
EDUCATIONAL DISCRETE TIME SIGNAL
 PROCESSING TOOLKIT

Jonathan Hill, Hisham Alnajjar, Saeid Moslehpour

University of Hartford

Abstract

The field programmable gate array (FPGA)
provides new ways for students to investigate
discrete time signal processing principles. In
teaching signal processing, we find that students
typically lack an intuitive feel for discrete time
signals. Basic topics such as sampling have
subtleties that plague students. To be useful in
helping students to develop such an intuition, it
is important that the tools be simple and that no
detail be hidden. Unlike existing software, all
details must be visible in a simple yet
transparent fashion. Second, students need
useful tools for developing their own projects.

We are developing the discrete time signal

processing toolkit for a digital signal processing
(DSP) course, to be useful to students learning
DSP principles as well as to advanced students
working on their own projects. As an
introductory tool, the toolkit will allow a
deductive approach where students investigate
existing systems. Advanced students ready for a
more inductive approach can use the toolkit in
their own projects by drawing schematics or
modifying example VHDL modules. Students
are not expected to write code using a hardware
description language, but the underlying code is
always available for inspection.

The toolkit is multipurpose that along with

course materials provides several methods to
process signals. First off, the toolkit
demonstrates signal conversion, sampling,
aliasing, and the importance of a reconstruction
filter. Fixed point numbers are discussed and a
simple IIR filter is presented. A simple
structure used to perform convolution is used as
a building block to construct FIR filters. The
toolkit can optionally use a soft core digital
signal processor. Details of the toolkit are
available on the project website[1].

Introduction

The discrete time signal processing toolkit is

useful to students learning digital signal
processing principles as well as advanced
students working on their own projects. In
teaching signal processing, we find that students
typically lack an intuitive feel for discrete time
signals. Basic topics such as sampling have
subtleties that plague students. The discrete
time signal processing toolkit is being
developed for a digital signal processing course,
to be useful in helping students to develop such
an intuition, it is important that the tools be
simple and that all details be visible in a simple
yet transparent fashion.

Details of the toolkit are available on the

project website[1] The toolkit is currently based
on the Xilinx[4] Spartan-3 FPGA Starter Board,
which is an off-the shelf development board
from Digilent, Inc[2]. The development board
is used with a custom acquisition card that we
designed. Analog to digital conversion is
performed with the Analog Devices[3] AD7819
chip which produces 8 bit samples at rates up to
200k samples per second. Digital to analog
conversion is performed using a conventional R-
2R ladder network. The acquisition card has a
solderless bread board area for students to
construct analog input and output filters.

Several options exist for configuring FPGA

resources. The Xilinx ISE/Webpack[4] tools
are freely available for students to download
and use. However the code is fairly generic and
should be vendor independent. In some cases
as in the preliminary experience the circuit is
described conveniently in VHDL. In the
remainder of the experiences a combination of
VHDL and schematic capture tools are used.
As an introductory tool, the toolkit allows a
deductive approach where students investigate

6 COMPUTERS IN EDUCATION JOURNAL

existing systems. Advanced students ready for a
more inductive approach can use the toolkit in
their own projects by drawing schematics or
modifying example VHDL modules. Students
are not expected to write code using a hardware
description language, but the underlying code is
always available for inspection.

Preliminary Experience

The first experience students have with the

toolkit involves basic practical concerns that
students must become familiar with. The first
topics to address are how to convert from analog
to digital and digital back to analog. Figure 1 is
the conceptual diagram of a test circuit that
students use along with a voltmeter. A
potentiometer is sampled by an analog to digital
converter and the result is displayed in
hexadecimal. Switches provide a digital value
which is converted to the analog voltage Vo.
By means of push buttons, the LED bar graph
displays either the converted input or switch
values. The ADC is sampled at 10Hz and the
seven-segment display is time multiplexed,
transitioning between digits at a 1 kHz rate.

RS

ADC

R/2R

Vcc
R1

MUX

Switches

Display

LEDs

Buttons

Vo

Figure 1: Conversion test circuit.

