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Abstract 

 
In recent years there has been a significant 

increase in the variety and complexity of 
Articulated-Multi-Body-Systems (AMBS) used 
for various applications. There is also increased 
interest in the model-based design-refinement 
and controller-development, which is critically 
dependent upon availability of underlying plant-
models. 
 
Kinematic and dynamic plant-models for 

AMBS can be formulated by systematic 
application of physics postulates. This process, 
in its various variants, forms the basis of various 
mechanisms/robotics courses. However, the 
type and complexity of the example systems is 
often limited by the tractability of first 
generating and subsequently analyzing system 
equations-of-motion (EOM). Nonetheless, it 
should be noted that using simpler examples 
alone may sometimes fail to capture important 
physical phenomena (e.g. gyroscopic, coriolis). 
Hence, we examine the use of some 
contemporary symbolic- and numeric-
computation tools to assist with the automated 
symbolic equation generation, sensitivity 
analysis and development of model based 
controllers to enhance various courses. 
 
From the design and analysis perspective, we 

examine a host of examples starting with basic 
examples like the single pendulum, double 
pendulum; building up to intermediate examples 
like the four-bar mechanism and culminating 
with the implementation of 3-PRR and 3-RRR 
planar parallel platform mechanisms to 
showcase the modeling and analysis aspects. 
From a control perspective, we focus on the 
Furuta pendulum example. This allows us to 
showcase the emergence of model-complexity, 
even in relatively-simple two-jointed 
mechanical system and yet to study various 

aspects of model-creation, model-linearization 
and model-based controller development. 
 
The principal underlying philosophy of our 

effort is to establish linkage between traditional 
modeling approaches and use of these 
contemporary tools. We also try to make a case 
for use of automatic symbolic computation and 
manipulation as a means for enhancing 
understanding of both basic and advanced 
AMBS concepts. Lastly, we document our 
efforts towards creation of self-paced tutorials 
and case-studies that serve to showcase the 
benefits. 

 
Introduction 

 
Over the past few decades, several seminal 

textbooks [1-4] have addressed the 
mathematical modeling and analysis of 
kinematics, dynamics and control of articulated 
multibody systems (AMBS). In their simplest 
form, the governing equations-of-motion 
(EOM) take the form of a system of Ordinary 
Differential Equations (ODEs). However, there 
are many factors that can quickly introduce 
complexity in these governing equations. First, 
and perhaps the greatest, source of complexity 
comes from the effects of finite rotations in two- 
and three-dimensions, which introduces 
trigonometric complexity (in the form of sine 
and cosine terms). This modeling complexity is 
amplified in the transition from linear (1D) 
systems to planar (2D) systems and ultimately 
to spatial (3D) systems. Second, most real-life 
multibody systems possess one or more closed 
kinematic loops, typically to enhance their 
stiffness and payload capacity. Such closed-
kinematic loops can help reduce overall 
actuation requirements by creating constraints 
within system degrees-of-freedom. However, 
these algebraic constraints interact with the 
underlying systems of ODEs of the 
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unconstrained systems to create systems of 
Differential Algebraic Equations (DAEs).  
Hence, both initial modeling as well as 
subsequent performance analysis and controller 
development tend to be difficult in such 
multibody systems.  
 
Nevertheless, effectively modeling and 

analyzing the kinematics and dynamics of all 
such systems within a computational framework 
is critical for the apriori prediction of the overall 
system response. From a design perspective, 
accurate and computationally-efficient 
simulation models are vital for rapid design-
refinement through iterative simulation-based 
parametric studies. From the control 
perspective, the same model can also help 
implement more effective model-based 
nonlinear control strategies. The recent trend 
towards larger multi-DOF articulated 
mechanical systems, operating in 3D task spaces 
typically at higher operating speeds has created 
more stringent performance requirements of the 
developed controllers. This, in turn, paves the 
way for development and deployment of model-
based non-linear controllers to satisfy 
performance criteria. 
 
