to develop 
computational techniques capable of 
determining if a student’s explanation is 
relevant or not. This will then enable us, for 
example, to create an interactive tutoring system 

capable of prompting students to continue their 
explanations when necessary. This is a tractable 
task as self-explanations typically contain only a 
small number of possible concepts. The 
language used to express these concepts can 
vary greatly, but our task is only to identify the 
existence of the concepts, not to perform general 
machine interpretation. In this paper, we present 
early work on the automatic understanding of 
students’ handwritten self-explanation of their 
solutions to homework problems. 

 
In the winter of 2011, we conducted a study in 

which 39 students in an undergraduate statics 
course were asked to generate handwritten self-
explanations of their homework solutions. 
Students were provided a set of questions with 
each homework assignment, eliciting an 
explanation of the reasoning behind key steps of 
their solution process. For example, students 
were asked why they chose the free body 
diagram they used, or why they chose a 
particular point to compute moments about. To 
provide a benchmark for the self-explanations, 
we asked three experts to solve some of the 
same problems and generate their own self-
explanations. We manually analyzed these and 
identified the concepts used. We found that the 
experts used only a small set of concepts in their 
explanation of any particular problem-solving 
step. We would expect that a student with an 
expert-stance would utilize the same set of 
concepts in their explanations. 

 
In the current work, we employ an information 

extraction technique to automatically identify 
whether a student’s self-explanation responses 
employ the same concepts used by the experts. 
For example, this technique can determine if a 
student assumed that bodies in a friction 
problem were on the verge of slip, a concept 
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that experts often included in their self-
explanations. 

 
In our experiments, this technique has proven 

to be quite reliable, achieving an accuracy of up 
to 97%. This level of accuracy can be attributed 
to the consistent nature of the students’ self-
explanation; there was typically a small set of 
concepts expressed in the responses to any 
given self-explanation prompt. Furthermore this 
high-level of accuracy suggests that it may be 
feasible to develop automated systems to elicit 
meaningful self-explanations from students. 
 

Related  Work 
 
Chi et al. [1] argue that “the metacognitive 

component of training is important in that it 
allows students to understand and take control 
of their learning process.” Metacognition is the 
ability to be aware of one’s own learning 
process and it serves as a major foundation for 
research performed on self-explanation. 

 
Mayer [2] examines differences between 

retention and transfer. The former is the 
application of knowledge from one problem to 
an identical problem, while the latter is the 
application of that knowledge to a different 
problem. Mayer argues that metaskill, the ability 
to control and monitor one’s cognitive 
processes, is an essential part of transfer. 
Metaskill strategies may be taught just as any 
other skill, such as arithmetic, via strategy 
instruction. For example, students who are 
taught basic reading skills as well as strategies 
for summarizing their own reading, perform 
better on transfer questions [3]. These results 
demonstrate the inadequacy of teaching only 
basic skills and the need to complement them 
with metacognitive skills. In this context, we 
use self-explanation as a means to develop 
metaskills. 

 
Chi et al. [1] made comparisons between two 

groups of students: “poor” and “good” 
performing students. These students were asked 
to generate self-explanation after studying 
worked-out example problems. The results of 

this study demonstrated that students who 
perform poorly are typically unable to generate 
sufficient self-explanation of the worked-out 
example problems. 

 
Steif et al. [4] present and evaluate a strategy 

for teaching statics concepts which focuses on 
students’ conceptual knowledge. During 
instruction, students are given examples of  free 
body diagrams and asked whether they are 
correct. Students are then shown a video 
explaining what errors are present in the 
diagram. Additionally, students in an 
experimental group are asked questions eliciting 
an explanation of the relationships between the 
diagram and the forces which act upon it. This 
work showed a significantly lower error rate 
among students who generated self-explanation. 
Additionally though, this work provides 
motivation for the techniques presented in this 
paper. Our method enables automatic analysis 
of the content of self-explanation, which may 
enable the creation of intelligent tutoring 
systems that probe a student’s understanding if 
the student’s self-explanation is lacking. 

