
MICROPORCESSOR   ARCHITECTURE   WITH   FPGA   IMPLEMENTATION   
FOR   UNDERGRADUATE   COMPUTER   ARCHITECTURE   COURSES 

 
Dr. Jonathan Hill 

University of Hartford 
 

Abstract 
 

This paper presents a simple yet nontrivial 
Von Neumann style computer architecture and 
an corresponding implementation suitable for an 
undergraduate course in computer architecture.  
The processor is said to be soft as it is 
implemented with a field programmable gate 
array (FPGA).  This paper incorporates the 
latest nod4 implementation called nod4.1 which 
has significant improvements over nod4.0, 
including the use of unidirectional busses.  The 
processor architecture itself is worthy of study, 
including such features as subroutines, stack 
relative addressing, interrupts, and conditional 
branching.  The processor is able to pre-fetch 
with some instructions and provides 
performance comparable to traditional small 
microprocessors such as the Freescale 68HC11.  
The documentation is written so that several 
options are possible for introducing nod4 into 
the classroom curriculum.  In particular, 
students may investigate the nod4 processor or 
implement the processor themselves.  It is also 
possible to present the processor architecture 
entirely without the implementation.   

 
Introduction 

 
This paper presents a simple yet nontrivial 

Von Neumann style computer architecture and 
an implementation that undergraduate students 
may implement as a soft-core processor.  
Engineers are continually called upon to make 
decisions regarding what is appropriate for a 
given application.  The grand vision serves as a 
north-star to inspire and help the designer in 
making decisions regarding a given architecture.  
The nod4 processor is designed to be a tool for 
teaching introductory computer architecture 
principles to undergraduates. The nod4 motto is, 
“simple yet nontrivial.”  It is classic accumulator 
based Von Neumann style architecture.  The 

design strives for clarity and is transparent so 
nothing is hidden from the student.  It has an 8 
bit address bus and primarily supports unsigned 
8 bit integer math. 

 
Relevant references include Mano and 

Kime[1] as well as Tanenbaum[2].  To 
implement nod4 the target technology is the 
field programmable gate array (FPGA).  Other 
than switches, light emitting diodes, and the 
clock oscillator, the nod4 processor system is 
implemented entirely in a FPGA.  Students are 
provided with VHDL modules used to make 
schematic symbols.  In this way students use 
register level or higher schematics.  The 
development tools include a simulator for 
examining the system cycle by cycle behavior. 

 
The support provided to software is an 

important concern.  Compiler generated 
machine code makes use of only a few 
addressing modes and is generally supported by 
certain processor hardware features.  The nod4 
architecture has a stack, uses subroutines, and 
includes stack relative addressing for passing 
parameters.  Other than the possibility of a very 
simple executive, we have no interest in 
supporting a formal operating system.  At the 
very least, to perform a context switch requires 
direct access to the processor stack. 

 
Performance means something different for 

each application we consider.  In executing 
simple demonstration programs nod4.1 strives 
for a respectable level of performance 
comparable to such classics as the Freescale 
68HC11 microcontroller.  As outlined by 
Tanenbaum, to avoid expressing the fetch-
execute cycle as a binary tree, the microcode is 
aided with jump ahead rules. Also, in fetching 
an instruction, two bytes are read from memory, 
allowing some instructions to pre-fetch the 
following opcode.  With nod4.1 students are 
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exposed to such classic metrics as cycles per 
second, average cycles per instruction, and 
integer operations per second. 

 
The nod4 system is broken into three 

documents.  The nod4 architecture document[3] 
focuses primarily on the assembly language 
view of the processor.  The memory system 
document[4] and the implementation 
document[5] together outline the actual 
implementation.  Documentation is also written 
for optional peripherals.  In other courses that 
have a focus only on architecture, the processor 
can be presented without the implementation.  
Courses with a lack of development tools can 
use the implementation as reference.  With the 
development tools on hand, a project can be 
assigned to actually implement the project.  
Otherwise, students could possibly use an 
existing implementation to investigate the 
nod4.1 processor, considering changes to the 
nod4 architecture and implementation.  There 
are many opportunities such as adding 
peripherals, new instructions, and addressing 
modes.  Each document includes homework 
exercises. 

 
The  nod  Series  History 

 
The first time I taught a computer architecture 

course I wrote a hypothetical microprocessor 
architecture called nod1, which was simply 
meant to serve as an example.  To my surprise I 
discovered its value in teaching.  I found the 
instruction set and encoding worthy of 
discussion, serving to contrast with text-book 
examples.  The assembly language is 
educational without being a burden.  Such an 
example is a benefit in its own right and for this 
I produced an improved version called nod2 
which I used the next two times I taught the 
course. 