 Thus, the fundamental challenge in such 

systems remains: “Given a description of a 
mechanical system in terms of the relative 
physical layout, interconnections, and 
mechanical properties, how we can formulate 
the kinematic or dynamic equations of motion 
(EOM), characterize the system response and 
exercise control over its environmental 
interaction?”  
 
The variety of formulations that exist for 

multibody systems can be daunting. Such 
variety arises from the interplay between (i) the 
multitude of problem tasks that can be 
addressed, (ii) the varying levels of analysis, 
and (iii) the numerous possible system 
configuration descriptions.  The designer may 
seek to address forward or inverse problems for 
such systems, operating in the kinematic or 
dynamic regimes, with system configurations 
modeled in terms of a variety of coordinates 
(absolute, relative, mixed). Oftentimes, selection 
of specific coordinate descriptions for systems 

offers unique advantages and disadvantages for 
specialized problem tasks/analyses. For 
example, in systems with joint-based actuation, 
a relative joint-coordinate-based formulation 
simplifies the determination of the (external) 
actuation forces for inverse-dynamics problems. 
However, additionally determining the internal 
pin-reaction forces is easier in some form of 
extended coordinate system (for example, 
absolute Cartesian coordinates of each link) 
with suitable constraints within an augmented 
Lagrange formulation.  
 
Traditionally, the ability to select and switch 

the formulation, depending on the task at hand 
has created challenges – oftentimes requiring a 
reformulation of the EOM from scratch. It is 
also worth noting that practical limits on 
system-size are often encountered when using 
certain existing formulations (such as the 
Lagrangian formulation) to derive EOM of 
increasingly-complex systems. For all but the 
simplest problems, however, this task can be 
laborious and error-prone. The complexity 
encountered in real-life multibody systems can 
very easily take many man-months of effort to 
develop and validate by hand.  
 
In our work, we explore building upon the 

capabilities of MapleSim [5], a Maple toolbox 
to facilitate the rapid and automated creation of 
the symbolic EOMs of large-scale articulated 
multibody models. We exploit MapleSim ability 
to create kinematic and dynamic EOMs, using 
user’s preferred formulation and coordinates 
within a systematic and automated symbolic 
implementation. Eventually, we also showcase 
the connection to other software like Simulink 
and its real time controller implementation. 
 
However, there remains a question of 

applicability and accuracy of this new found 
capability which we will systematically 
examine. We will study this in the context of 
several case studies, beginning with simple 
pendulum, double pendulum; building up to 
intermediate examples like the four-bar 
mechanisms, and finally examine the 
implementation of 3-PRR, 3-RRR planar 
parallel platform mechanisms. These case 
studies of articulated systems with active/ 
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passive joints and multiple closed kinematic 
loops engender many of the complicating 
factors entering the equations of motion 
(EOMs).  
 
The rest of the paper is organized as follows. 

We discuss the background as well as 
challenges in conventional approach and how 
contemporary tools can help alleviate some of 
these challenges. Then, we layout the staged 
implementation of our tutorials, followed by 
several case studies used in the tutorials. In the 
next section, we discuss the Furuta pendulum 
which serves as an advanced model including 
effects of under-actuation. We discuss controller 
development and subsequent validation by 
simulation and hardware-in-the-loop (HIL) 
testing. Finally, we conclude with a discussion 
of critical issues faced during implementation of 
these plans.  

 
Background  &  Challenges 

 
Traditionally, many of the concepts and ideas 

for AMBS (including the study of kinematics 
and dynamics), are delivered in a classroom-
based lecture. In this setting, mathematical 
formulations of the mechanism are usually 
emphasized and students are required to 
formulate the equations governing the 
kinematics and dynamics of some simple 
mechanisms and then solve these using 
algebraic techniques. The main advantage of 
this approach is that it permits the student to 
understand the fundamental theory underlying 
the analysis as well as get a handle on the 
formulation that forms the basis for the analysis 
of more complicated mechanisms. Thus, with a 
grasp of the basic concepts and formulations, 
students can implement the techniques 
algorithmically by suitably programming [6,7]. 
However, the complexity of the analyzed 
mechanism imposes limitations for the 
analytical method. For example, the formulation 
of a set of equations for a simple four bar 
mechanism is manageable for links with center 
of mass along the link lengths. However, if the 
shape of the linkage is complex or the number 
of links increases, the formulation becomes 
more complicated and time consuming. Thus, 
the analytical method is most often limited to 

simple two-dimensional mechanisms and links 
with relatively simple geometries. Similarly, 
control courses, limited by the student’s skill 
and time within the curriculum, rely mostly on 
popular, though simple, systems for which 
model equations are readily available. 
 