 
Information extraction (IE) is the process by 

which target relations are extracted from 
machine readable documents, such as text 
transcripts. This is distinguishable from 
attempting to understand the entire content of 
such documents. There is a long history of 
research in IE techniques. [5] Older techniques 
have typically relied a great deal on domain 
dependent attributes and were usually rule-
based [6] or applied machine learning 
techniques. [7] While these systems achieved 
high accuracy, their domain-dependent nature 
required a great deal of manual effort to adapt 
them to new domains. More recently, 
researchers have focused on automatic IE 
techniques intended for use with the World 
Wide Web. These techniques are more general 
and extensible than prior methods and are thus 
called open IE techniques. The technique we use 
in this paper is an open IE technique which 
allows us to easily train a system to extract 
relations in our domain. 
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Self-explanation  Transcripts  and  Labeling 
 

In the winter of 2011, we conducted a study in 
which 39 students enrolled in an undergraduate 
statics course were asked to provide handwritten 
self-explanations of their work. In this course, 
five of the nine homework assignments were 
accompanied by a series of prompts which 
elicited from students an explanation of the 
reasoning behind each of their problem-solving 
steps. 

 
To ground our analysis, we asked three experts 

to complete homework assignments three and 
eight as well as generate the same kinds of self-
explanation as the students. These experts 
comprised one graduate and two undergraduate 
mechanical engineering students; the latter two 
had solved these exact homework problems two 
years prior. 

 
We manually transcribed the student and 

expert handwritten self-explanations. Spelling 
errors were corrected, but grammatical errors 
were left as is. The expert’s self-explanation 
transcripts exemplify the types of responses we 
expect from students who possess an expert-
stance on statics concepts. We performed an in-
depth analysis of the experts’ responses to three 
different explanation prompts. Namely, we 
analyzed the responses to prompts one and four 
from homework three, and prompt three from 
homework eight. 

 
Prompt one of homework three asks, “Why did 

you select the system that you used for your 
free-body diagram?” We have found that 
experts generate one of the following four 
different responses: required-forces, least-
forces, only-one, and alternative-difficult. A 
required-forces response is one in which the 
expert explains that the free body diagram 
contained all forces necessary to solve for the 
unknowns without revealing extraneous forces. 
Similarly, a least-forces response is one in 
which the expert explains that the free body 
diagram contains the minimum number of 
forces that is needed to solve the problem. 
While this response is similar to the prior 

required-forces response, the language used in 
each is different enough to necessitate two 
different response types. An only-one response 
is one in which the expert explains that the free 
body diagram is the only one that can be used to 
solve the problem. Lastly, an alternative-
difficult response is one in which the expert 
indicates that an alternate free body diagram can 
be used but will lead to a solution that is more 
difficult. 

 
Prompt four of homework three asks, “When 

computing moments for the moment 
equilibrium equation, why did you choose the 
particular point that you used to take moments 
about?” We have found that experts generate 
one of three different responses: directly-solves, 
only-unknown, or eliminate-forces. A directly-
solves response is one in which the expert 
indicates that taking the moment about the point 
he chose directly solves for the unknown 
indicated in the problem description. An only-
unknown response is one in which the expert 
explains that taking the moment about the point 
he chose results in a moment equilibrium 
equation with only one unknown which can be 
directly solved. An eliminate-forces response is 
one in which the expert explains that taking 
moments about the point he chose eliminates the 
most unknown variables. 

 
Prompt three of homework eight asks, “To 

begin your solution you must make several 
assumptions. Which surfaces if any did you 
assume were on the verge of slip?” We have 
found that experts generate one of three 
different responses: slip, verge, or no-slip. 
Experts simply responded by indicating whether 
they assumed bodies in the diagram were 
slipping (slip), on the verge of slip (verge), or 
did not slip at all (no-slip). 

 
Using the experts’ self-explanations as a 

guide, we examined the students’ responses. If a 
student’s response to a prompt matched one of 
the types of responses used by the experts, we 
labeled the response as such. Otherwise, we 
labeled the response as none, indicating that it 
did not match any of the experts’ responses. 
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Open  Information  Extraction  Algorithm 
 

For our analysis, we implemented the open IE 
algorithm developed by Soderland et al. [8] This 
technique learns a set of rules which maps self-
explanations to content types. These rules 
comprise constraints on the existence of words 
in the self-explanations and the locations of 
those words. If the correct set of words exists in 
the correct locations, the rule assumes that a 
particular concept has been expressed.   

