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Abstract 
 

The field programmable gate array (FPGA) 
provides new ways for students to investigate 
discrete time signal processing principles.  In 
teaching signal processing, we find that students 
typically lack an intuitive feel for discrete time 
signals.  Basic topics such as sampling have 
subtleties that plague students.  To be useful in 
helping students to develop such an intuition, it 
is important that the tools be simple and that no 
detail be hidden.  Unlike existing software, all 
details must be visible in a simple yet 
transparent fashion.  Second, students need 
useful tools for developing their own projects. 

 
We are developing the discrete time signal 

processing toolkit for a digital signal processing 
(DSP) course, to be useful to students learning 
DSP principles as well as to advanced students 
working on their own projects.  As an 
introductory tool, the toolkit will allow a 
deductive approach where students investigate 
existing systems.  Advanced students ready for a 
more inductive approach can use the toolkit in 
their own projects by drawing schematics or 
modifying example VHDL modules.  Students 
are not expected to write code using a hardware 
description language, but the underlying code is 
always available for inspection. 

 
The toolkit is multipurpose that along with 

course materials provides several methods to 
process signals.  First off, the toolkit 
demonstrates signal conversion, sampling, 
aliasing, and the importance of a reconstruction 
filter.  Fixed point numbers are discussed and a 
simple IIR filter is presented.  A simple 
structure used to perform convolution is used as 
a building block to construct FIR filters.  The 
toolkit can optionally use a soft core digital 
signal processor.  Details of the toolkit are 
available on the project website[1]. 

Introduction 
 
The discrete time signal processing toolkit is 

useful to students learning digital signal 
processing principles as well as advanced 
students working on their own projects.  In 
teaching signal processing, we find that students 
typically lack an intuitive feel for discrete time 
signals.  Basic topics such as sampling have 
subtleties that plague students.  The discrete 
time signal processing toolkit is being 
developed for a digital signal processing course, 
to be useful in helping students to develop such 
an intuition, it is important that the tools be 
simple and that all details be visible in a simple 
yet transparent fashion. 

 
Details of the toolkit are available on the 

project website[1]  The toolkit is currently based 
on the Xilinx[4] Spartan-3 FPGA Starter Board, 
which is an off-the shelf development board 
from Digilent, Inc[2].  The development board 
is used with a custom acquisition card that we 
designed.  Analog to digital conversion is 
performed with the Analog Devices[3] AD7819 
chip which produces 8 bit samples at rates up to 
200k samples per second.  Digital to analog 
conversion is performed using a conventional R-
2R ladder network.  The acquisition card has a 
solderless bread board area for students to 
construct analog input and output filters. 

 
Several options exist for configuring FPGA 

resources.  The Xilinx ISE/Webpack[4] tools 
are freely available for students to download 
and use.  However the code is fairly generic and 
should be vendor independent.   In some cases 
as in the preliminary experience the circuit is 
described conveniently in VHDL.  In the 
remainder of the experiences a combination of 
VHDL and schematic capture tools are used.  
As an introductory tool, the toolkit allows a 
deductive approach where students investigate 

6  COMPUTERS IN EDUCATION JOURNAL 



existing systems.  Advanced students ready for a 
more inductive approach can use the toolkit in 
their own projects by drawing schematics or 
modifying example VHDL modules.  Students 
are not expected to write code using a hardware 
description language, but the underlying code is 
always available for inspection. 

 
Preliminary  Experience 

 
The first experience students have with the 

toolkit involves basic practical concerns that 
students must become familiar with.  The first 
topics to address are how to convert from analog 
to digital and digital back to analog. Figure 1 is 
the conceptual diagram of a test circuit that 
students use along with a voltmeter.  A 
potentiometer is sampled by an analog to digital 
converter and the result is displayed in 
hexadecimal.  Switches provide a digital value 
which is converted to the analog voltage Vo.  
By means of push buttons, the LED bar graph 
displays either the converted input or switch 
values.  The ADC is sampled at 10Hz and the 
seven-segment display is time multiplexed, 
transitioning between digits at a 1 kHz rate. 
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Figure 1: Conversion test circuit. 
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The totem pole output type driver typically 

used in CMOS technology makes use of the R-
2R ladder network appealing as a DAC.  The 
IRC application note on R-2R ladders[5] 
outlines the general principle and application of 
R-2R ladder networks.  Figure 2 is the ladder 
circuit constructed in the adapter board.  The 
circuit can be understood by repeatedly applying 
Thevenin’s well known theorem, starting at the 
left.  Overall (3) is the Thevenin equivalent 
resistance and (4) is the Thevenin equivalent 
voltage.   
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Figure 2: R-2R ladder circuit DAC. 
 