Given an input within the range

bnv
VV

2
minmax −=δ (1)

code ⎥

⎦

⎥
⎢
⎣

⎢ −
=

v

i VV
δ

min (2)

The totem pole output type driver typically

used in CMOS technology makes use of the R-
2R ladder network appealing as a DAC. The
IRC application note on R-2R ladders[5]
outlines the general principle and application of
R-2R ladder networks. Figure 2 is the ladder
circuit constructed in the adapter board. The
circuit can be understood by repeatedly applying
Thevenin’s well known theorem, starting at the
left. Overall (3) is the Thevenin equivalent
resistance and (4) is the Thevenin equivalent
voltage.

 KR 1thev = (3)

∑
=

−
=

7

0
8thev

2n
nn BVccV (4)

2K2K2K

B7

Vcc

B6B1B0

2K

1K 1K 1K Vout

2K

0 1 0 0 01 1 1

Figure 2: R-2R ladder circuit DAC.

minV to V
and producing a n binary value,

Figure 3 is the toolkit and a voltmeter. The
configuration allows students to experiment
with these basic conversion components. The
white cable with label 2.8V is for JTAG, used
for configuring the FPGA. The white region in
the smaller upper board is a solder-less
breadboard used here for the potentiometer.
The LEDs to the left of the seven segment
display is currently displaying the magnitude of
the analog input.

max

b

v

(1) gives the
voltage discretization size δ and given an input,
(2) gives the corresponding numerical code
value. The ⎣ ⎦ symbols here mean that the
result is truncated, keeping the integer part.
With a 3.3 Volt power supply and 8 bits, the
discretization size vδ is 12.891 mV. The ADC
produce values $00 to $FF where the ‘$’ symbol
indicates hexadecimal.

COMPUTERS IN EDUCATION JOURNAL 7

Analog

Analog

Digital

Vi VoTo
Digital

Digital
Proc.

To

Figure 4: DTSP high level system view.

The circuit in Figure 5 is used for input. In

this experience we are not considering use of an
anti-alias filter as one point of this experience is
to clearly demonstrate the effect caused by
under sampling[8]. An important observation is
that the ADC produces unsigned values. It is
desirable for perturbations above the operating
point to produce positive codes and below to
produce negative codes. With the input at half
the power supply voltage, the code produced is
$80. To convert the unsigned ADC code to
two’s complement form we subtract this offset,
but for this unique case it is enough to invert the
most significant bit in the ADC code value.

Figure 3: Toolkit and voltmeter.

Sampling Experience

With the basics of conversions between analog

and digital understood, we consider sampling.
As in Figure 4, in a DTSP system a mechanism
converts an analog input Vi to digital format,
represented in the shaded region. Digital
processing is performed numerically. Another
mechanism converts the digital signal back to
the analog realm, producing the output Vo. For
now there is no processing. The goal is to
investigate the notion of periodic sampling.

1K
R2

Vcc

ADC
C1

R1
1K

Figure 5: Signal sample analog to digital.

Figure 6: Sampling schematic for FPGA device.

8 COMPUTERS IN EDUCATION JOURNAL

Figure 6 is the corresponding schematic for
logic implemented in the FPGA. The xdin box
is a junction for signals going to and coming
from the ADC. As discussed above, the xdin
box inverts the most significant bit of the ADC
value. The sdiv box produces the sample clock
signal sclk. The xreg8 box is a register that
inverts the most significant input bit and stores
the value being converted back to analog

The output from the R-2R ladder is stepped as

shown in Figure 8. To smooth the output a
reconstruction filter is used. The Sallen and
Key filter in Figure 7 is similar to that described
by Huelsman and Allen[6] serves as a useful
building block. The filter is second order and
Table 1 lists three capacitor values and the
corresponding cutoff frequencies. As further
described by Huelsman and Allen, an additional
resistor and capacitor can be used to increase the
filter order to three. Here, the voltage divider
formed with the DAC and R1 balances the
overall DC gain to be unity. Figure 9
demonstrates aliasing. With 100 kHz sampling
and a 95 kHz sine wave input, the output is 5
kHz.

C2

V

Rthev

thev

DAC

R1
1K

1K

1K

1K

R2

R3

R4

Vo

C1

Figure 7: DAC and reconstruction filter.

