
DESIGNING A CONTROLLER FOR LEGO ROBOT
 USING C++ LANGUAGE

Mohammad Fotouhi, Ali Eydgahi, and Daniel A. Herz

University of Maryland Eastern Shore
Princess Anne, MD 21853

Abstract

This paper presents the details of an

undergraduate senior design project in our
design technology course. The main objective of
the course is to give students some design
experience using the knowledge they have
gained in the technology program at the
University of Maryland Eastern Shore to
produce something that is both innovative and
creative. The LEGO Mindstorm robotics system
has the capability to be a powerful robot design
tool, but not with the provided software called
ROBOLAB. The LEGO Mindstorm has a RCX,
which is a large LEGO brick hosting a battery
case, a Hitachi H8 microcontroller, an IR
transceiver, a simple LCD panel, a few control
buttons, sensor and actuator connectors shaped
into the form of LEGO brick connectors, and
some auxiliary circuitry. This project utilizes
the power of the RCX by using C++ as the
programming language to create a surveillance
robot. This allows more programming options
and a higher degree of control of the robot. Key
goals are motor control, sensor data acquisition,
and alarm status. Sample programs are provided
to demonstrate the language effectiveness. A
surveillance application using touch sensors,
motor controls, and a rotation sensor is also
presented.

Introduction

The Mindstorm is an interesting system[1-3]

that can be used to introduce students to the
world of microprocessor controlled robotics.
The base system consists of the RCX, an
infrared transceiver, and a PC. Additional
components, such as motors, sensors, and other
building elements can be combined with the
base system to allow the creation of functional
autonomous robotic devices.

Many robots come with software that are

specifically made for the programming of that
particular robot. However, these software have
limited functions and the use of a more powerful
programming language allows the designers to
have better control and more options in their
design. The LEGO Mindstorm System is no
different. It has the capability to be a powerful
robot design tool, but not with the provided
software, ROBOLAB. To overcome these
limitations, the C++ programming language[4-
6] which is a more powerful language than
ROBOLAB software was selected. Using the
three inputs and three outputs of the RCX, the
user is able to increase the power of the RCX
through software to better motor control, to get
better sensor data acquisition, and to use more
than one sensor per input.

The objective of this project was to create a

more powerful robot system using C++
programming language so that more options in
the design process are available and the
potential of the RCX command center is fully
realized. To demonstrate the usefulness of these
options, a robot was designed using LEGO
Mindstorm kit and was programmed to follow
several paths in its attempt to surveillance an
area and to sound an alarm in case it recognizes
an intruder. In this paper, we present the results
of our involvement and attempts at
programming the RCX using C++. We discuss
programming the robot using several different
programs which perform different tasks. The
first will be a surveillance application using
touch sensors, motor controls, and a rotation
sensor. The second will involve more motor
control, turning the robot 180 degrees, while in
surveillance mode. Finally, a program to
control the movement of robots through use of a
light sensor.

104 Computers in Education Journal

The Design Project

The following Materials and Equipment were

used in this project:

• One LEGO Mindstorm robot system,
• One RCX command center,
• One infrared download interface,
• Two motors,
• Two push button sensors,
• One rotation sensor,
• One light sensor,
• An IBM compatible computer with

 GNU C capabilities.

The robot was assembled using the LEGO

Mindstorm robot kit. Almost everything one
needs can be found in the kit. We decided on a
simple roverbot design as shown in Figure 1,
but the design can be whatever one wants. The
LEGO system allows for a lot of creativity and
one is only limited by his/her imagination.

Figure 1: Roverbot .

The user decides on what sensors should be
used and how to incorporate them into his/her
design. In our design, the touch sensors were
placed on the ends of front and back bumpers.
The rotation sensor was connected to the motors
by way of a sprocket so that it could sense
motion of the wheel as it travels. Also, the light
sensor was placed at the front of the robot
facing down so it could recognize the ground
changes better. All sensor placements and
alignments were considered before the robot
was built. It is very helpful to have an initial
plan since it will save a lot of time.

One important point to consider in the initial

design is the location or position of the RCX
command center, which consists of both the
power supply and the brain of the robot. If the
robot is going to be programmed at all, it will
need the RCX as part of its design. Also, the
front of the RCX contains the infrared download
transceiver and should not be blocked or it will
not be able to download the program using the
infrared interface.

Computers in Education Journal 105

Infrared Interface and RCX

A LEGO Mindstorm Robot consist of a

programmable LEGO brick, called the RCX,
which contains three sensor inputs, three
actuator outputs, four user buttons, a simple
LCD display, an IR transceiver, and a Hitachi
H8 microcontroller with 32 kilobytes of RAM,
where 4 kilobytes of which is used for interrupt
vectors and other low level data.

