
ENGINEERING A NATIONWIDE ENGINEERING
DESIGN CONTEST

Eugene Ressler, Stephen Ressler and Catherine Bale

U. S. Military Academy,
West Point, NY

Abstract

This paper concerns problems solved and

lessons learned while conducting the West Point
Bridge Design Contest,[1] with a focus on the
design of technology support and operations
behind the scenes. The contest is a nationwide,
Internet-based competition for teams of one or
two students, age 13 through grade 12,
culminating in a final round with large cash
prizes. In 2006 the contest is in its fifth year. We
have previously reported it as a means of
engineering outreach.[2] This work, on the
other hand, is technical, concerning the
engineering behind the contest that allows it to
be run by a half-time administrator and two
college faculty members working in their spare
time. The design has successfully dealt with
challenges including large service demand
fluctuations, tied contest entries, participation
by ineligible persons “masquerading” as true
contestants, hackers, an extortionist, hardware
failure, Internet outages, an artificially
intelligent bridge optimizer, and other
interesting tribulations, all of which were
managed without mishap. Hence the goal of this
paper is to pass on information useful to anyone
contemplating related work, where similar
occurrences are likely.

Introduction

The intent of this paper is to document our

experience in designing and operating the West
Point Bridge Design Contest (WPBDC), a
nationwide Internet-based competition that has
involved some 70,000 K-12 students over a
five-year period. Careful design of the contest
rules, the supporting technology, and the roles
of support personnel has produced an effective
and efficient operation. The original goals for
the contest have been met. Moreover, two

college faculty members working in their spare
time plus a half-time coordinator have
administered the contest with only modest
additional institutional support and no serious
mishap. Accordingly, we will discuss our design
methodology, some particular design solutions,
and the support roles and procedures that have
evolved over time. While these are necessarily
tailored to the unique goals and constraints of
the WPBDC, many are likely to transfer well
and therefore to benefit other, related efforts.
We also provide some anecdotes to give the
flavor of unexpected challenges that inevitably
arose during contest operations and how the
contest design withstood them.

The overarching goal of the WPBDC is to

increase awareness of and interest in
engineering among a large, diverse population
of middle and high school students. As
described in our earlier work,[2] its motivation
is to attract young students of the United States
to careers in engineering, math, and science in
order to mitigate projected national shortfalls in
the future. This leads to more specific goals,
which are that each contestant should:

• Learn about engineering through a realistic,

hands-on problem-solving experience.
• Learn about the engineering design

process—the application of math, science,
and technology to create devices and
systems that meet human needs.

• Learn about truss bridges and how they
work.

• Learn how engineers use the computer as a
problem-solving tool.

• Have some fun pitting individual problem-
solving skills against those of other virtual
bridge designers worldwide.

90 COMPUTERS IN EDUCATION JOURNAL

A goal implied in “learning about the
engineering design process” is to encourage
work in collaborative teams while also allowing
individuals to compete successfully.

Technology supports

To achieve our goals, we established the

central principle for design of WPBDC: to
exploit computer and Internet technology to
provide an engaging engineering design-build-
test experience with high learning value at no
cost to a large number of participants and with
low costs of administration. With due
consideration, this principle led directly to four
broad categories of technology support for the
contest.

Web site. The contest web site provides

potential and actual contestants and their
teachers with all information necessary to
prepare for competition, produce successful
designs, and submit them for judging. The
current site includes information on purpose,
rules, prizes, eligibility, schedule, supporting
lesson materials for teachers, and results of
previous contest rounds. Over time, analysis of
questions emailed to the Webmaster has guided
additions and refinements including a
Frequently Asked Questions page. The contest
web site also provides free downloads of the
client software for the contest.

Client software. The West Point Bridge

Designer client software is provided at no cost.
It runs on any Windows computer, presenting a
virtual design problem in a graphical form that
resembles an engineering drawing of a real job
site where a pin truss bridge is to be erected
across a river gap. The contestant “builds” a
virtual bridge, placing joints and members by
manipulating a simplified Computer-Aided
Design (CAD) user interface. The contestant
determines whether her design is successful with
a single button press that causes a simulated
truck to pass over the bridge, presenting it with
a realistic load. Designs can be saved as files,
which can be re-opened by the client for further

design work and submitted to the contest web
site for judging.

During the simulation, a lifelike three-

dimensional display, shown in Figure 1,
depicts the forces in each bridge member with
color. Red indicates compression (crushing
force) and blue, tension (stretching force). Color
intensity shows the fraction of a member’s
capacity being demanded. Dull red or blue
means the member is lightly stressed, while a
bright color means “near failure.” Colors change
dynamically with member forces as the truck
advances. If a member fails, the simulator
approximates the motion of the broken bridge,
and the ill-fated truck appears to tumble into the
gap. This animation is an attractive and intuitive
display of forces in a truss.