minV to V  
and producing a n binary value, 

Figure 3 is the toolkit and a voltmeter.  The 
configuration allows students to experiment 
with these basic conversion components.  The 
white cable with label 2.8V is for JTAG, used 
for configuring the FPGA.  The white region in 
the smaller upper board is a solder-less 
breadboard used here for the potentiometer.  
The LEDs to the left of the seven segment 
display is currently displaying the magnitude of 
the analog input. 

max

b

v

(1) gives the 
voltage discretization size δ  and given an input, 
(2) gives the corresponding numerical code 
value.  The ⎣ ⎦  symbols here mean that the 
result is truncated, keeping the integer part.  
With a 3.3 Volt power supply and 8 bits, the 
discretization size vδ  is 12.891 mV.  The ADC 
produce values $00 to $FF where the ‘$’ symbol 
indicates hexadecimal.  
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Figure 4: DTSP high level system view. 
 
The circuit in Figure 5 is used for input.  In 

this experience we are not considering use of an 
anti-alias filter as one point of this experience is 
to clearly demonstrate the effect caused by 
under sampling[8].  An important observation is 
that the ADC produces unsigned values.  It is 
desirable for perturbations above the operating 
point to produce positive codes and below to 
produce negative codes.  With the input at half 
the power supply voltage, the code produced is 
$80.  To convert the unsigned ADC code to 
two’s complement form we subtract this offset, 
but for this unique case it is enough to invert the 
most significant bit in the ADC code value. 

 
Figure 3: Toolkit and voltmeter. 

 
Sampling  Experience 

 
With the basics of conversions between analog 

and digital understood, we consider sampling.  
As in Figure 4, in a DTSP system a mechanism 
converts an analog input Vi to digital format, 
represented in the shaded region.  Digital 
processing is performed numerically.  Another 
mechanism converts the digital signal back to 
the analog realm, producing the output Vo.  For 
now there is no processing.  The goal is to 
investigate the notion of periodic sampling. 
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Figure 5: Signal sample analog to digital.  

  
 

 
 

Figure 6: Sampling schematic for FPGA device.
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Figure 6 is the corresponding schematic for 
logic implemented in the FPGA.  The xdin box 
is a junction for signals going to and coming 
from the ADC.  As discussed above, the xdin 
box inverts the most significant bit of the ADC 
value.  The sdiv box produces the sample clock 
signal sclk.  The xreg8 box is a register that 
inverts the most significant input bit and stores 
the value being converted back to analog 

 
The output from the R-2R ladder is stepped as 

shown in Figure 8.  To smooth the output a 
reconstruction filter is used.  The Sallen and 
Key filter in Figure 7 is similar to that described 
by Huelsman and Allen[6] serves as a useful 
building block.  The filter is second order and 
Table 1 lists three capacitor values and the 
corresponding cutoff frequencies.  As further 
described by Huelsman and Allen, an additional 
resistor and capacitor can be used to increase the 
filter order to three.  Here, the voltage divider 
formed with the DAC and R1 balances the 
overall DC gain to be unity.  Figure 9 
demonstrates aliasing.  With 100 kHz sampling 
and a 95 kHz sine wave input, the output is 5 
kHz. 
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Figure 7: DAC and reconstruction filter. 
 
 
 

 
 
 
 
 
 
 

 
 

 
 

Figure 8: Without reconstruction filter. 
 

 
 

Figure 9: Demonstrating aliasing. 
 