At the core of the RCX is a Hitachi H8

microcontroller with 32K of external RAM. The
microcontroller is used to control three motors,
three sensors, and an infrared serial
communications port. An on-chip, 16K ROM
contains a driver that is run when the RCX is
first powered up. The on-chip driver is extended
by downloading 16K of firmware to the RCX.
Both the driver and firmware accept and execute
commands from the PC through the IR
communications port. Additionally, user
programs are downloaded to the RCX as byte
code and are stored in a 6K region of memory.
When instructed to do so, the firmware
interprets and executes the byte code of these
programs. The RCX is shown in Figure 2 and its
specification is given in Table 1.

Table 1: RCX specifications.

Series H8/3297
Product name H8/3292
Part number HD6433292
ROM size 16K
RAM size 512
Speed 16MHz @ 5V
8-bit Timers 2
16-bit Timers 1
A/D Conversion 8 8-bit
I/O pins 43
Input only pins 8
Serial port 1
10mA outputs 10

Figure 2: RCX.

The infrared interface consists of the infrared

transceiver circuit and the serial cable. The
cable to connect the IR transceiver to PC is a
null modem cable that contains six wires, of
which only five are used. Pin 4 connects to pin 4
but is unused; pins 1, 6, and 9 have no
connection. Table 2 shows the pin allocations of
the cable.

Table 2: Pin allocations of the cable.

Pin To Name Description

2 3 RD Receive Data
3 2 TD Transmit Data
5 5 SG Signal Ground
7 8 RTS Ready To Send
8 7 CTS Clear To Send

The RTS/CTS signals are not used for flow
control. Instead, they are used by the PC to
check whether or not the transceiver is
connected. The transceiver wires CTS and RTS
together; the PC checks for the transceiver by
asserting and deasserting RTS. If it sees that
CTS tracks RTS, then it assumes that the device
sitting on the serial port is the transceiver.

106 Computers in Education Journal

Software Development

Since the two programming environments

provided by the LEGO group are severely
limited in their ability to fully utilize the
computational power of the RCX, a number of
independent programming environments have
been developed for the RCX, including the
GNU C Compiler, which is part of the GNU
Compiler Collection, to compile C source code
to the machine code of the Hitachi H8
processor. The user needs to use this
programming environment or one compatible to
it in order to use C++ as a coding language for
the RCX.

Once the C++ program is written and

compiled, the following steps are taken to
download and run the program on the RCX:

1. The IR transceiver cable as is specified in

table 2 is attached to the serial port of the
computer. If computer uses a 25-pin male
serial input, it is required to use a 9-pin
male to 25-pin female adapter.

2. Face the transceiver towards the front of
the RCX, which contains an infrared
download transceiver as is shown in figure
3. Allow 4-6 inches between the RCX and
the transceiver.

3. Now, the RCX is ready to receive the
programs. The program environment
provides an option to download the
program to the RCX. Each program is
downloaded and receives a program
number in the RCX.

4. To run the first program, one should push
the ON/OFF button on the RCX to turn the
RCX on. Then, the PRGM button is
pushed until the number 1 is displayed in
the LCD window. Finally, RUN button is
pushed.

The RCX will execute the first program then

will stop. The other programs can be accessed
in the same way by going to the next program
number and pushing RUN button on the RCX.
Each program is assigned a number depending
on its download position, i.e. program 1 is

downloaded first, program 2 is downloaded
second, and so forth. Up to five programs can
be downloaded to the RCX.

There has been work done in the area of

software development to make the LEGO robot
system a more powerful design package. New
sensor development has also enhanced the
original Mindstorm package. Since the standard
programming environments provided by LEGO
allow only a very limited access to the resources
of the microcontroller, a new environment was
needed to enable full access to the power of the
RCX. When programming at the machine
language level (either using an assembler or
through a high level language), a programmer
has direct access to both the hardware and to the
ROM routines. Hitachi H8 uses memory
mapped I/O, and the actual hardware ports are
mapped to the highest part of memory, at a so-
called eight bit area. The I/O port map, as used
by the RCX, is partially illustrated in Table 3.

Table 3: Map of the I/O port.

Memory
Range

Function

F000 – F0FF Motor Control

FFB7 IR Transceiver Range,
 Button Input

FFBA IR Control, External RAM
Power Save Mode

FFBB Sensor Power, Timer,
LCD I/O

FFBE Sensor Input, Button Input
FFC3 Serial/Timer Control
FFE0 – FFE4 Sensor A/D Input

The ROM contains a large number of routines,
too many to list here but some of the routines
and their functionality are listed below.