 
This technique begins by using the 

TextRunner software package[9] to extract all 
noun phrases present in each self-explanation 
sentence. Noun phrases take the form of a tuple, 
(arg1, pred, arg2), where arg1 is the subject, 
pred is the predicate, and arg2 is the object. 

 
A variety of words can be used to express the 

same concepts. For example, the phrases “on the 
verge of slip” and “impending slip” have the 
same meaning. To accommodate these sorts of 
variations,  Soderland’s  algorithm relies on lists 
of synonymous words. More precisely, it 
requires the identification of word classes, and 
the enumeration of the words within those 
classes. Table 1 lists the word classes we use in 
our  analysis.   For example, the “variable” class   
 
 

contains   the   various  words    that   are 
frequently used to describe the unknown forces 
to be computed in a statics problem. These 
words include “variable,” “force,” “unknown,” 
and “component.” Note that identifying the 
existence of a concept in a self-explanation is 
more complex than simply identifying the 
existence of specific words. The relationship 
between the words is essential. 
 

A rule learning process is used to learn these 
relationships. The rules attempt to infer the 
commonalities between different expressions of 
the same concept. Initially, the technique creates 
an overly-specific rule for each tuple. The rule, 
in effect, assumes that for another tuple to have 
the same meaning, it must have the same words 
in the same order. More precisely, the rule 
contains a constraint for every word class and 
preposition found in both that tuple and the 
sentence that contains it. The constraints govern 
both the existence and locations of those words. 
This technique recognizes five possible 
locations for word classes and prepositions: 
arg1,  pred,  arg2,  the   portion  of  the  sentence 
preceding the tuple, and the portion proceeding. 
Each overly-specific rule will likely match only 
a few other tuples in the training data, if any.  
To  find  a  more  accurate  rule,   the   technique 
 

HWK-Prompt Class Name Words in Class 
3-1, 3-4 Eliminate cancel, eliminate, rid, ignore, took out, avoid 

3-1 Contains contains, touches 
3-1 Need need, require, necessary 

3-1, 3-4 Variable variable, force, unknown, component 
3-4 Only only 
3-4 Only Unknown only unknown, only one 
3-4 Direct direct, one step 
3-4 Solve solve, give, gave 
8-3 Assumption assume, occur, think, assumption 
8-3 Slip slip 
8-3 FBD Component block, point, arm, crate, brake, surface, member, box 
8-3 Negative wasn’t, isn’t, didn’t, not 
8-3 Verge verge, impend, about 

 
Table 1: The word classes and the words they contain for the self-explanation  

prompts  for the problems in homework assignments three and eight. 
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repeatedly relaxes constraints so that the rule 
has  higher precision  in identifying the concept. 
 
Here, precision is defined as: 
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 
where “true positives” are tuples that were 
correctly identified, and “false positives” are 
tuples that were incorrectly classified as this 
concept. 
 

A beam search is used to find the version of a 
rule with highest precision. This search begins 
by dropping constraints from the overly-specific 
rule, one at a time, and computing the precision 
of each resulting, relaxed rule over the training 
set. The k most precise rules are kept, where k is 
called the beam width. The process repeats for 
each of the k relaxed rules. In our 
implementation, we use a beam width of 10. 
The process ultimately terminates when an 
empty rule is reached. The rule with highest 
precision evaluated during the search is kept as 
the final rule. 

 
Results  and  Discussion 

 
We performed leave-one-out cross-validation 

to train and test this technique. In each fold of 
cross-validation, the data from one subject 
(either an expert or a student) is selected for 
testing, and the data from the other subjects is 
used for training. In this way, the data used to 
train and test the system are never the same as 
each other. 

 
Table 2 shows the accuracy results for 

identifying concepts for prompt one of 
homework three. Here, accuracy is defined as 
the fraction of self-explanations corresponding 
to a particular concept that were correctly 
identified as  such.  For  example, the  technique  
correctly identified 30 self-explanations that 
expressed the needed-forces concept, and 
incorrectly identified seven other self-
explanations as expressing this concept. Thus, 
the technique achieved 81.1% accuracy at 

identifying this concept. Overall, the technique 
achieved 75.9% accuracy at identifying 
concepts used in the experts’ self-explanations. 
Similarly, the technique achieved 70.2% 
accuracy at identifying self-explanations that 
contained none of the concepts used in the 
expert’s self-explanations. 
 