Representing  Signals  as   
Fixed-Point  Numbers 

 
Using the toolkit involves getting used to the 

idea of fixed point numbers along with two’s 
complement notation.  The IEEE math libraries 
make it relatively easy to implement filters 
using an FPGA.  The libraries include all the 
necessary fixed point math operators, namely 
addition, subtraction, and multiplication.  As 
indicated by Xilinx[7] the Spartan-3 FPGA 
series has a number of features to support 
arithmetic.  Carry logic and dedicated carry 
routing provides fast addition and subtraction.  
Multiplication can be performed in the FPGA 
fabric or with dedicated multipliers.  All these 
features make the use of fixed point numbers 
and two’s complement notation particularly 
appealing. 

 
 
 
 

Table 1: Cutoff Frequencies 
 
C1, C2 Fc 
2.2nF 10.2 kHz 
4.7nF 47.9 kHz 
22nF 102 kHz 

COMPUTERS IN EDUCATION JOURNAL 9 



The primary difference between floating point 
and fixed point numbers is how the radix point 
is positioned.  With floating point numbers the 
radix point is dynamically positioned as each 
calculation is performed.  The obvious cost of 
floating point numbers is increased circuit 
complexity and a potential reduction in speed.  
One cost with fixed point numbers is that the 
designer decides in advance the radix point 
position for each signal.  We use a simple ‘aBc’ 
notation that indicates ‘a’ bits and that the radix 
point is to the right of bit position ‘c’, where it is 
understood that the right-most bit position is 
number zero. 

 
Precision and round-off are related issues.  

Floating point arithmetic handles such details 
silently with varying precision, based on the 
magnitude of the numbers involved.  With fixed 
point numbers however the significance of each 
bit is known in advance as the designer must 
consciously address such details and decide 
when to drop bits.  To avoid numerical overflow 
extra bits can be allocated as needed.  Another 
situation arises in using a fixed discretization 
size, as small signals are not as well represented 
as larger ones.  Ideally the filter response will be 
independent of amplitude.  In some cases a 
poorly designed filter will display anomalies 
with small signals.  As before, such problems 
can be eased by inserting more bits. 

 
Selecting the number of bits and radix point 

position for constants is referred to as sizing the 
constants.  As such, the position of the first non-
zero bit after the sign bit is significant.  Ideally 
the bit position is selected so that this bit is one.  
Equation (5) converts an aBc code value to its 
corresponding represented value. 
 
 

 c−= 2codevalue  (5)

 
Math operations with fixed point numbers can 

have some interesting results.  While it is true 
that the sum of two ‘a’ bit integers will fit into 
an ‘a+1’ integer, in adding eight such ‘a’ bit 
integers only three additional bits should be 
required.  This paper arbitrarily sidesteps such 

issues by making the designer responsible for 
correctly sizing signals and constants.  Table 2 
lists the sizing of simple operators.  Note that 
multiplication shifts the radix point.  In 
performing these operations the designer must 
ensure that the sum, difference, or product will 
fit in the signal Y. 
 

 
 

IIR  Filter  Experience 
 
IIR type filters tend to require modest 

resources.  In mapping the components in such a 
filter block diagram directly to hardware it is 
possible to produce one output sample for each 
clock cycle.  Here we make use of the 
discussion of fixed point numbers to present a 
first order low-pass filter with a cutoff at 1 kHz.  
To design the filter I start with the continuous 
time model in Figure 10 and use the Matlab 
script lowpass1.m which applies the bilinear 
transform along with pre-warping to produce the 
coefficients for the corresponding discrete time 
system. 
 

Figure 11 is the corresponding DTSP filter 
model.  The sizing of the coefficients K1, K2, 
and K3 is summarized in Table 3, showing the 
value represented.  Note that despite that few 
bits are used, the percent difference error with 
the theoretical value is within two tenths of a 
percent. 

 
Great care must be exercised in sizing internal 

signals.  To obtain speed with an FPGA it is 
necessary to use as few bits as possible to 
represent each signal.  With IIR filters, the 
internal signals tend to experience a 
magnification effect, which is analogous to the 
storage of energy in a continuous time filter 

           Table 2: Sizing of simple operators 
 

Operation Name Sizing 
W + X = Y add W, X, Y are ‘aBc’ 
W – X = Y subtract W, X, Y are ‘aBc’ 
W * X = Y multiply W is ‘aBc’, X is ‘dBe’ 

 and Y is ‘a+dBc+e’ 

10  COMPUTERS IN EDUCATION JOURNAL 



COMPUTERS IN EDUCATION JOURNAL 11 

s

component like a capacitor or inductor.  For this 
low-pass filter the effect is seen in the step 
response.  Given a step input value w  the 

steady state value for x can be approximated by 
recognizing the familiar geometric power series. 
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Figure10: Low-pass RC filter 

 % lowpass1.m produce filter coefficients 
% using Bilinear transform and prewarp. 
 