♦ Initialization functions and a simple main

loop
♦ Default interrupt handlers
♦ Memory move, copy, clear, etc. auxiliary

functions
♦ Battery power management

Computers in Education Journal 107

Figure 3: Complete set up.

♦ Sensor I/O taking care of interpreting raw

data
♦ Motor control
♦ LCD and sound output
♦ IR transceiver I/O

The firmware code can be loaded from internal

storage through IR and is stored in a memory
area starting at hex 8000. The default firmware
is meant to interpret user programs expressed in
the form of byte code. Figure 3 shows the
complete set up of the project.

Programming Examples

The motor control using ROBOLAB program

is limited to motors being either full on or full
off, and either reverse or forward. Whereas, the
C++ programming language can be used to
develop a wide range of motor control
functions. For example, programs can be
written to adjust the motor’s direction and
power, toggle the motor, or place the motor in a
“Float” state, which allows the motor to idle as
if it were in neutral.

The C++ program for motor control

determines how motor will be controlled. Once
the developed motor control program is
downloaded, the motors are controlled by the
actuator outputs A, B, and C on the RCX.
Within the program, there should be motor
control statements that identify the specific
actuator to be engaged. It should also direct the
RCX as what to do with the identified output.
For example, OnRev(OUT_A) statement,
directs the RCX to turn on actuator A in the
reverse direction.

The following statements are example of codes

that are related to motor control:

• On(‘motors’) Switches the motors on
• Off(‘motors’) Switches the motors off
• Float(‘motors’) Switches the motors to

idle
• Fwd(‘motors’) Switches the motors

forward (but does not make them drive)
• Rev(‘motors’) Switches the motors

backwards (but does not make them drive)

108 Computers in Education Journal

• Toggle(‘motors’) Toggles the direction of
the motors (forward to backward and
back)

• OnFwd(‘motors’) Switches the motors
forward and turns them on

• OnRev(‘motors’) Switches the motors
backward and turns them on

• OnFor(‘motors’,’ticks’) Switches the
motors on for ticks’ time

• SetOutput(‘motors’,’mode’) Sets the
output mode (OUT_ON, OUT_OFF or
OUT_FLOAT)

• SetDirection(‘motors’,’dir’) Sets the
output direction (OUT_FWD, OUT_REV
or OUT_TOGGLE)

• SetPower(‘motors’,’power’) Sets the
output power (0-9)

The LEGO Mindstorm robotic system comes

with a variety of sensors that can be integrated
into the design so that the robot can interact
with the world around it. These sensors can be
made even more sensitive and useful when they
are controlled with C++. There are many
advantages to using C++ when setting up and
reading the sensors. One advantage is being
able to set up each input to what ever type and
mode of sensor the user would like to have. One
mode that we talk more about is the
“SENSOR_MODE_RAW” mode. In this mode,
the value, when checking the sensor, is a
number between 0 and 1023. It is the raw value
produced by the sensor. What it means depends
on the actual sensor. For example, for a touch
sensor, when the sensor is not pushed the value
is close to 1023. When it is fully pushed, it is
close to 50. When it is pushed partially the
value ranges between 50 and 1000. So, if the
user sets a touch sensor to raw mode, we can
actually find out whether it is touched partially.
When the sensor is a light sensor, the value
ranges from about 300 (very light) to 800 (very
dark). This gives a more precise value than
using the SetSensor() command. Another
advantage of the raw mode is allowing the user
to put more than one sensor on a single input.
We can connect a touch sensor and a light
sensor to one input. Set the type to light
(otherwise the light sensor won’t work). Set the

mode to raw. In this case, when the touch
sensor is pushed, we get a raw value below 100.
If it is not pushed, we get the value of the light
sensor which is never below 100.

The following programs use this idea. The

robot must be equipped with a light sensor
pointing down, and a bumper at the front
connected to a touch sensor. Both of them
should be connected to input 1. The robot will
drive around randomly within a light area.
When the light sensor sees a dark line (raw
value > 750) it goes back a bit. When the touch
sensor touches something (raw value below
100) it does the same.