Many of these problems can be alleviated by 

using computer aided analysis software tools 
(e.g. ADAMS, VisualNastran, etc.) which are 
available to support the simulation based study 
of AMBS. The main benefits of this method are 
that the students can analyze more complex 
mechanisms with detailed link geometries, 
obtain quick results and compare many 
possibilities prior to selecting best mechanism 
by permitting the detailed visualization of 
virtual mechanisms, giving the student a better 
understanding of the motion of the mechanism, 
the path of a specific point, and the functionality 
of the mechanism. The principal disadvantage is 
that the formulations of the kinematic and 
dynamic analysis of the mechanism are 
completely hidden from the student. The black 
box approach to the underlying governing 
equations can in many cases hinder 
understanding of the concepts behind many of 
the mechanisms. Furthermore, implementation 
of advanced model-based controllers requires 
the plant model either in the form of equations 
or a sensor based virtual implementation that 
could provide all the data required for model 
identification and design. However, the latter 
approach introduces an additional  model 
identification step and also takes more time for 
sensitivity analyses, since the model needs to be 
re-run every time. Hence, there is a great need 
for symbolic computation of the plant equations. 
 
It is to overcome the limitation of both these 

approaches that we examined the third 
automated symbolic modeling approach. 
Automated symbolic approaches derive their 
many advantages by eliminating the need for 
manual EOM computation and subsequent 
manipulation which was error prone and time 
consuming. Two trends that have favored the 
adoption and rapid proliferation of the symbolic 
computation are: (i) the availability of low-cost 
PC based symbolic manipulation tools like 
Maple; and (ii) the capability of integrating 
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multiple functionalities into a unified 
environment like MapleSim/Connector.   
 
However, there are several pedagogic issues 

that hinder the direct deployment of 
technological tools like MapleSim: 

 
A. Currently the use of MapleSim needs 
“expert users” who can not only model, but 
also analyze the results for their correctness. 
While tutorials are made available by the 
vendors of these tools, they are targeted at a 
more experienced user (typically with a 
graduate level knowledge of AMBS). These 
traditional tutorials may assume a certain 
level of both mathematical sophistication and 
engineering experience from the user.  
 
B. Novitiate robotics students may tend to 
have difficulty understanding both technical 
(theoretical) concepts as well as their 
technological implementation. Moreover, it is 
crucial that student gleans a greater insight 
into the problem and is better equipped to 
make engineering judgments from the 
information obtained from the use of such 
software.  

  
It is to promote this type of greater 

understanding that we are creating a series of 
self-paced MapleSim tutorials deployed in two 
contexts. First, we targeted the course MAE 
413/513: “Robotic Mobility and Manipulation” 
at the State University of New York at Buffalo. 
Simultaneously, we also sought to examine the 
efficacy of these tools and to provide support to 
develop a self-paced MAE501: "Independent 
Study" course focusing on model-based 
controller development for Furuta pendulum. 

  
MAE413/513: "Robotic  Mobility  and 

Manipulation"  Tutorials Development [8]. 
 

Traditionally, many of the concepts and ideas 
behind articulated multibody systems (AMBS) 
(including the study of kinematics and 
dynamics), are delivered with simple examples 
in a didactic classroom setting. In MAE413/513 
we begin with the formulation of dynamic 
EOMs of various simple mechanical systems 
(such as single pendulum) using the Newton 
Euler and Euler Lagrange methods. This is 

followed by the extraction of dynamic equations 
in matrix form and structural properties. After 
obtaining the EOMs, students proceed to 
perform various forward and inverse dynamics 
simulations in MATLAB using numerical 
integration routines (ode5 for fixed time-step 
solver and ode45 for variable time step solver).  
 