Figure 8: Without reconstruction filter.

Figure 9: Demonstrating aliasing.

Representing Signals as
Fixed-Point Numbers

Using the toolkit involves getting used to the

idea of fixed point numbers along with two’s
complement notation. The IEEE math libraries
make it relatively easy to implement filters
using an FPGA. The libraries include all the
necessary fixed point math operators, namely
addition, subtraction, and multiplication. As
indicated by Xilinx[7] the Spartan-3 FPGA
series has a number of features to support
arithmetic. Carry logic and dedicated carry
routing provides fast addition and subtraction.
Multiplication can be performed in the FPGA
fabric or with dedicated multipliers. All these
features make the use of fixed point numbers
and two’s complement notation particularly
appealing.

Table 1: Cutoff Frequencies

C1, C2 Fc
2.2nF 10.2 kHz
4.7nF 47.9 kHz
22nF 102 kHz

COMPUTERS IN EDUCATION JOURNAL 9

The primary difference between floating point
and fixed point numbers is how the radix point
is positioned. With floating point numbers the
radix point is dynamically positioned as each
calculation is performed. The obvious cost of
floating point numbers is increased circuit
complexity and a potential reduction in speed.
One cost with fixed point numbers is that the
designer decides in advance the radix point
position for each signal. We use a simple ‘aBc’
notation that indicates ‘a’ bits and that the radix
point is to the right of bit position ‘c’, where it is
understood that the right-most bit position is
number zero.

Precision and round-off are related issues.

Floating point arithmetic handles such details
silently with varying precision, based on the
magnitude of the numbers involved. With fixed
point numbers however the significance of each
bit is known in advance as the designer must
consciously address such details and decide
when to drop bits. To avoid numerical overflow
extra bits can be allocated as needed. Another
situation arises in using a fixed discretization
size, as small signals are not as well represented
as larger ones. Ideally the filter response will be
independent of amplitude. In some cases a
poorly designed filter will display anomalies
with small signals. As before, such problems
can be eased by inserting more bits.

Selecting the number of bits and radix point

position for constants is referred to as sizing the
constants. As such, the position of the first non-
zero bit after the sign bit is significant. Ideally
the bit position is selected so that this bit is one.
Equation (5) converts an aBc code value to its
corresponding represented value.

 c−= 2codevalue (5)

Math operations with fixed point numbers can

have some interesting results. While it is true
that the sum of two ‘a’ bit integers will fit into
an ‘a+1’ integer, in adding eight such ‘a’ bit
integers only three additional bits should be
required. This paper arbitrarily sidesteps such

issues by making the designer responsible for
correctly sizing signals and constants. Table 2
lists the sizing of simple operators. Note that
multiplication shifts the radix point. In
performing these operations the designer must
ensure that the sum, difference, or product will
fit in the signal Y.

IIR Filter Experience

IIR type filters tend to require modest

resources. In mapping the components in such a
filter block diagram directly to hardware it is
possible to produce one output sample for each
clock cycle. Here we make use of the
discussion of fixed point numbers to present a
first order low-pass filter with a cutoff at 1 kHz.
To design the filter I start with the continuous
time model in Figure 10 and use the Matlab
script lowpass1.m which applies the bilinear
transform along with pre-warping to produce the
coefficients for the corresponding discrete time
system.

Figure 11 is the corresponding DTSP filter
model. The sizing of the coefficients K1, K2,
and K3 is summarized in Table 3, showing the
value represented. Note that despite that few
bits are used, the percent difference error with
the theoretical value is within two tenths of a
percent.

Great care must be exercised in sizing internal

signals. To obtain speed with an FPGA it is
necessary to use as few bits as possible to
represent each signal. With IIR filters, the
internal signals tend to experience a
magnification effect, which is analogous to the
storage of energy in a continuous time filter

 Table 2: Sizing of simple operators

Operation Name Sizing
W + X = Y add W, X, Y are ‘aBc’
W – X = Y subtract W, X, Y are ‘aBc’
W * X = Y multiply W is ‘aBc’, X is ‘dBe’

 and Y is ‘a+dBc+e’

10 COMPUTERS IN EDUCATION JOURNAL

COMPUTERS IN EDUCATION JOURNAL 11

s

component like a capacitor or inductor. For this
low-pass filter the effect is seen in the step
response. Given a step input value w the

steady state value for x can be approximated by
recognizing the familiar geometric power series.