Program 1:

This program starts the robot to make random

movements until one of the sensors is tripped,
then the robot stops back up and continues it
random movements. Note that both sensors are
connected to input 1.

int ttt,tt2;
task moverandom()
{
 while (true)
 {
 ttt = Random(50) + 40;
 tt2 = Random(1);
 if (tt2 > 0)
 { OnRev(OUT_A); OnFwd(OUT_C); Wait(ttt); }
 else
 { OnRev(OUT_C); OnFwd(OUT_A);Wait(ttt); }
 ttt = Random(150) + 50;
 OnFwd(OUT_A+OUT_C);Wait(ttt);
 }
}

task main()
{
 start moverandom;

SetSensorType(SENSOR_1,SENSOR_TYPE_LIGHT);

SetSensorMode(SENSOR_1,SENSOR_MODE_RAW);

 while (true)
 {
 if ((SENSOR_1 < 100) || (SENSOR_1 > 750))

Computers in Education Journal 109

 {
 stop moverandom;
 OnRev(OUT_A+OUT_C);Wait(30);
 start moverandom;
 }
 }
}

Program 2:

This program turns on and set the power of the

two motors. It monitors the rotation sensor and
when a specific number of revolutions have
completed, the robot will reverse direction. At
all times, the robot is also monitoring its touch
sensors to warn of an intruder.

Task main()
{
 SetPower(OUT_C,5); // Setting the power of
 output C to 5.//
 SetPower(OUT_A,7); // Increasing the power of
 A output (more gears).//
 OnFwd(OUT_A); // Turns on A //
 OnFwd(OUT_C); // Turns on C //
 SetSensor(SENSOR_1,SENSOR_TOUCH);
 // Setting sensor 1 to touch. //
 SetSensor(SENSOR_3,SENSOR_TOUCH);
 // Setting sensor 3 to touch. //
 SetSensor(SENSOR_2,SENSOR_ROTATION);
 // Setting sensor 2 to rotation. //
 ClearSensor(SENSOR_2); // Making sure
 rotation is zeroed out. //
 while (true)
 {

 // Checking touch sensors. //
 if (SENSOR_3 == 1 || SENSOR_1 == 1)
 {
 PlayTone(440,50);
 Off(OUT_A+OUT_C);
 Wait(100);
 On(OUT_A);
 On(OUT_C);
 }

 // Setting distance using rotation sensor. //
 if ((SENSOR_2 == 200) || (SENSOR_2 == -200))
 {

 Toggle(OUT_A+OUT_C);
 ClearSensor(SENSOR_2);
 }
 }
}

Program 3:

This program performs the same task as

program 2 with one difference. It does a little
more with motor control, by turning the robot
around, after a specified number of revolutions
of the rotation sensor.

task main()
{
 SetPower(OUT_C,5); // Setting the power of
 output C to 5.//
 SetPower(OUT_A,7); // Increasing the power of A
 output(more gears).//
 OnFwd(OUT_A); // Turns on A //
 OnFwd(OUT_C); // Turns on C //
 SetSensor(SENSOR_1,SENSOR_TOUCH);
 // Setting sensor 1 to touch. //
 SetSensor(SENSOR_3,SENSOR_TOUCH);
 // Setting sensor 3 to touch. //
 SetSensor(SENSOR_2,SENSOR_ROTATION);
 // Setting sensor 2 to rotation. //
 ClearSensor(SENSOR_2); // Making sure rotation
 is zeroed out. //
 while (true)
 {

 // Checking touch sensors. //
 if (SENSOR_3 == 1 || SENSOR_1 == 1)
 {
 PlayTone(440,50);
 Off(OUT_A+OUT_C);
 Wait(100);
 On(OUT_A);
 On(OUT_C);
 }

 // Setting distance using rotation sensor. Robot
 turns 180 degrees. //
 if ((SENSOR_2 == 200) || (SENSOR_2 == -200))
 {
 OnRev(OUT_C);
 Wait(200);
 OnFwd(OUT_C);
 ClearSensor(SENSOR_2);
 }

110 Computers in Education Journal

 }
}

Program 4:

This program uses both the rotation sensor and

a light sensor to determine its range of motion.
If the robot sees a dark spot on the floor it will
immediately change directions and head in the
other way. If it doesn’t see a change in the
floor, then it will continue until the rotation
sensor reaches a value of 200. The important
aspect of this program is that it demonstrates
how two sensors can be connected to a single
input.

task main()
{
 SetPower(OUT_B,7);
 OnFwd(OUT_B);
 SetPower(OUT_C,5); // Setting the power of
 output C to 5.//
 SetPower(OUT_A,7); // Increasing the power of A
 output (more gears).//
 OnFwd(OUT_A); // Turns on A //
 OnFwd(OUT_C); // Turns on C //
 SetSensor(SENSOR_1,SENSOR_TYPE_LIGHT);
 // Setting sensor 1 to light. //