% Design Parameters 
Fc = 1e3    % filter center frequency 
Fs = 100e3  % sampling frequency 
Wc = 2*pi*Fc; 
 
% Model the continuous time system 
function 
Num = [0 1]; 
Den = [1/Wc 1]; 
 
% Transform and prewarp to match cutoff  
[N,D] = BILINEAR(Num,Den,Fs,Fc) 
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Figure 11: DTSP filter model. 
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Table 3: Fixed point coefficient approximations. 
 
Coefficient Size Code Represents % Diff. Error 
K1 8B12 125 0.0305176 + 0.160% 
K2 8B12 125 0.0305176 + 0.160% 
K3 5B4 15 0.937500 – 0.168% 
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 (9) Unlike floating point numbers where the 

details involving precision are handled by a 
processor in silent fashion, with fixed point 
numbers the designer is responsible for 
establishing the numerical precision.  To assist 
in this regard, Figure 12 is the so-called 

 
 
 
 



plumbing  diagram  for the  example  first  order 
low-pass  DTSP  filter.  The  figure  is produced 
from Figure 11 by inserting slash boxes as 
necessary to resize signals and inserting sizing 
information.  Here, the designer chose to resize 
the input to include four extra bits to the left 
side for the magnification effect and eight extra 
bits to the right to increase precision.  An extra 
bit is inserted into the x and delayed x value to 
avoid overflow in addition.  Following the 
product with K3, four bits are dropped from the 
right of x.  With K1 and K2 equal, 
multiplication with K1 is moved after the 
addition bubble.  In producing the output the 
final slash box drops 21 bits. 
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Figure 12 : Plumbing diagram for low pass filter. 
 
Figure 13 is the corresponding schematic 

drawn with the Xilinx ISE capture tools.  Each 
symbol is drawn and corresponds to a simple 
VHDL module.  The ext boxes resize by adding 
bits.  The multcut boxes multiply by a constant 
value and cut bits.  The reg20 box introduces a 
delay.  The add20x box first inserts a bit to each 
value before adding. 

 

Figure 14  is the input and output for the DTSP 
low-pass filter, operating near the 3dB 
frequency.  With a 1 Volt pk-pk input at the 3dB 
frequency of 1 kHz the output should be 0.707 
Volts.  Here, near the 3 dB frequency the output 
is 0.700 Volts pk-pk. 
 

FIR  Filter  Architecture 
 
The primary issue with implementing a FIR 

filter directly in hardware is the sheer size of the 
circuitry involved.  Multipliers implemented 
directly in FPGA fabric require significant 
resources and are slow.  Dedicated hardware 
multipliers are fast, but are modest in number, 
varying by device model.  The commonly used 
XC3S200 device used here has 12 dedicated 
hardware multipliers which is limiting.  In 
contrast the XC3S5000 has 104 dedicated 
multipliers.  Given the speed of hardware 
multipliers, we can still achieve respectable 
sample rates using time multiplexing.  Here we 
consider one such FIR filter. 
 

The following presentation is intentionally 
brief.  Many DSP text books, including 
Oppenheim and Schafer[8] as well as Ingle and 
Proakis[9] provide useful background.  As in 
(10), when the input x is a unit impulse, the 
output y is the corresponding impulse response 
h.  It is reasonable to assume that the impulse 
response is causal or zero for n less than 0. 

 
 
 

 

 
 

Figure 13: Schematic for low pass filter. 
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Figure 14 : Low pass filter at 3dB frequency. 
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To produce the convolution sum we assume 

the system is linear and time invariant.  If the 
input is a scaled and delayed impulse, the output 
will be scaled and delayed in the same fashion. 
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Assuming further, a causal system, given an 

input x that is the sum of the scaled and delayed 
impulses, the output y is the sum of scaled and 
delayed impulse responses (12).  Finally, we 
assume the impulse response h  is zero for 

.  Changing variables leads to (13). 
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where  for  and  0][ =lh m≥l 0<l

(13)

 
The following is only a modest departure from 

that previously. To distribute the convolution 
sum across S stages, we split the sigma operator, 
to appear S times, to produce (14).  At this point, 

taking the convolution sum further is only 
practice in notation. 