While addressing the basic formulations, many 

assumptions were made in order to simplify the 
calculations. However, it was unclear as to how 
situations involving more complex link 
geometries could be handled. For example, if 
the given links are not slender (shown in Figure 
1) and/or if the center of mass is not at the 
geometric centroid of the link, then the problem 
cannot be directly handled using the methods 
taught in class.  
 
Hence we sought to create a set of tutorials to 

supplement the class. The goal is to reinforce 
the ideas and concepts originally presented in 
the course by paralleling the course material 
with these tutorials (Figure 2). The lecture 
coverage of the course provided the student 
exposure to the use of traditional simplified 
analytical modeling and computational analysis 
methods. Independent exploration by the student 
with the tutorial was intended to promote 
interactive experiential learning. The desired 
outcomes included improving the overall 
understanding of system modeling by the 
students and accelerating their learning 
experience without increasing the lecture hours. 
 

 

 
 
Figure 1: Traditional formulation of equations 
of motion often rely on simplified model and 
cannot be directly applied to irregularly shaped 
linkage parts. 
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Traditional Approach

Automated Symbolic Approach

Link

 
Figure 2: Linkage between traditional approach and automated symbolic approach to obtain EOM of a 
double pendulum. 
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Other considerations behind the selection and 
implementation included: (1) the accessibility of 
the software within the class; (2) the ease of 
learning (within a semester or less); and (3) the 
unified modeling environment provided by 
these tools. Pre-constructed virtual models were 
also made available to the entire class to 
facilitate further exploration of many of these 
concepts on an individual basis. 
 
As shown in Figure 3, in the first phase, 

students begin with a series of simple case 
studies that are intended to familiarize the 
student with some of the basic functions in the 
MapleSim environment with the help of the 
examples and theory they learn in classroom. In 
the second phase, given some basic models of 
AMBS examples, students make advanced 
model in MapleSim and use what they have 
learnt in the previous steps to study the 
functional performance of these mechanisms 
(see Figure 4). Finally, in the third phase, 
students use the knowledge gained from this 
tutorial to support the final course project. The 
final project requires the student to use the 
software to explore different options    in    their    
designed    model,    such     as interactively alter 

parameters and location of actuation, of their 
specific designed models and come up with the 
final design, which  meets the specifications.  
These case-studies have a natural  hierarchical 
staging in the form of increasing “problematic” 
components at subsequent levels as students 
gain mastery at the initial levels [1].  

 
 
Figure 3: The tutorial is intended for 

scaffolded learning of the tool (MapleSim) with 
examples range from simple pendulum to 
complex planar parallel mechanism, 
complementing the course lectures. 
 

 

 
Figure 4: Comparison of forward dynamic simulation in traditional approach and automated symbolic 
approach, with double pendulum as an example. 
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In the analytical approach, we discuss the 
following staged solution process: 

In addition, we also incorporated erroneous (but 
“intuitive”) directives at several places within the 
tutorials. This is intended to force students to 
make common but undesirable mistakes and to 
then benefit from the experiential learning 
process. From this perspective, our approach is 
closer to Linn’s framework for scaffolded 
knowledge integration [7] which emphasizes the 
merits of such trial-and-error learning as well as 
the applicability of multiple equally-valid 
alternate approaches to problem solution. 
Ultimately, the principal desired outcome of 
these tutorials is to promote the development of 
cognitive inquiry within the student and 
accelerating their learning experience without 
increasing the lecture hours. At the same time the 
created framework also helps us address the 
more immediate goals of reinforcement of 
concepts being presented in the course by 
paralleling the course material in the case-
studies. 

 
(1) Simplify the problem by appropriate 

assumptions, such as treating the pendulum 
inertia is same as an idealized rod. 

(2) Draw the free body diagram of the 
simplified model. 

(3) Develop the appropriate governing EOM 
using Newton’s Laws of Motion as well as 
using Lagrangian method.  

(4) Solve the EOM to obtain the desired 
solution. 