SetSensorMode(SENSOR_1,SENSOR_MODE_RA
W); // Setting sensor 1 to raw mode. //
 SetSensor(SENSOR_3,SENSOR_TOUCH);
 // Setting sensor 3 to touch. //
 SetSensor(SENSOR_2,SENSOR_ROTATION);
 // Setting sensor 2 to rotation. //
 ClearSensor(SENSOR_2); // Making sure rotation
 is zeroed out. //
 while (true)
 {

 // Checking touch sensors. //
 if (SENSOR_3 == 1 || SENSOR_1 < 100)
 {
 PlayTone(440,50);
 Off(OUT_A+OUT_C);
 Wait(100);
 On(OUT_A);
 On(OUT_C);
 }

 // Setting distance using rotation sensor or if light
 sensor sees a dark area. //
 if ((SENSOR_2 == 200) || (SENSOR_2 == -200)
 || (SENSOR_1 > 524))
 {
 Toggle(OUT_A+OUT_C);
 ClearSensor(SENSOR_2);
 ClearSensor(SENSOR_1);
 Wait(100);
 }

 }
}

Conclusion

The world of robotics is an exciting and

interdisciplinary field which requires
mechanical, electrical, and programming
knowledge. The LEGO Mindstorm system is a
very good choice to introduce students to this
field of engineering. However, the LEGO
system is not very powerful because it is limited
by its ROBOLAB software. By using C++
software, our student developed a multitude of
design options and enhanced the overall system.
Through this project and with experience in trial
and error, the student was able to build better
and more powerful robot. The knowledge he
gained through this project will help him with
future robot developments.

References

1. “LEGO Home” LEGO Mindstorms, LEGO
Group, April 2000. http://mindstorms.lego.
com/

2. “LEGO Mindstorms”, LEGO Products,

LEGO Group, April 1997. http://www.
mooreed.com.au/competition/datalogging/L
EGO%20sensor%20specification.htm

3. “RCX Internals.” RCX Internals, KeKoa

Proudfoot, April 2002 http://graphics.
stanford.edu/~kekoa/rcx/#Hardware

4. Aitken and Jones. Teach Yourself C in 21

Days. Prentice Hall, NJ, 1993.

Computers in Education Journal 111

5. Dale, Nell, Chip Weems and Mark
Headington. Programming and Problem
Solving with C++. Jones and Bartlett
Publishers, Boston, 1997.

6. Nyhoff, Larry. C++ An Introduction to Data

Structures. Prentice Hall, NJ, 1999.

Biographical Information

Dr. Mohammad Fotouhi is a Professor of

electrical engineering technology at University
of Maryland Eastern Shore. He received his
Ph.D. in power System Engineering from
University of Missouri-Rolla, M.S. from
Oklahoma State University and B.S. from
Tehran Polytechnic College. He has been
conducting practical research on the growth and
characterization of the dilute magnetic
semiconductor since 1985. He is a member of
Eta Kappa Nu Honor Society. He was chairman
of Student and Industry Relation and Host
Committee member of IEEE Conference on
Power Systems Computer Application in 1991.
He also was chairman of Student Relation and
Host Committee member of the IEEE Power
Society Winter Meeting in 1996.

Dr. Ali Eydgahi is a Professor and Chair of

Engineering and Aviation Sciences Department
at University of Maryland Eastern Shore. He
received his Ph.D. and M.S. in Electrical and
Computer Engineering from Wayne State
University. Since 1986 and prior to joining
University of Maryland Eastern Shore he has
been with the State University of New York,
University of Tehran, Wayne County
Community College, and Oakland University.
Dr. Eydgahi is recipient of the Dow Outstanding
Young Faculty Award from American Society
for Engineering Education in 1990, and the
Silver Medal for outstanding contribution from
International Conference on Automation in
1995. He is the ASEE Campus Representative at
UMES and has served as a regional and chapter
chairman of IEEE and SME in New York. He
also has served as a session chair and a member
of scientific and international committees for
many international conferences. Dr. Eydgahi

has published more than ninety papers in
refereed international and national journals and
conference proceedings.

Mr. Daniel Herz received his B.S. degree in

Electrical Engineering Technology from
University of Maryland Eastern Shore in 2002.
He started his career as an Engineering
Specialist in the Telecommunication branch at
the National Security Agency in 1987. After
working for five years building and
troubleshooting telecommunication systems at
NSA, he started working on encrypting devices
in the Y42 branch for the final four years of his
employment at the agency. In 1996, he went to
work as a RF Engineer at Filtronic Comtek. His
current interest is to design Microwave filter
systems for the cellular phone industry.

112 Computers in Education Journal

	Introduction
	Memory Range
	OnFwd(‘motors’) Switches the motors forward and turns them o