Vo

R

CVi

Figure10: Low-pass RC filter

 % lowpass1.m produce filter coefficients
% using Bilinear transform and prewarp.

% Design Parameters
Fc = 1e3 % filter center frequency
Fs = 100e3 % sampling frequency
Wc = 2*pi*Fc;

% Model the continuous time system
function
Num = [0 1];
Den = [1/Wc 1];

% Transform and prewarp to match cutoff
[N,D] = BILINEAR(Num,Den,Fs,Fc)

]0304687.00304687.0[]K2K1[==N (6)

]939063.01[]K31[−=−=D (7)

−K3

−1
Z

K2

K1
w[n]

x[n−1]

x[n] y[n]

Figure 11: DTSP filter model.

K3
K2K1

)(
)()(

+
+

==
z

z
zw
zyzH (8)

Table 3: Fixed point coefficient approximations.

Coefficient Size Code Represents % Diff. Error
K1 8B12 125 0.0305176 + 0.160%
K2 8B12 125 0.0305176 + 0.160%
K3 5B4 15 0.937500 – 0.168%

s

s

n

n
ss w

w
wx 16

K31
K3

0
=

−
== ∑

∞

=
 (9) Unlike floating point numbers where the

details involving precision are handled by a
processor in silent fashion, with fixed point
numbers the designer is responsible for
establishing the numerical precision. To assist
in this regard, Figure 12 is the so-called

plumbing diagram for the example first order
low-pass DTSP filter. The figure is produced
from Figure 11 by inserting slash boxes as
necessary to resize signals and inserting sizing
information. Here, the designer chose to resize
the input to include four extra bits to the left
side for the magnification effect and eight extra
bits to the right to increase precision. An extra
bit is inserted into the x and delayed x value to
avoid overflow in addition. Following the
product with K3, four bits are dropped from the
right of x. With K1 and K2 equal,
multiplication with K1 is moved after the
addition bubble. In producing the output the
final slash box drops 21 bits.

20B8

5B4

K3

−1
Z

K1
29B20

w[n]

8B0 20B8

25B12
x[n−1]

x[n]

21B8

21B8

8B12
y[n]

8B0

Figure 12 : Plumbing diagram for low pass filter.

Figure 13 is the corresponding schematic

drawn with the Xilinx ISE capture tools. Each
symbol is drawn and corresponds to a simple
VHDL module. The ext boxes resize by adding
bits. The multcut boxes multiply by a constant
value and cut bits. The reg20 box introduces a
delay. The add20x box first inserts a bit to each
value before adding.

Figure 14 is the input and output for the DTSP
low-pass filter, operating near the 3dB
frequency. With a 1 Volt pk-pk input at the 3dB
frequency of 1 kHz the output should be 0.707
Volts. Here, near the 3 dB frequency the output
is 0.700 Volts pk-pk.

FIR Filter Architecture

The primary issue with implementing a FIR

filter directly in hardware is the sheer size of the
circuitry involved. Multipliers implemented
directly in FPGA fabric require significant
resources and are slow. Dedicated hardware
multipliers are fast, but are modest in number,
varying by device model. The commonly used
XC3S200 device used here has 12 dedicated
hardware multipliers which is limiting. In
contrast the XC3S5000 has 104 dedicated
multipliers. Given the speed of hardware
multipliers, we can still achieve respectable
sample rates using time multiplexing. Here we
consider one such FIR filter.

The following presentation is intentionally
brief. Many DSP text books, including
Oppenheim and Schafer[8] as well as Ingle and
Proakis[9] provide useful background. As in
(10), when the input x is a unit impulse, the
output y is the corresponding impulse response
h. It is reasonable to assume that the impulse
response is causal or zero for n less than 0.

Figure 13: Schematic for low pass filter.

12 COMPUTERS IN EDUCATION JOURNAL

Figure 14 : Low pass filter at 3dB frequency.