Figure 1. Client Simulation.

The client employs a simple, realistic cost

model to continuously update the cost of the
structure assembled thus far. This includes cost
of materials, which depends on cross-section,
length, and type of metal selected; fabrication
cost, which depends on the number of joints and
joined elements; and site preparation,
determined by shore abutment and pier
configurations chosen at the outset from a menu
of 56 possibilities. The most efficient design is
one that is both successful (passes the truck
load) and has the least possible cost. The most
efficient design wins.

The client software captures several important

aspects of engineering in an appealing way.

COMPUTERS IN EDUCATION JOURNAL 91

• It connects the abstract concept of member
forces with a real consequence, the truck
passing or falling into the gap.

• It requires the contestant to experience the
iterative nature of design. The software
handily supports design, build, test, and
redesign in rapid cycles, and it records the
number of such cycles. Top entries normally
result from thousands of iterations.

• It reveals the relative ease of creating a
successful design versus an efficient one.
Nearly anyone who can use a computer can
design a bridge that supports the truck load.
Top designs can result only from a detailed
understanding of structures and the cost
model.

In survey studies, these three qualities of the

client software appear to be responsible for
reports of high learning value.

Automatic judging. Another technology

support is intended to make the WPBDC
engaging by appealing to competitive instincts.
This is the automatic judging feature of the web
site. To qualify for prizes, competing teams
must register. In a series of simple web forms,
the system establishes eligibility for prizes,
gathers team information, and finally provides a
home page where the team may log in to submit
bridges for judging at any time and see instantly
how the team’s best design is faring in
competition.

Administrator interface. The contest

administrator interface is a separate, secure way
to access the web site to retrieve contest
management information, record judging
decisions, and post current official standings.
Its intent is to provide for administration with a
minimum investment in hours of effort.

Design of the contest

We employed use cases as the primary means

for collaboratively envisioning the final
system.[3] A use case is a narrative describing
the interaction of actors with the contest
technology. We considered interaction to be a

series of events, each consisting of an action by
some actor followed by a response of the
technology. We initially considered the
following actors:

• Competing teams
• Supporters of competing teams (teachers,

mentors, parents, etc.)
• Client software author/maintainer
• Judging system software author/

administrator
• Contest coordinator
• Contest judge
• Database administrator
• General system administrator/technician
• Webmaster
• “Bad guy” (malicious Internet entity)

There is no strict relationship between actors
and people; an actor in the system may be zero
or more people and vice versa. The list of actors
became longer as design proceeded.

Our methodology was to develop a use case

narrative while noting its implications for both
contest rules and support technology
requirements. We expected technology
requirements to follow from decisions about
rules. Yet we found that, nearly as often,
requirements for rules followed from decisions
about technology. Use cases led naturally to
“what if?” reasoning about alternatives so that
most use cases developed a conditional,
branching structure. It was quickly apparent that
our most difficult task was to anticipate all
possible contingencies. In general, each use case
branch fell into one of three categories:

Normal branches described routine

interactions of actors with the support
technology. An example would be a contest
team registering for the contest and viewing its
team home page for the first time. Mistakes by
users were also considered normal.

Failure mode branches described the

experience of actors attempting to use the
support technology while some part of it was

92 COMPUTERS IN EDUCATION JOURNAL

 failed or failing. An example would be an actor
attempting to submit a bridge for judging while
some part of the system was inoperable.

Malicious branches considered attacks by

“bad guys” intending to disrupt the competition
or gain unfair advantage. One example we
considered was a “denial of service” attack,
where a “hacker” would employ nefarious
technology to bombard the contest web site with
so many requests for service that bona fide
contestants could not gain access. There were
many others.

A simplified example, taken from the author’s

design notes, suffices to illustrate. It is presented
in Table 1.

This early, rough use case led to many

Use Case A

Event

Event

Event

Event

Use Case B

Event

Event

Event

Figure 2. Inter-relatedness of Events

in Use Cases.

A partial list of contest rules and software
features resulting from our use-case analysis is
as follows:

• A standard annual cycle based on the

average US K-12 school year. branches, questions, and refinements. For
example, it indicated the need for a rule on
maximum team size. We settled on teams of
only one or two members, reasoning that young
people were unlikely to be productive in larger

• A three-round structure where each
successive round is more closely observed
and controlled than the last, while the
number of competing teams is geometrically
smaller. See Table 2. This arrangement
ensures that final winners are deserving,
while the highest possible level of qualifying
round participation is also achieved. The
latter served the goals of maximum learning
and broad participation.

groups. The rule instantly became part of the
software design.