 
In the MapleSim approach, the students are 

required to convert the simplified model into a 
block-based model as shown in Figure 5 (b). The 
tutorial guides the students to create the parts, 
and subsequently assemble it at the desired initial 
configuration in MapleSim environment. The 
model can now be simulated in order to visualize 
its motion and extract the time history of 
important parameters. 

 
Case Study 1: Single Pendulum 

  
However, it is important to motivate the 

students to exercise good engineering judgment 
while analyzing many of these virtual models. 
For example, since the simulations are done 
numerically, students were required to use their 
engineering knowledge to detect any 
inconsistencies,   if   present.    In    this    
pendulum example, the expected velocity vs. 
angle graph is well understood (by even the 
novice students). Other intuitive cross validations 
such as equilibrium positions or resulting 
Cartesian trajectory were also incorporated. 

The first case study is a pendulum shown in 
Figure 5 (a). In this first tutorial, the goal is allow 
the student to (i) get familiarized with the 
interface (i.e. how to connect various blocks to 
create a system); (ii) explore various features 
provided by MapleSim (i.e. how to set the initial 
conditions); and (iii) analyze and visualize the 
result. The tutorial is introduced as a problem 
statement: 

 
“A pendulum of length of L, as shown in Figure 

5(a), with a mass m is pulled back to reach an 
initial angle of 0θ  from the vertical reference line 
and then released from rest. Determine the 
velocity and the reaction force over the entire 
period of the mass.” 

 
We also adopted the approach of first creating 

scenarios that caused errors, and then working 
the students through the process of resolving 
these errors. For example, a physical link needs 
to be modeled as a compound pendulum (with 
both mass and inertia) whereas students would 
typically forget to model the rotational inertia. 
The tutorial guided the students to recognize this 
difference, and work their way to simulate its 
effects hence understand it better. 

 
This problem was selected to be the first 

example both from the viewpoint of its simplicity 
as well as its familiarity to the students. We 
demonstrate the process of modeling and the 
solution first by the traditional analytical 
approach, and then demonstrate the same process 
in MapleSim. 
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(a) (b)

 
(c)

 
Figure 5: (a) Single pendulum problem; (b) modeled in MapleSim environment; (c) generated EOMs, 
plot of results from forward dynamic simulation, and visualization of the pendulum in motion. 
 
Case Study 2: Planar Four-Bar Mechanism 

 
In the second phase, we examine more 

complicated examples of different planar 
mechanisms (double pendulum and four-bar, 
which are usually assigned to student as 
homework). The four-bar introduces a 
constrained mechanical system with dynamics 
couplings among the linkages. A four-bar, as 
shown in Figure 6 (a), with the problem 
statement described as the following: 

 
“Given a four bar mechanism, formulate the 

dynamic equations of motion using Lagrangian 
method and compare the results with MapleSim 
automated EOMs generation. 
 
“Perform forward dynamic simulation of the 

four  bar   system   under  the  effect  of  gravity.  

 
Compute the required torque for input angle to 
follow a sine wave.” 

 
Using MapleSim, it is also possible to cross 

check and reinforce results obtained from 
different formulations against each other. E.g. 
we can compare symbolic expression for 
constraint forces obtained by hand calculation 
with the MaplSim result. Thus, at every stage of 
the kinematic and dynamic analysis, the 
correspondence between the analytical approach 
and the MapleSim approaches are emphasized. 
Finally, it is also important to have students 
aware of the trade-off between the symbolic 
equation generation and corresponding 
computation power by the tools and the 
accuracy of the results. 
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(a)

 

 
(b)

 

 
(c)

 
 
Figure 6: (a) Fourbar mechanism modeled in MapleSim and its corresponding forward dynamic 
analysis; (b) analytical EOMs generated by using Lagrangian method (selectively shown only the EOMs 
and Mass matrix); and compare the EOMs with (c) EOMs generated using MapleSim. 
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Case Study 3: Complex Planar Parallel 
Manipulator 

 
In the final phase (course final project), 

students were asked to model and analyze 
variants of planar parallel mechanisms (e.g. 
3PRR, 3RRR, 3RPR). These systems introduce 
multiple closed loop constraints as compared to 
a four bar system. They are required to 
formulate the EOMs of the given system, both 
analytically (using Lagrangian method) and 
using MapleSim. After formulation of the 
EOMs, they were required to design a trajectory 
tracking controller. Additionally, the students 
were required to analyze system level 
performance (such as manipulability and 
workspace).  
 