][][nnx δ=

][][nhny =
(10)

To produce the convolution sum we assume

the system is linear and time invariant. If the
input is a scaled and delayed impulse, the output
will be scaled and delayed in the same fashion.

][][][knkanx −= δ

]

][n
mn ≥

51

[][][knhkany −=
(11)

Assuming further, a causal system, given an

input x that is the sum of the scaled and delayed
impulses, the output y is the sum of scaled and
delayed impulse responses (12). Finally, we
assume the impulse response h is zero for

. Changing variables leads to (13).

∑
−∞=

−=
n

k
knhkany][][][(12)

∑
−

=
−=

1

0
][][][

m
hnany

l

ll

where for and 0][=lh m≥l 0<l

(13)

The following is only a modest departure from

that previously. To distribute the convolution
sum across S stages, we split the sigma operator,
to appear S times, to produce (14). At this point,

taking the convolution sum further is only
practice in notation.

To implement each sum in (14) it is

convenient to store each part of the impulse
response in a stage with read-only memory or
ROM and input values in RAM. Each stage is
like that in Figure 15. The ROM stores impulse
response values with increasing ROM address
values corresponding to advancing sample
values. The RAM is asynchronous read,
synchronous write, so that a write is committed
to memory at a rising clock edge. This also
means that the oldest sample can be read the
same cycle, as the newest sample is written into
RAM. An accumulate-and-dump circuit (ADM)
is produced using a register that clears in
synchronous fashion along with a parallel load
register. The parallel load register obtains the
final sum as the accumulate register clears in
preparation for accumulating the next sum.

To read the oldest impulse response sample
first, each sum in (14) is evaluated in reverse
order, starting at the last index value. Suppose
that the number of impulse samples stored is

=m . The timing for Figure 15 is in Figure 16.
The upper or divide-by-M counter decrements
while the lower or divide-by-M-1 counter
increments. The co signal is periodically
asserted to produce each partial sum value.
With the two counters having different modulus
values, there is a progressive shifting between
index values, with each output sample.

COMPUTERS IN EDUCATION JOURNAL 13

Reg.

Load
D Q

Reg.

Load
D Q

addx

RAM

Div. M
Q
co
so

addy
AX

Din

WR

Reg.

SynClear
QD

ADM

Dout

sin
sum

xin

next
xin

ROM
AX DX

Q
Div. M−1

Figure15: Partial convolution circuit.

time

co
addx 0 4 3 2 1 0 4 3

addy 10 1 23 3 0 2

Clock

2 1

3 0
so

Figure16: Convolution timing.

Note that Figure 15 and Figure 16 do not
outline how reset is applied. The Spartan-3
distributed RAM has no direct reset mechanism.
During reset, the data input is gated for M clock
cycles so that zeros are written to RAM. During
this same time, the ADM also produces zero.
To summarize, the convolution sum provides an
effective FIR filter architecture. A primary
benefit is the way the architecture allows
performance to be traded off for complexity.
With S convolution stages, each storing m

FIR perien

1

impulse response samples in ROM, the result is
a FIR filter with Smm ⋅= 1 taps.

Filter Ex ce

To provid also fairly

self explanatory, I wrote a script for Matlab or
O

e a simple example that is

ctave to produce samples of an exponentially
decaying 10 kHz sine wave signal. Such an
impulse response corresponds to a resonance
and such a circuit behaves as a band pass filter.
The time constant is 20 cycle or 0.2
milliseconds and samples are taken for three
time periods or 60 samples. Figure 17 is the

∑∑∑
−

=

−

=

−

= −

−++−+−=
11

22

1

0
11

1

2

12

1

1

][][][][][][][
m

m
SS

m

m

m

SS

hnahnahnany
lll

llLllll
(14)

 where 1...0 121 −<<<<< − mmmm S

14 COMPUTERS IN EDUCATION JOURNAL

corresponding schematic produced using the
Xilinx ISE tools.