The italics in the use case illustrate the need
for a separate form to collect modifiable team
data following from the need to prevent future
changes to data on eligibility. We saw this only
as the use case was being discussed. The use
case narrative developed along with decisions
on requirements. Such tight coupling of
discovery and consequences within use cases
was common. In addition, many use cases
implied changes to rules or technology, which
affected other use cases. The overall design
process was strongly connected and highly
iterative. A hypothetical example is shown
schematically in Figure 2, where the arrows
indicate how one event implies a necessary
change to another, either within the same use
case or in another.

• Mass emailing infrastructure for
communication with teams.

• Tied submissions to be avoided by
1) disallowing geometrically identical bridge
submissions and 2) by assigning a unique
sequence number to each successful
submission. If two submitted bridges have
the same cost, the lowest sequence number
wins. Rejecting identical bridges creates a
technical challenge, discussed below.

• An “open competition” category for curious
but ineligible people to try their hand
without impersonating a K-12 student by
entering fraudulent personal data. Hence we
added a new actor to the list, “Curious,
ineligible competitor.”

COMPUTERS IN EDUCATION JOURNAL 93

Use case : Register and submit design
Action Response Notes
Select “Register and log
in.”

Show “register and log in page.” * Register and “log in” dialogs must
appear simultaneously with good
instructions.

Press “register” button. Show initial registration form. * Need best practices for form layout.
* How to handle multiple team
members?

Fill in form correctly and
press “submit.”

Determine and show eligibility for prizes.
Allow user to verify correctness.

* What team data are required?
* What are eligibility rules?
* Need branches for bad form entries.

User verifies correctness. Register the team with given eligibility.
Present the modifiable data form.

* Data entered so far cannot be
modified!
* Need separate form for modifiable
team information.

Enter modifiable data
correctly and press
“submit.”

Present team home page. * What are modifiable data? All that do
not determine eligibility (ex: email
address, school, home town).
* Need branches for bad form entries.

Browse for bridge design
file and press “upload.”

Analyze bridge design, verify the truck
load passes, compute cost, show home
page including results of analysis and
contest standing of the design.

* What if the team later submits a
bridge not as good as this one?
* Need branches for failed load tests,
files other than bridge designs including
extremely large files that would disable
the web server.
* What is biggest possible bridge design
file?
* Standing can only be “unofficial”
pending judging.

 Table 1. Use Case Example.

Round Number of
teams

Technology
supports used Competition site Observer

Qualifying Thousands or
millions All Any Internet

computer None

Semi-final Hundreds All
Mutually agreed

observed
locations

Teachers and
volunteers

Final Ten or fewer Client only Arnold Hall,
West Point, NY

WPBDC
administrators

 Table 2. Three-round Structure of Contest.

94 COMPUTERS IN EDUCATION JOURNAL

Participation risk recognizes that problems
with the system can lead participants to give up,
subverting the goal of attracting large numbers.

• Placing the contest coordinator “in the
loop”—reviewing team personal data before
posting to official standings pages for
“top 30” teams. This avoids offensive
information from being posted automatically
to the contest web site. It adds a significant
administrative burden, but is important to
the credibility of the contest.

Learning risk is defined as the danger that

system problems might interfere with learning
about the engineering design process, truss
bridges, and computer design tools.

 • A difference between real-time “unofficial”
standings, which (for algorithmic reasons)
include all reviewed and unreviewed teams
versus “official” top 30 listings, which
include only reviewed teams.

Disruption risk is the possibility that an
unrecoverable technology problem can prevent
a fair conclusion of the contest with the
selection of final winners.

 • 100% logging of all web server activity with
detail sufficient to “replay” the contest from
the logs if necessary.

Embarrassment risk is entailed with the
association between the WPBDC and the U.S.
Military Academy. Should there be even the
perception of a less-than-successful outcome for
the contest, there would follow an institutional
price to be paid.

• Encouragements for teams to log in
throughout the contest, which assures
sponsors that their investments are paying
off in contest activity. These include “bridge
design tips” updated weekly and available to
teams only through their home pages. In
addition, bridge costs are normally not listed
in official standings so that teams below the
top 30 will need to check their home pages
to see how their designs are faring.

Failure/risk crosswalk

With risks enumerated, we set out to analyze

the failure mode and malicious use case
branches with respect to each kind of risk.
Conceptually, we constructed a matrix with one
axis representing possible problems and the
other the kinds of risk along with its likelihood.
Each cell was filled with a risk management
decision. This is a (possibly empty) list of
measures that trade off risk and implementation
cost. A few rows of the table are shown in

• “Load dumping.” Should publicity cause
an unmanageable usage load spike, the
administrative interface feature allows easy
posting of official standings that include
costs for the top 30. This would immediately
discourage logins by the large majority of
teams that do not have highly competitive
bridge designs.

Table 3.