Figures 7 (a) and (c) show a 3PRR parallel 

manipulator example while Figures 7 (b) and (d) 
show a 3RRR example. The students are 
required to first solve the forward and inverse 
kinematics of the system, followed by 
formulating the EOMs analytically using 
Lagrangian method. Parallel to this work, 
students also create the constrained multibody 

system in MapleSim, followed by generating 
EOMs symbolically. Figure 8 shows the EOMs 
generated by (a) analytical approach and 
compares the result with (b) automated 
MapleSim result.  
 
Using such model, students could then 

compute and analyze manipulator end-effector 
motion for various inputs. E.g. Figure 9(a) and 
(f) shows the results for a 3RRR manipulator 
with a constant 0.5 /N m−  torque applied at 
three active joints for 5 seconds. Various joint 
angles can also be plotted to study the range of 
motion (workspace) of the manipulator 
parametrically, as shown in Figure 9 (g).  
 

MAE501: "Independent study" 
Deployment[2] 

 
The Rotary Inverted pendulum (ROTPEN) [3], 

also known as a Furuta pendulum (shown in 
Figure 10) is a commonly used project example 
in various control cases. It is a typical 
multivariable, underactuated, nonlinear and 
unstable system. 

 
 

(a) (b)

(c) (d)
 
Figure 7: MapleSim model of (a) 3PRR and (b) 3RRR manipulator and their corresponding 

visualizations shown in (c) and (d).  
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Traditional Approach

(a) 

Automated Symbolic Approach

(b) 
Figure 8: (a) Analytical computation of EOMs of a 3PRR planar parallel mechanism and (b) automated 

EOMs generation using MapleSim. 

  
(a)  0sect = (b) 1sect =  

  
(c)  2sect = (d)  3sect =

  
(e)  4sect = (f)  5sect = (g) 

 
Figure 9: (a)-(f) Forward dynamic simulation of a 3RRR manipulator under constant torque applied at 

the active joints for t=0 to t=5 sec; and (g) plot of end-effector position and active and passive joint 
angles, as well as locations of points of interest on the manipulator. 
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Figure 10: The Rotary Inverted Pendulum (ROTPEN), also called the Furuta pendulum. 
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(a) (b)
 

 
(c) 

Figure 11: Mass matrix generated from MapleSim template (a) single pendulum; (b) single pendulum 
modified to Furuta pendulum; and (c) comparison of MapleSim generated mass matrix and hand coded 
result of mass matrix. 
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M

ent through the model 
t with the approach discussed earlier. 

Converting a planar single pendulum model into 
s

, we explored 
incorporation of real world actuators e.g. DC 
m

odeling 
 

We guide the stud
deploymen

patial Furuta pendulum was easily 
accomplished by attaching a copy of the original 
model to its base and changing the copies' 
parameters in the MapleSim GUI as shown in 
Figure 11. The rest of the steps for extracting 
model equations were unaltered. 
 
Although a virtual model can be actuated with 

a simple idealized torque driver

otor. The modularity of MapleSim 
components allows us to create a DC motor 
model separately and attach it to Furuta 
pendulum model. The DC motor equations 
shown in Figure 12 get included implicitly into 
the system model and need not be calculated 
separately.  
 

 
 

Figure 12: (a) DC motor model attached to 
Furuta pendulum (b) DC motor equations. 

Linear controller design techniques require a 
model expressed in linear state space format. 
The conversion process may be automated by 
a

Controller 
 

ttaching a simple Maple template, like the one 
shown in Figure 13, to the model. The tutorials 
guide the user's controller design process with 
linear controller design in order to facilitate 
subsequent comparative study between linear 
and model based controllers. An outline of the 
adopted approach for LQR control design is 
illustrated in Figure 14. However, a detailed 
discussion is beyond the scope of the current 
paper. 