To provide more detail, Figure 18 is a closer

v

refer back to Figure 15.

cy. In the case of this
fi

iew of the first few stages along with the
counter logic. The design can be simplified,
combining similar signals into larger busses.
For more detail regarding each signal, please

Figure 19 is the corresponding filter output at
the higher 3dB frequen

lter, one sample is produced every ten clock
cycles. With a 100 kHz sample rate the clock
frequency is only 1 MHz. Use of the
convolution circuit in this way allows for a
trade-off between speed and circuit complexity.

Figure17: FIR filter constructed with six convolution stages.

Figure18: First few stages of FIR filter.

COMPUTERS IN EDUCATION JOURNAL 15

Figure19: Bandpass filter 3dB point.

Conclusion

It is our goal that the discrete time signal

processing toolkit will be useful to students
learning digital signal processing principles as
well as to advanced students working on their
own projects. The toolkit is being developed for
use in a digital signal processing course. As an
introductory tool, the toolkit allows a deductive
approach where students investigate existing
systems. Advanced students ready for a more
inductive approach can use the toolkit in their
own projects. The toolkit is multipurpose that
along with course materials provides several
methods to process signals. Future work will
involve the use of a soft core digital signal
processor. Details on the project are at the
project website[1].

Bibliography

1. Project website, http://uhaweb.hartford.edu/
jmhill/projects/DTSPkit/index.htm

2. Digilent, Inc., http://www.digilentinc.com/

3. Analog Devices, Inc., http://www.analog.

com/

4. Xilinx, Inc., http://www.xilinx.com/

5. Jerry Seams, “R/2R Ladder Networks,

Application Note AFD006,” copyright 1998
by International Resistive Company, Inc.
http://www.irctt.com/pdf_files/LADDERNE
TWORKS.pdf

6. L. P. Huelsman and P. E. Allen, Introduction

to the Theory and Design of Active Filters,
copyright 1980 by McGraw-Hill, Inc.

16 COMPUTERS IN EDUCATION JOURNAL

http://uhaweb.hartford.edu/jmhill/pojects/DTSPkit/index.htm
http://uhaweb.hartford.edu/jmhill/pojects/DTSPkit/index.htm
http://www.digilentinc.com/
http://www.analog.com/
http://www.analog.com/
http://www.xilinx.com/
http://www.irctt.com/pdf_files/LADDERNETWORKS.pdf
http://www.irctt.com/pdf_files/LADDERNETWORKS.pdf

7. Xilinx, “Using Embedded Multipliers in
Spartan-3 FPGAs,” XAPP467, May 13,
2003, http://www.xilinx.com/support/docum
entation/application_notes/xapp467.pdf

8. Alan V. Oppenheim and Ronald W. Schafer,

Digital Signal Processing, copyright 1975 by
Alan V. Oppenheim and Bell Telephone
Laboratories, Inc., published by Prentice-
Hall, Inc.

9. Vinay K Ingle and John G. Proakis, Digital

Signal Processing using Matlab, copyright
2000 by Brooks/Cole Publishing Company.

Biographical Information

Dr. Jonathan Hill is an Assistant Professor in

the College of Engineering, Technology, and
Architecture (CETA) at the University of
Hartford, Connecticut. He received the Ph.D.
and M.S. from Worcester Polytechnic Institute
and the B.S. from Northeastern University.
Previously an applications engineer with the
Networks and Communications division of
Digital Corporation, his interests involve signal
processing and embedded microprocessor based
systems.

Dr. Hisham Alnajjar is the Associate Dean of

the College of Engineering, Technology, and
Architecture (CETA). He received the Ph.D.
from Vanderbilt University, and M.S. from
Ohio University. His research interests include
sensor array processing, digital signal
processing, and power systems.

Dr. Saeid Moslehpour is an Assistant
Professor in the Electrical and Computer
Engineering Department in the College of
Engineering, Technology, and Architecture at
the University of Hartford. He received the
Ph.D. from Iowa State University and the B.S.,
M.S., and Ed.Sp. Degrees from Central
Missouri State University. His areas of interest
are logic design, CPLDs, FPGAs and distance
learning.

COMPUTERS IN EDUCATION JOURNAL 17

http://www.xilinx.com/support/docum%20entation/application_notes/xapp467.pdf
http://www.xilinx.com/support/docum%20entation/application_notes/xapp467.pdf