Solution clustering occurs if the bridge design

problem inadvertently has a relatively small and
obvious set of solutions that are all near-
optimal. In this case, many teams quickly arrive
at similar solutions, the leader board becomes

Risk analysis

The existence of failure mode and malicious

branches in our use cases led us to a systematic
consideration of risks in the design,
implementation, and operation of the contest
and its support.

static, and there is less incentive to participate.
Mitigation consisted of offering 56 different
shore abutment and pier configurations and
taking care that near-optimal designs for each
configuration all have similar costs.

COMPUTERS IN EDUCATION JOURNAL 95

 Table 3. Risk Crosswalk matrix.

Specific design decisions taken as a result of
risk analysis but not shown above include:

• Use of fully redundant hardware with real-

time backup of the contest database.
• Use of the institution-standard enterprise

database engine for all team and uploaded
design data and “borrowing” of a skilled
database administrator for setup.

• Stationing server computers in power and
atmosphere-controlled machine rooms and
borrowing an expert technician to maintain
their basic operating systems.

Unforeseen requirements

Despite our care with use case and risk

analysis, several unforeseen requirements
appeared during the first two contest years. A
discussion of these illustrates how the initial
design was changed on-the-fly to meet them. In
several cases, responding to participant requests
substantially improved the contest.

Annual contests. In fact, the WPBDC was

initially intended to be a single event rather than
an annual one. The year 2002 was the
Bicentennial Year of the Military Academy, and
the WPBDC was conceived as a fitting
celebration of the Academy’s engineering

 Risk

Failure mode/
malicious branch Likelihood Participation Learning Disruption Embarrassment

Offensive team
data entered for a
top 30 team

Very high Low risk; no action

High risk;
follow up team

data with school
personnel

Hacker intrusion Very high High risk; take defensive action

Client bug Very low Low risk; redistribute repaired client

Moderate risk;
make strong

integrity checks on
uploaded files

Moderate risk
follows from
disruption;
same action

Spiking
participation Low Moderate risk; make services rapidly scalable

Health failure of
admin team Low Moderate risk; no action

Solution
clustering Unknown

High risk; use 56
cost-comparable
design cases.

High risk follows
from participation;

same action

Very low risk;
no action

Low risk;
no action

heritage. Successive years were added only in
response to requests from teachers and students
and the willingness of financial supporters to
continue. To redesign the system for additional
contest years, we reconsidered existing use
cases in the new light. New ones were added to
describe the work necessary between the finals
at the end of one contest year and the next
year’s qualifying round. These included creating
a new design problem by making changes to the
truck load and cost model, changing the client
and server software to suit, archiving the
completed year’s data, and resetting the contest
database.

Archive analysis. To minimize risk from

solution clustering, the completed year’s bridge
submissions were searched for the minimum
cost bridge in each of the 56 shore abutment and
pier configurations. The cost model was
adjusted to ensure that a winning bridge could
not be obtained using the same shore/abutment
configuration in the following year and to make
the other 55 configurations equally likely to
produce winning designs. The approach was
successful. In the two most recent contest years,
several different configurations were
represented among qualifying round winners.

The COPPA. Two months before the first

qualifying round, legal review by a prospective

96 COMPUTERS IN EDUCATION JOURNAL

contest supporter made us aware of the
Children’s Online Privacy Protective Act[4]
(COPPA) and its provisions. Our widely
distributed advertisements had already promised
that all U.S. K-12 students would be eligible for
prizes. Yet the COPPA required written
permission from a parent or guardian for
children less than thirteen years old before
personal data could be collected via our
electronic registration forms. We responded by
adding use cases for children of this age. The
registration system was modified to provide the
COPPA permission form and ask the contestant
to certify that the form had been signed and
mailed prior to finishing registration.
Modifications to the server software were
relatively simple. To the contest coordinator’s
list of duties was added retrieving and storing
the COPPA forms that accumulated in our post
office box, rented to receive them. After the first
year, contest rules were changed so that children
younger than 13 were no longer eligible for
prizes.

Special reports. Several groups including state

engineering societies and school districts
requested custom reports of participation in their
geographical areas. Since the system was based
on an enterprise database engine, it was
straightforward to generate a daily report,
accessible through the web site, showing the
numbers of competing teams by zip code. This
satisfied nearly all the individual requests and
was implemented in about 24 hours.