 
First with nod1 and then nod2, students had a 

project to write a simulator program to model 
the respective architecture behavior.  In 
reviewing  feedback,  while the students felt that  

 

each of the architectures was useful, the 
corresponding simulator project was too 
abstract.  I was also concerned that the simulator 
did not fully help to convey a sense of the fetch-
execute cycle.  It seems that anything less than 
an actual implementation would not be 
acceptable.  

 
After deciding to have an actual 

implementation, I considered a number of 
factors and made some decisions.  I cannot 
require my computer architecture students to 
know a hardware description language like 
VHDL and I feel that pure schematic capture 
techniques are too intensive in this regard.  I 
selected a hybrid approach where students use 
pre-written VHDL modules to define the blocks 
in a schematic.  In this way students encounter 
higher-level schematics.  This is similar to using 
MSI parts in that the underlying VHDL code 
describing the behavior is already provided.  
Students perform simulation and once ‘things 
look good,’ the design can be configured into a 
field programmable gate array. 
 

Refining nod2 led to nod3.  Given the prior 
student feedback, I introduced nod3 as example 
architecture in the same manner that I 
introduced nod1 as well as nod2.  Later in the 
course, students actually implemented nod3.  In 
the following year, refinements led to the 
current nod4 architecture and the nod4.0 
processor which uses a bidirectional data bus 
and students hand wrote test benches. 

 
In considering my experience with nod4.0 and 

student issues, I realized that an improvement 
was needed.  I realized that unidirectional 
busses are somewhat common with soft core 
processors. As an example the Microblaze[6] 
soft core processor makes some use of 
unidirectional busses.  A final revision led to the 
current nod4.1 processor which uses 
unidirectional busses and a simpler data path.  A 
simple graphical tool is used with nod4.1 to 
develop test-bench files.  The nod4.0 and nod4.1 
processors are both examples of the nod4 
architecture. 
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The  nod4  Architecture 
 
To introduce nod4 to students we start with a 

fairly abstract view, presenting the registers, 
assembly language, and encoding.  The nod4 
architecture has an 8-bit data path and an 8-bit 
address bus.  From the programmer’s point of 
view nod4 has the following CPU registers 

 
• A – accumulator 
• C – condition code register (Z,C,I) and IID 
• S – stack pointer 
• X – index register 
• PC – program address counter 

 
The A register is primarily for handling data.  

The C register contains the zero flag (Z), 
carry/borrow flag (C), and the interrupt enable 
flag (I).  The lower five C register bits store the 
ID for an interrupting device (IID).  The stack 
pointer maintains the stack data structure.  The 
X register is a fairly general purpose index 
register.  The program counter (PC) can be 
thought of as referring to the next instruction 
however due to pre-fetching has a twist 
discussed later, that the assembly language 
programmer is less concerned with. 

 
Students typically resist the notion that data is 

accessed by address.  The nod4 syntax is 
inspired by the Borland Turbo Assembler 
(TASM) ideal-mode syntax[7], which is more 
intuitive than most and is helpful in this regard.  
In particular, square brackets imply the contents 
of the address, which makes the syntax for the 
addressing modes almost self explanatory.   

 
Until recently, nod4 programs were assembled 

by hand to produce machine code.  A recent 
change is the development of an actual 
assembler program called nod4asm.  To avoid 
having to memorize a numeric value, nod4 
assembly language programs allow symbols, or 
symbolic names for values.  A label is like a 

symbol, but the value it represents must be an 
address.  The assembler determines the actual 
value assigned to each label.  An assembly 
language program is written in lines of text, 
each with as many as four fields.   
 
• The left-most field contains a label, symbol, 

or semicolon to start a comment line.  Each 
label or symbol ends with a colon ‘:’. 

• The second field contains either a mnemonic 
or an assembler directive which is a 
command directed at the assembler 

• The third field, called the operand field may 
contain instruction data which is dependent 
on the addressing mode, or data for an 
assembler directive 

• The fourth field is for comments and starts 
with a semicolon ‘;’. 