 
To implement each sum in (14) it is 

convenient to store each part of the impulse 
response in a stage with read-only memory or 
ROM and input values in RAM.  Each stage is 
like that in Figure 15.  The ROM stores impulse 
response  values  with  increasing  ROM address 
values corresponding to advancing sample 
values.  The RAM is asynchronous read, 
synchronous write, so that a write is committed 
to memory at a rising clock edge.  This also 
means that the oldest sample can be read the 
same cycle, as the newest sample is written into 
RAM.  An accumulate-and-dump circuit (ADM) 
is produced using a register that clears in 
synchronous fashion along with a parallel load 
register.  The parallel load register obtains the 
final sum as the accumulate register clears in 
preparation for accumulating the next sum.  
 

To read the oldest impulse response sample 
first, each sum in (14) is evaluated in reverse 
order, starting at the last index value.  Suppose 
that the number of impulse samples stored is 

=m .  The timing for Figure 15 is in Figure 16. 
The upper or divide-by-M counter decrements 
while the lower or divide-by-M-1 counter 
increments.  The co signal is periodically 
asserted to produce each partial sum value.  
With the two counters having different modulus 
values, there is a progressive shifting between 
index values, with each output sample. 
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Figure15: Partial convolution circuit. 
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Figure16: Convolution timing. 
 

Note that Figure 15 and Figure 16 do not 
outline how reset is applied.  The Spartan-3 
distributed RAM has no direct reset mechanism.  
During reset, the data input is gated for M clock 
cycles so that zeros are written to RAM. During 
this same time, the ADM also produces zero.  
To summarize, the convolution sum provides an 
effective FIR filter architecture.  A primary 
benefit is the way the architecture allows 
performance to be traded off for complexity.  
With S convolution stages, each storing m  

 
FIR  perien

1

impulse response samples in ROM, the result is 
a FIR filter with Smm ⋅= 1  taps. 

Filter  Ex ce 
 
To provid  also fairly 

self explanatory, I wrote a script for Matlab or 
O

e a simple example that is

ctave to produce samples of an exponentially 
decaying 10 kHz sine wave signal.  Such an 
impulse  response  corresponds  to  a   resonance  
and such a circuit behaves as a band pass filter.  
The time constant is 20 cycle or 0.2 
milliseconds and samples are taken for three 
time periods or 60 samples.  Figure 17 is the 
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corresponding schematic produced using the 
Xilinx ISE tools.   

 
To provide more detail, Figure 18 is a closer 

v

refer back to Figure 15. 

cy.  In the case of this 
fi

iew of the first few stages along with the 
counter logic.  The design can be simplified, 
combining similar signals into larger busses.  
For more detail regarding each signal, please 

Figure 19  is the corresponding filter output at 
the higher 3dB frequen

lter, one sample is produced every ten clock 
cycles.  With a 100 kHz sample rate the clock 
frequency is only 1 MHz.  Use of the 
convolution circuit in this way allows for a 
trade-off between speed and circuit complexity.

 
 

 
 

Figure17: FIR filter constructed with six convolution stages. 
 

 
 

 
 

Figure18:  First few stages of FIR filter. 
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Figure19: Bandpass filter 3dB point. 
 
 

Conclusion 
 
It is our goal that the discrete time signal 

processing toolkit will be useful to students 
learning digital signal processing principles as 
well as to advanced students working on their 
own projects. The toolkit is being developed for 
use in a digital signal processing course.  As an 
introductory tool, the toolkit allows a deductive 
approach where students investigate existing 
systems.  Advanced students ready for a more 
inductive approach can use the toolkit in their 
own projects.  The toolkit is multipurpose that 
along with course materials provides several 
methods to process signals.  Future work will 
involve the use of a soft core digital signal 
processor.  Details on the project are at the 
project website[1]. 
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