Local contests. One request for special

information could not be met by the zip code
report. This was to provide the standings of
teams in a statewide bridge design contest that
had been scheduled to “piggyback” on our
national one. Without our help, the state would
be faced with a cumbersome manual tally to
decide winners. We saw that requests for such
local contest standings could be met by the web
site if each team entered a unique code word in
an optional registration form field (we chose the
name of the team’s teacher or volunteer

mentor). On the server side, we began
generating hourly local contest standings pages
with web addresses based on the code word. We
informed each local coordinator of this address.
Thus we could support a large number of local
contests with the only administrative burden
being to issue local contest codes through e-mail
to the local coordinators. This simple idea
proved very successful. Over 200 local contest
codes have been issued. Server records show
that approximately three-fourths of these have
had three or more participating teams, the
largest over 1000. Groups including home-
school clubs, classrooms, schools, school
districts, professional society chapters, states,
and foreign countries have conducted local
contests. The administrator interface of the
judging system was eventually augmented to
manage codes and coordinator information.

Bridge data obfuscation. The 2002 and 2003

client software saved bridge data in a readable
format, which was easy to modify with a text
editor or generate with a separate computer
program. By design, the client software made
few checks of data integrity as it read these data
files. The server, on the other hand, carefully
checked submitted files to ensure that each
successful submission could have been
produced by the client. This eliminated some
kinds of risk and avoided arcane and
unverifiable rules.

After two contest years, there was strong

evidence that several groups were constructing
automatic bridge designers—heuristic search
algorithms using artificial intelligence
techniques. All groups known to us were
pursuing legitimate research, and none were
finding success. Nonetheless, there was high
risk of contest disruption if any such effort,
legitimate or not, succeeded. Therefore, as a
precaution, bridge files for the 2004 contest and
beyond have been stored in a scrambled form
that would require a high level of technical
sophistication to decipher.

COMPUTERS IN EDUCATION JOURNAL 97

Design of support technology

Our use case and risk analyses provided clear

requirements for support technology. We list
them here for reference.

Correctness. All client and server software

needed to function in accordance with use case
requirements and contest rules. While the client
was already mature in 2002 and had been in
daily use by hundreds of people for some years,
the server software was new. In addition to best
implementation practices, a comprehensive
software testing program was added to mitigate
risk.

Robustness and reliability. Software,

hardware, and network equipment had to
provide adequate service consistently to all
participants and administrators.

Availability. The contest web site had to be

consistently available except during scheduled
maintenance hours, which were timed to be
outside school hours in all U.S. time zones.

Response times. In accordance with best

practices for user interface design, the web site
had to respond to user interaction in less than ½
second. We deemed Internet-induced delays to
be unavoidable and ignored them.

Simplicity of administration. Due to

constraints on administrative support personnel,
administration had to be simple and possible
from any Internet computer. Indeed, the fourth
year of the contest took place while the judging
system administrator was in Afghanistan,
performing his tasks remotely.

Moderate hardware and network costs. We

sought to keep equipment and communication
costs low. On the other hand, where additional
or more expensive equipment could reduce
administrator hours or mitigate high and
moderate risk, the best decision was usually to
purchase.

Skill environment. Development languages and
tools employed were those familiar to the
software authors at the time the project first
started in 1999. More on this below.

Usage load estimation

Nearly all of these requirements hinged on one

independent variable— the rate of requests to
the web server. Finding no help in the literature,
we proceeded with an educated guess.
According to the 2000 census, there were
approximately 51.5 million K-12-age children in
the U.S. and about 92,000 primary and
secondary schools. Earlier downloads of the
pre-contest client software numbered about
67,000. We settled on the following estimates:

• 100,000 teams would register.
• 1,000,000 bridges would be submitted,
• 4,000,000 registration and login interactions

would occur.

We assumed interaction would be spread over
8 hours of each contest day. Using a
rudimentary M/M/1 queuing model, we
determined that a service time per interaction of
0.3 second would result in an average queue
wait of 0.2 seconds, providing the desired 0.5
second response. However, we suspected that
spikes would occur when the contest was
advertised in metropolitan newspapers and other
media with large audiences as planned for the
Bicentennial. Some further back-of-the-
envelope calculation indicated that a 0.03
second service time provided an acceptable
performance margin. The same calculations
indicated that an inexpensive 0.4 megabit per
second Internet uplink would serve all purposes
except downloads of the client software. The
client has therefore been distributed through
volunteer educational institutions, including
ours, through their high-bandwidth connections
to the Internet.

98 COMPUTERS IN EDUCATION JOURNAL

Special technical requirements

A few fascinating problems in software design

are inherent in the rules of the contest. One is
the need to reject bridges that are duplicates of
previous submissions. It is not sufficient to
check that bridge file contents are identical.
These files encode truss joints with an arbitrary
numbering. Member ends are specified with
these numbers, and members may be listed in
any order. Thus a bridge with n joints and m
members has at least n!m! bridge file
representations—1050 for a typical bridge.
Moreover, a new bridge must be checked
against an existing database of one-million
others in approximately 0.02 seconds to meet
service time requirements.