 
The effective address or EA is the location for 

a memory data access.  Four addressing modes 
are supported, namely implied, immediate, 
direct, and indexed.  With implied addressing 
(IMP) there is no operand however as with push 
and pop the EA is implied.  An immediate 
instruction (IMM) follows the mnemonic by the 
required data.  With direct addressing the 
mnemonic is followed by the EA value.  With 
index addressing the EA is calculated by adding 
an offset value following the mnemonic to the 
corresponding index register (S or X).  The 
following is the general format for lines in an 
assembly language program 

 
; here is a comment line 
Label:  mnemonic   Operand  ; comment text 
Symbol: directive  Data     ; another comment 

 
A directive or pseudo-instruction is an explicit 

command directed at the assembler.  The 
following are the directives, presented in 
context
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ORG   Address 
Sets the current point of assembly to ‘Address’ 

 
symbol:  equ   val 

The symbol is assigned the constant value ‘val’. 
 
label:   FCB   val1, val2,… 

Inserts successive byte values into memory.  The address of the first or left 
most value is assigned to the label 

 
label:   RMB   n 

Reserves n bytes without inserting any values.  The address of the first byte 
reserved is assigned to the label. 

 
 

Table 1: Instruction distribution. 
 

  Addressing Modes Registers 
Mnemonic & Behavior IMP IMM DIR IND A C S X 
clra clear A –    –    
inva ones comp. A –    –    
nega negate A –    –    
rts return from sub. –      –  
rti return from int. –    – – – – 
swi software int. –    – – – – 
pshR push R –    o o – o 
popR pop to R –    o o – o 
decR decrement R –    o  o o 
incR increment R –    o  o o 
jsr jump to sub.  –     –  
jumps(7) jumps – 7 total  –       
andR bitwise-and w. R  o o o o o  o 
cmpR compare w. R  o o o o o  o 
orR bitwise-or w. R  o o o o o  o 
addR add to R  o o o o  o o 
stR store R   o o o  o o 
subR subtract from R  o o o o  o o 
ldR load into R  o o o o  o o 

 
Table 2: Instruction Encoding Summary. 

 
   Register Choices Addressing Mode 
Opcode Formats  Reg. Encoding Modes mmn 
1. 0 ACX mmn xx  A 0 0 IMP 0 0 x 
2. 0 10  mmn xx  C 0 1 IMM 0 1 x 
3. 1 ASX mmn xx  S 1 0 DIR 1 0 x 
4. 1 01  mmn xx  X 1 1 IND-S 1 1 0 
     IND-X 1 1 1 
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The  nod4  Instruction  Encoding Example  Program 
  
The first part of an actual machine code 

instruction is called an opcode.  The means by 
which an opcode conveys an action, addressing 
mode, and the registers involved is called the 
encoding.  The nod4 encoding is meant to 
contrast with the principle of the expanding 
opcode presented by Tanenbaum[2].  The nod4 
instruction encoding is formulated from Table 1.   
The headings IMP, IMM, DIR, and IND refer to 
implied, immediate, direct, and index addressing 
modes, respectively. The headings A, C, S, and 
X refer to the corresponding registers.  The ‘–’ 
symbol means use of an item without a choice 
and ‘o’ means a choice among items.  
Instruction mnemonics use the nameR format 
where R may refer to a source or destination 
register.  Instructions not ending with R either 
imply or otherwise do not refer to any registers. 

The following program named ex0.asm 
illustrates the assembly language as well as 
many of the architecture features.  The system 
has ROM from addresses $00 to $BF and RAM 
from $C0 to $FB.  The first two addresses in 
memory are reserved for storing the program 
start address (PSA) and program interrupt 
address (PIA).  Without an interrupt service 
routine, it is wise to use the PSA as the PIA so 
that an accidental interrupt will restarts this 
system.  The last four addresses are for 
peripheral devices.   

 
In the code, the first appearance of each 

addressing mode type is indicated in the 
comment field, as in IMM, IND, IMP, and DIR.  
The push instruction decrements the S register 
before writing to memory, so that the subroutine 
return address is written to address $FB.  Before 
returning, the final value is written for display to 
the output port.  To take this example further, 
consider the online documention[3]. 

 
The encoding is not orthogonal and takes 

advantage of patterns in the instruction 
distribution.  Note that certain registers are 
sometimes excluded.  There is no point in 
incrementing or decrementing the condition 
code register C or pushing or popping the S 
register.  In examining the instruction 
distribution we make several observations: 

 
The  nod4.1  Implementation 

 
A hardware designer looks at a microprocessor 

in a different way than the assembly language 
programmer. Figure 1 is the classic Von 
Neumann structure I had in mind when I 
designed the nod4 system.  The memory 
contains executable code and data.  The 
controller produces enable signals to control the 
actions of the data path, which in return 
produces status information.  Here the input and 
output (I/O) devices are said to be memory 
mapped in that the devices are also accessed by 
address.  In the following, each block is 
considered in turn. 