 

 
 

Figure 14: Steps to design conventional linear 
controllers. 

 

 
 

 
 
 

 
 

Figure 13: Automated script for linearization of AMBS to obtain model in linear state-space format. 
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For the given single-input multi-output system, 
we use a cascaded control approach [4]. This 
imples that we have separate sets of gains for 
motor states and pendulum states. To allow for  
a comparative study, a configuration was chosen 
so that it would be stable with both controllers. 
Thereafter, gains for motor states were fixed and 
performances of two controllers with same 
ranges of gains of pendulum states were 
compared. The performance functional was 
selected as: 
 

 

 
 
R1 = diag(0.25,4,0.01,1), R2 = 0.2 
R1 & R2 are state and input weighting matrices. 
 
 

  
(a) (b)

 
F ure 15: Performance comparison between 
LQR and model based controller with respect to 
c
controller (Input-output linearization);  Norm 
of performance functional = (a) 0.000013; and 
(b) 0.0949. 
 
Figure 15 compares the performance 

functionals of both controllers for variation in 
gains of the pendulum states (proportional-Kp 
and derivative-Kd gains). We observe that the 
model based controller has a wider range of 
controller g as compared to the LQR based 
controller. 

Implementation of Model Based Controller 
 
As an example, feedback linearization control 

methodology was deployed using two copies for 
the same model in MapleSim. One served as the 
inverse dynamics model to create the required 
torque for a given motion profile while the other 
served as the physical plant being controlled 
with the generated torque profile. This 
arrangement canceled out non-linearities in the 
system thereby allowing control of the system 
using an additional PD controlle
designed easily using linear control techniques. 

e 

rol technique was extended to 
S

ig

hange in Kp and Kd  (a) LQR (b) model based 
¥

ains 

 
 
 
 

controller and the plant model. 
 

his cont

r, which is 

Figure 16 (a) highlights the details of th

T
imulink by using MapleSim Connector 

Toolbox, which exports any subsystem of 
MapleSim to an S-function in Simulink. The 
controller developed in MapleSim was validated 
against a SimMechanics model of the system, as 
shown in Figure 16 (b). 

 

 
(a) (c) 

 
(b) (d)

 
Figure 16: (a) Input-Output Linearization with 

MapleSim blocks (b) SimMechanics model 
controlled with MapleSim controller. (c) 
MapleSim inverse dynamics (d) plant model. 
 

n Figure 17 (a) and (b), we I observe that the 
commanded signal was tracked as required. 
However, the motor angle response, as seen in 
Figure 17 (c), becomes unstable since it is a part 
of the internal dynamics  (and not accounted for  
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in the current control model). Thus, while the 
functionality of sensor-based inverse dynamics 
is available in SimMechanics, MapleSim 
provides better insight into the system 
equations, which become relevant in the 
subsequent analysis. 
 

Unstable In al Dynamics 
 

The Equations generated f
subsequent symbolic computation based on 
input-output linearization [5] yields the form of 
controller (without resorting to controller gain 
tuning techniques) and
the internal dynamics. 

  
Figure 17: (a) Response of 

tern

rom MapleSim and 

 thus achieve control over 

 

2θ , a comparison 
between MapleSim and SimMechanics Model 
response, (b) error between reference 2θ  and 
system 2θ  response, and (c)   response of 1θ . 

 
The automatically generated equations from 

MapleSim are shown below for the readers 
benefit. 
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The overall dynamic EOM was written as: 

⎢ ⎥=
⎢−

Commanded Signal
MapleSim Simulation
SimMechanics Simulation

 
11 1 12 2 11 1 12 2 1 1 1M M C C G Beqθ θ θ θ τ+ + + + = −&& && & & &

21 1 22 2 21 1 22 2 2 0M M C C Gθ θ θ θ

θ  (1)  

+ + + + =&& && & &          (
(a) (b)

0 1 2 3 4 5
-0.5

0

0.5

1

1.5

2

Time(sec)

θ 1(R
ad

ia
ns

)

 

 

MotorAngle(θ1)

 