To achieve adequate performance, we used

two well-known tools of computer science. We
first compute a canonical variant of any given
bridge. A canonical variant in our case is a
numbering of joints and an ordering of members
unique for a given bridge geometry. We chose
left-to-right, bottom-to-top joint ordering and
then ordered the members by the smaller of its
two joint numbers. To compare two bridges for
identical geometry, we first convert them to
canonical form and then compare the variants
for exact equality.

The second technique needed for rapid

duplicate checks is a hash function. In our case,
the hash function translates a bridge into a short
string of characters such that two unequal
bridges are very likely to produce different
strings.

With these in hand the algorithm for duplicate

checking is as follows:
1. Convert the new bridge B to its canonical

variant C(B).
2. Compute H(C(B)), the hash string for the

canonical variant.
3. Search the database for all bridges Mi with

stored hash string equal to H(C(B)).
4. If no such bridge is found, go to 6.
5. Otherwise convert each bridge Mi to its

canonical variant C(Mi) and check whether

C(B) = C(Mi) for any i. If so, a duplicate has
been found, otherwise continue.

6. There is no duplicate. Store the pair B and
H(C(B)) in the database.

The database engine looks up a hash string

very rapidly. Canonical variants and hash
strings are also quick to compute. Hence the
algorithm met the performance requirement.

A second challenge was determining the

unofficial standings of any team in a population
of 100,000, also in less than 0.02 seconds. Our
enterprise database was inadequate for this task,
since its relational engine needed a linear scan
of 100,000 records in the worst case. A well-
known balanced tree algorithm with node
numbering was well-suited, but implementation
presented some arcane technical problems. Help
came from the Open Source software
community in the form of a production-quality
embeddable database system with the required
node-numbering feature.[5]

Bearing in mind that our usage load estimates

were rough, we set out to implement the server
software for scalability. We chose a network of
communicating services, each providing a
separate function. In the system’s original
configuration, all services were located on the
same server computer. If load grew beyond
estimates and performance suffered, it would be
possible to quickly distribute services on
separate computers. Some could also be
replicated to further share and balance loads. A
diagram of the server organization is presented
in Figure 3.

Today, service-oriented systems are common

due to the wide acceptance of industry standards
such as CORBA, XML, and SOAP.[6] This
was not true when the WPBDC was designed.
The choice to use services has proven a good
one. Though scaling of the system by
distributing and replicating them has not been
necessary to date, the capability to do so is
powerfully reassuring. In addition, though our
original implementation used only two Open

COMPUTERS IN EDUCATION JOURNAL 99

Single Server Architecture

Sybase Back End
Database

Firewall

PerlEx

CGI/Perl
Front End
“Judge”

Perl Extension

IIS

Static
Pages

Software
Download

Standings
Zone 0

Standings
Zone 1

Standings
Zone 2

Standings
Zone 3

Standings
Zone 4

processor threads

Distributed Architecture

Sybase Back End
Database

Firewall

PerlEx

CGI/Perl
Front End
“Judge”

Perl Extension

IIS

Static
Pages

Software
Download

Standings
Zone 0

Standings
Zone 1

Standings
Zone 2

Standings
Zone 3

Standings
Zone 4

Cloned Copies
on different machines

R
un

 o
n

si
x

di
ffe

re
nt

 m
ac

hi
ne

s

Figure 3. Scalable Services Architecture for

the Contest Server.

Source software components—BerkelyDB[5]
and perl,[7] the Open Source movement now
provides versions of all the WPBDC service
components. Were we beginning today, we
could choose Linux[8] rather than Microsoft
Windows 2000,[9] the Apache[10] web server
rather than Internet Information Server,[11]
modperl[12] rather than ActiveState PerlEx,[13]
and PostgreSQL[14] rather than Sybase
Enterprise Server[15] to duplicate the current
architecture at no cost for software licenses. In
addition, we could replace the hand-written
communications code in the standings servers
with a SOAP service provider for a simpler
implementation.

Administrator Support

The administrator interface of the contest web

site is secured by password and provides various

supports to the administrative team, which are
also depicted in the typical screen shown here.

• Server status and consistency checks.
• Verification that the server can be accessed

from a third-party Internet location.
• Review of “top 30” team information for

offensive content and other issues; approval
or disapproval of eligibility for prizes.

• Preview and posting of official standings for
approved, eligible teams.

• Viewing of currently posted standings.
• Simple queries to find arbitrary teams by

team name.
• Viewing sketches of the best bridges of any

set of teams.
• Adding, removing, and searching for local

contest codes and associated coordinator
data.

• Producing e-mail distribution lists for top 30
teams.

These functions have not changed since the
second contest year, when local contests were
added. A typical administrator screen is shown
here. Personal data have been elided.

Figure 4. Administrator interface.