Concept Correct Incorrect Accuracy 
Needed Forces 30 7 81.1% 

Only One 9 4 69.2% 
Least Forces 2 1 66.7% 
Alternative 

Difficult 
0 1 0.0% 

All Concepts 41 13 75.9% 
None 52 22 70.2% 

 
Table 2: Accuracy of concept recognition in 
self-explanations for prompt one of homework 
three. The “All Concepts” row of the table 
contains the overall accuracy for identifying 
self-explanations that contain a concept used in 
the expert’s self-explanations. The “None” row 
is the accuracy for identifying self-explanations 
that contained none of the concepts used in the 
experts’ self-explanations. 
 

Concept Correct Incorrect Accuracy 
Directly Solves 4 2 66.7% 
Only Unknown 6 2 75.0% 

Eliminate Forces 40 1 97.6% 
All Concepts 50 7 87.7% 

None 70 32 68.6% 
 
Table 3: Accuracy of concept recognition in 

self-explanations from prompt four of 
homework three. The “All Concepts” row of the 
table contains the overall accuracy for 
identifying self-explanations that contain a 
concept used in the experts’ self-explanations. 
The “None” row is the accuracy for identifying 
self-explanations that contained none of the 
concepts used in the experts’ self-explanations. 

 
Table 3 contains the accuracy results for 

identifying concepts for prompt four of 
homework three. Overall, the technique 
achieved 87.7% accuracy at identifying 
concepts used in the experts’ self-explanations. 
Similarly, the technique achieved 68.6% 
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accuracy at identifying self-explanations that 
contained none of the concepts used in the 
experts’ self-explanations. 

 
Finally, Table 4 contains the accuracy results 

for identifying concepts for prompt three of 
homework eight. Overall, the technique 
achieved 84.2% accuracy at identifying 
concepts used in the experts’ self-explanations. 
Similarly, the technique achieved 97.3% 
accuracy at identifying self-explanations that 
contained none of the concepts used in the 
experts’ self-explanations. 
 

Concept Correct Incorrect Accuracy 
Slip 11 7 61.1% 

No-slip 6 6 50.0% 
Verge 63 2 96.9% 

All Concepts 80 15 84.2% 
None 36 1 97.3% 

 
Table 4: Accuracy of concept recognition in 

self-explanations for prompt three of homework 
eight. The “All Concepts” row of the table 
contains the overall accuracy for identifying 
self-explanations that contain a concept used in 
the experts’ self-explanations. The “None” row 
is the accuracy for identifying self-explanations 
that contained none of the concepts used in the 
experts’ self-explanations. 

 
This technique does perform better with more 

training data. For example, in Table 2, there 
were numerous examples of the needed-forces 
concept, and only one for the alternative-
difficult concept. The technique performed 
accurately on the former and poorly on the 
latter. 

 
This technique currently works with manual 

transcriptions. In order for this technique to 
work   in  a  completely  automated   system  the  
manual transcriptions will need to be replaced 
with automatically recognized handwriting 
made possible by techniques such as the image-
based recognizer [10] or the dollar recognizer. 
[11] Future work will need to account for the 
errors that may be introduced by such processes. 
 

Conclusion 
 

We have presented a technique that is able to 
accurately identify whether a student’s self-
explanation contains the same concepts used in 
self-explanations generated by experts. The 
technique correctly identified the existence of 
such concepts with an accuracy that ranged 
from 75.9% to 87.7%. Similarly, the technique 
correctly identified the lack of such concepts 
with an accuracy that ranged from 68.6% to 
97.3%. 

 
The ultimate goal of our work is to build a 

tutoring system that engages students to create 
meaningful self-explanations of their work, thus 
honing their metacognitive skills and increasing 
their mastery of the subject. The techniques 
presented here are a first step toward achieving 
this goal. In the future, these techniques may be 
implemented within an interactive tutoring 
system, enabling it to determine if a student has 
provided meaningful self-explanation. Such a 
system may then prompt the student to continue 
his or her explanations when necessary. 
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