2)
          
 
where “Beq” is motor damping constant. An 
explicit relation between input 1τ  and output 2θ  
can be obtained from Eqn. (1) and (2) as: (c) 
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 The control input is chosen to be of the form: 

 

 

{11
12

21

( )MM v F
M

}τ θ
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

   (4)        

 
where v  is the secondary input, which creates 
the linear system: 
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2 vθ =&&       
 
This secondary input v can be designed by 

standard linear pole placement techniques to 
drive error dynamics to zero. We choose 

2e , where 

            (5)     
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 (6) 

where 2 2 2( ) ( )de t tθ θ= −  and an outer loop: 
 

2 2d p dv K e Kθ= − −&& & 2 2de θ θ= −

is desired pendulum
ts, which resu

tz Polynomial

 is the 
 angle 

 is positive constan lts 
, a Hurwi  that 

ics is 2nd order and 
nly account for part of the 4 or er sys

dynamics. Thus, a part of the system dynamics, 
alled internal dynamics, is rendered 

rv
lemented cascade-control for 

chieving internal dynamics stabilization. And 
details are presented in ]. Th
control law, as shown in Figure 18, is a two part 
d

tracking error, θ2d 
and Kp2, Kd2

2 2 0p de K e K e+ +&& &

 1 12 1 1d p dK e K eθ = + &  (7) 

 where in 
re

=
1 1 1de θ θ= −

2

High gains were selected to 
converge θ& and 2θ&&

presents exponentially stable error dynamics. 
 to zero and 2θ to  

However, the error dynam
2dθ  in a 

ery short time interval. 
 

 

v
o th d tem 

c
unobse ed in the input-output linearization 
approach. We imp
a

[13 e cascade 

esign with an inner loop:  
 
 
 

-+
High Gain 
Feedback

Input-Output 
Linearization System

θ1θ2dInternal 
Dynamics 
St ationabiliz θ2  

 

Figure 18: C

 

 
ascade control. 

 

            
 
 

                      (a)                         (b)
 

Figure 19: (a) Input output linearization script for Furuta pendulum (b) symbolic expression for 
Control law to stabilize . 

 
2q
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Figure 20: Controller response data from 

MapleSim, (a) joint angles (b) control effort 
required in the form of motor voltage. 

 
An automated script, as shown in Figure 19, 

was programmed within Maple and attached to 
a MapleSim model to make the controller 
design reusable for other similar systems, e.g. 
planar double pendulum. A custom component 

for the controller was generated in MapleSim 
and simulation results are shown in Figure 20.  

Thus, the full cycle of modeling and controller 
design was achieved within Maple/MapleSim. 
Students can augment their learning by 
following these step by step procedures without 
hand calculating the system model. 

 
Real Time Experimental evaluation 

 
Following controller design and validation 

using simulation, HIL testing was conducted. 
The controller developed in MapleSim was 
exported to a Simulink S-function block for real 
time application using the MapleSim Connector 
Toolbox. The results of implementation of this 
real-time controller on the physical Furuta 
pendulum setup are shown in Figure 21. 
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Figure 21: (a) Simulink block diagram with MapleSim controller; (b) Furuta pendulum configurations; and (c) 

control voltage



Most of the students were able to complete and 
check against the kinematics simulation. This 
was mainly because the dynamic equations were 
very cumbersome to calculate manually and 
generally contained errors. Detailed symbolic 
manipulation could not be explored due to lack 
of tutorials explaining how equations could be 
extracted and interpreted. This is a shortcoming 
that our future tutorials will seek to address. 

 
In addition to the ease of model generation and 

model based control design, we also explored 
other benefits of symbolic computation. 
Sensitivity analyses of controller performance 
r
which tend to be computationally expensive. 
This can be significantly enhanced with 
symbolic computation, e.g. calculating torque 
sensitivity with respect to change in mass of 
pendulum. 

 
Thus, from the instructional viewpoint this 

proved to be a viable vehicle for bridging the 
gap between the conventional classroom-based 

for teaching mechanisms and 
robotics and an experiential approach. In terms 

f instructional support, very little was required 

t and time in the tutorial).  
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