100 COMPUTERS IN EDUCATION JOURNAL

Administrative Support Team Roles

The division of labor and authority over the

administrative support team has evolved slowly
to a specific set of roles. These are filled by
three people as already explained plus modest
institutional and volunteer support. In Table 4,
the main support personnel are denoted by A, B,
and C. The reader should take careful note that
the routine time estimates are for the contest’s
fifth year of operation, after much learning and
reorganization of work. At the outset, they were
roughly three times higher.

 Time estimates

Role Personnel Routine Task
Webmaster A 2 hr/wk 100 hrs
Client software
author

A — 800 hrs

Client software
maintainer

A — 20 hrs/yr

Judging system
software author

B — 500 hrs

Judging system
software
administrator

B 2 hr/wk varies

Contest coordinator C 20 hr/wk 80 hrs/yr
Chief judge A 1 hr/wk varies
Database
administrator

B 2 hr/wk —

General system
administrator/
technician

Institutional
support

2 hr/wk —

Local contest
coordinator

Volunteers — varies

Table 4. Administrative Support Team Roles.

The webmaster is a conventional author and

maintainer of the static information on the
contest web site. The client software author
created the West Point Bridge Designer. Annual
design changes and bug fixes fall to the client
maintainer. Similarly, the judging system author
and administrator respectively created and
continuously operate the judging system. The
contest coordinator is the human voice and face
of the WPBDC. She telephonically verifies the
administrative data of each top 30 team. At the
start of the qualifying round, this is a large daily
task. She makes decisions to qualify or
disqualify teams, referring those that are not
clear-cut to the chief judge. She arranges semi-

final round sites and monitors at locations
throughout the U.S., on ships afloat, and in
foreign countries. She plans, organizes, and
executes the contest finals including travel of
finals teams to West Point, live competition in
an arena-like venue, distribution of prizes
during an awards banquet or luncheon, and
reimbursements for travel. To the chief judge
falls the final adjudication of decisions not
within the coordinator’s purview. He interprets
rules and officiates at the finals. The database
administrator is a standard support role; he
performs routine monitoring and preventative
maintenance on the enterprise database engine
of the contest support system. The general
system administrator is another standard role, he
keeps server and network hardware and
operating system software in good repair and up
to date.

As shown in the rightmost two columns of

Table 4, time spent by contest administrators
may be divided into routine and task-oriented
work that may be scheduled or unscheduled.
Routine work occurs each week from the start of
the qualifying round through the completion of
finals. Scheduled tasks are generally aimed at
preparation for the next contest round.
Exceptions are the tasks of the webmaster and
software authors, which reflect the effort of
initial development. Unscheduled tasks result
from unpredictable events such as software bugs
and misbehaviors of contestants.

Observations, Episodes, and
Lessons Learned

We close with a few anecdotes and

observations to give the flavor of out-of-the-
ordinary challenges we have encountered,
beginning with most dramatic.

The extortionist. Among various misbehaviors

of young contestants, one stands out. During the
closing days of one contest year, the coordinator
received an articulate email message from one
of the contest leaders, call him L, explaining
that another person, let us say E, was asking, via
pseudonym email, to be sent a copy of L’s

COMPUTERS IN EDUCATION JOURNAL 101

winning design. If L did not comply, then E
would arrange to have L disqualified. L found
that he was unable to log into his home page. E
had guessed his password, logged in, and
changed it. E promised to make good his threat
by changing L’s team information to include
offensive language. Fortunately, the contest
coordinator already knew L’s school principal
and verified that L was an honest competitor.
Though E took some measures to conceal his
true identity, information provided by L along
with the contest server logs were sufficient to
identify E with high certainty. The case was
turned over to E’s principal, and E was
permanently disqualified from the contest.

The hardware failure. In the contest’s second

year when, despite all precautions, a hardware
failure led to corruption of the contest database,
and the backup system failed. Fortunately, a
skilled database administrator was able to
recover about three-fourths of the database
using specialized techniques. It was then
possible to rescue all but a handful of bridge
design submissions by “replaying” the system
logs, repeating earlier interactions between
teams and the server. In all, this intense effort
required 14 hours mostly weekend hours. We
saw no measurable impact on the contest. We
knew we were lucky. In the following year, we
upgraded hardware, improved the backup
system, and changed log formats to support
easier replaying in the future.

Other events have included software bugs

manifest by non-US character sets in both the
client and server software (the authors were
initially ill-acquainted with international
software development), offense taken in the
wording of registration forms, Internet worms
and outages, and many others that had
straightforward resolutions, but nonetheless
have constituted the press and roar of contest
operations.

Annual software changes. Finally, we relate

that, in hindsight, our worst design decision has
been the choice of different computer languages
for the client and judge portion of the server,

which have duplicate load, member force, and
cost calculations. Recall that our choice
stemmed from the expertise of the implementers
and was made when the contest was thought to
be a one-time event. The result—load and cost
model changes between contest years have been
implemented twice, once in each computer
language. It has been necessary to test the two
implementations extensively to verify that they
produce identical results in all circumstances. In
retrospect, a common language implementation
would have repaid the time investment for one
of the authors to learn a new language many
times over the years.

Conclusion

We have presented information about the

design of the West Point Bridge Design Contest
that ought to be helpful to people engaged in
similar work. We described the goals of the
contest and how they were translated to a design
principle. The principle led us to an overall
organization of technology supports. We set out
to design these supports and found a mutual
dependency between them and the contest rules.
We settled on use case methodology as a way to
envision both the contest rules and technology
requirements simultaneously through iteration.
We performed a risk analysis because our use
cases indicated substantial dangers inherent in
the contest, and we addressed risks
systematically as management decisions
arranged in a matrix.

With requirements in hand, we determined a

key unknown in software design: usage load.
We made educated guesses to guide software
design and hardware selection; these proved to
be relatively accurate. We elected to use a
service-based implementation so that capacity
could be rapidly scaled should participation
grow beyond estimates, though this has not
occurred. We described the algorithms needed
to provide real-time feedback on contest
standings and to reject duplicate contest entries.
We described the administrator support
interface of the web site and how the small
contest administrative support team divided

102 COMPUTERS IN EDUCATION JOURNAL

responsibilities. Finally, we related some stories
with the flavor of operating challenges that
similar efforts should expect.

Withal, the design and implementation of the

WPBDC has itself been an exciting and
enlightening engineering experience.

References

1. http://bridgecontest.usma.edu is the contest
web site.

2. Stephen J. Ressler and Eugene K. Ressler,

“Using a Nationwide Internet-Based Bridge
Design Contest as a Vehicle for Engineering
Outreach,” Journal of Engineering
Education, Vol. 93, no.2. April 2004.

3. An original reference is The Unified

Software Development Process, Ivar
Jacobson, Grady Booch, James Rumbaugh,
Addison-Wesley. A more readable guide is
UML Distilled: A Brief Guide to the
Standard Object Modeling Language, Third
Edition, Martin Fowler, Addison Wesley
Professional, 2004.

4. Children's Online Privacy Protection Act,

Title XIII, U.S. Code, Children's Online
Privacy Protection, Sec. 1301–1308, 1998.

5. BerkeleyDB, available at http://www.sleepy

cat.com.

6. A good, modern summary text is Gustavo

Alonso, Fabio Casati, Harumi Kuno, Vijay
Machiraju, Web Services, Springer-Verlag,
New York, 2004.

7. http://www.perl.org.

8. http://www.linux.org.

9. http://www.microsoft.com/windows2000.

10. http://www.apache.org.

11. http://www.microsoft.com/iis.

12. http://perl.apache.org.

13. http://www.activestate.com.

14. http://www.postgresql.org.

15. http://www.sybase.com/products/informat
 ionmanagement/adaptiveserverenterprise.

Biographical Information

Colonel Eugene Ressler is Professor and
Deputy Head of the Department of Electrical
Engineering and Computer Science at the U.S.
Military Academy. He teaches computer
science and has also served as the Academy’s
Associate Dean for Information and Educational
Technology. He is a recipient of the AAES
Norman Augustine Award for Outstanding
Achievement in Engineering Communications.

Colonel Stephen J. Ressler, P.E., is Professor

and Vice Dean for Education at the U.S.
Military Academy , West Point, NY. He earned
a B.S. degree from USMA in 1979 and M.S.
and Ph.D. degrees in Civil Engineering from
Lehigh University in 1989 and 1991. He is a
past Chairman of the ASEE Division and is a
recipient of the ASEE Mid-Atlantic Section
Distinguished Educator Award, the Premier
Award for Excellence in Engineering Education
Courseware, and the DEUCOM Medal for
application of information technology in
education.

Catherine Bale is an adjunct Professor at

Mount Saint Mary College in Newburgh, New
York. She teaches English and Communications
classes and has coordinated the West Point
Bridge Design Contest since 1997.

COMPUTERS IN EDUCATION JOURNAL 103

http://www.sleepy/
http://www.sleepycat.com/
http://www.perl.org/
http://www.linux.org/
http://www.microsoft.com/windows2000
http://www.apache.org/
http://www.microsoft.com/iis
http://perl.apache.org/
http://www.activestate.com/
http://www.postgresql.org/

	Abstract
	Introduction
	Technology supports
	Design of the contest
	Risk analysis
	Failure/risk crosswalk
	Unforeseen requirements
	Design of support technology
	Usage load estimation
	Special technical requirements
	Administrator Support
	Administrative Support Team Roles
	Observations, Episodes, and
	Lessons Learned
	Conclusion