 
• The register choices are indicated with three 

patterns, either none, the set A, C, and X 
(ACX), or the set A, S, and X (ASX). 

• The jump instructions only use immediate 
addressing with no choice of registers 

• Mnemonics that write to memory only make 
use of direct and indexed addressing modes 

 
Table 2 outlines the encoding.  The items 

ACX and ASX refer to a two bit code that 
references one of the given registers.  The item 
mmn refers to the addressing mode.  The ‘x’ 
symbol indicates a bit involved in selecting an 
instruction from the group. The remaining 
details of the instruction encoding are in the 
Architecture document[3]. 

 
 
 

 

 

DATA PATH
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EnablesStatus

ReadEn

WriteEn
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Figure 1: Processor system overview. 

COMPUTERS IN EDUCATION JOURNAL 97 



 

 
 
Memory systems is a topic that itself is worthy 

of several lectures.  As such, discussion of the 
nod4.1 memory system is split off to a separate 
document[4].  Students learn from the 
architecture document[3] and memory system 
document that the nod4 memory system has 
three regions comprised of ROM, RAM, and 
device registers.  They also learn that ROM is 
suitable for permanent executable code and 
constant data, and that RAM is suitable for 
variables and the stack.  Device registers 
provide access to the peripheral devices.  

 
For discussions of memory types and memory 

maps to be more than a simple exercise, 
students learn about what a simple memory bus 
is.  In reality the bus comprises several busses 
that together convey address, data, and control 
information.  Students learn what address 
decoding is and how a memory access is 
performed.  In studying the memory system 
document[4], students discover how each region 
is a manifestation of a device, on a bus, mapped 
by the address-decode logic to a range of 
addresses.  Besides memory, so-called memory 
mapped   peripheral   devices  are   accessed   by  

 
 
address, as part of the memory system.  These 
are general principles that aid further learning.  
With an understanding of the basics, students 
can appreciate more advanced memory systems. 

 
Figure 2 is the nod4.1 memory system.  Each 

block corresponds to a small bit of VHDL code 
that students are welcome to explore.  Unlike 
symbols that refer to conventional discrete logic 
devices, these symbols are simply part of a 
larger description.  A key point with FPGAs is 
being able to tailor to an application.  While a 
192 byte ROM or a 60 byte RAM may not be 
practical by itself as a discrete device, the FPGA 
has the necessary resources.  The tools simply 
allocate the required FPGA resources and 
automatically route the corresponding logic.   

 
In Figure 2 the signal ax is the address bus, 

which conveys the address for a memory system 
access. The signal do is the data bus from the 
CPU and di is the data bus to the CPU.  Three-
state logic allows multiple devices to share the 
di bus.  Devices also share the read (rd) and 
write (wr) control lines.  Enables are produced 
by  the  memena  component so that each device  

; ex0.asm – Jonathan Hill – Dec. 7, 2007 
; Demo nod4 program showing some features 
TOS:    EQU  $FC          ; top of stack 
OUTP:   EQU  $FC          ; output port 
        ORG  $00          ; set origin 
        FCB  Start, Start ; PSA, PIA 
 
Start:  lds  TOS          ; (IMM) init. stack 
        ldx  Valx         ; address of val. 
        jsr  Absval       ; call sub. 
Done:   jmp  Done         ; all done 
 
Absval: lda  [X+0]        ; (INDX) get val. 
        cmpa $80          ; compare endval 
        jlo  Posval       ; already pos? 
        nega              ; (IMP) form opposite 
Posval: sta  [OUTP]       ; (DIR) store val 
        rts               ; sub. Done 
Valx:   FCB  $37          ; a value 
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Figure 2: Memory system for nod4.1 
 
appears separately in a region of memory.  The 
memory used in the RAM is called 
asynchronous-read, synchronous-write and is 
similar to conventional static RAM, except that 
a write, as in Figure 3 is committed at the rising 
clock edge.  As with static RAM, in performing 
a read from memory as in Figure 4 there is a 
delay to the arrival of valid data.  Students can 
consider different ways to implement the enable 
logic. 

 

X

ADDRESS

DATA

clk

ax[7:0]

do[7:0]

wr

X

 
Figure 3: Memory write cycle. 

 
The data path in Figure 5 is what performs the 

work of the microprocessor.  The data path 
includes all the visible registers, hidden 
registers, arithmetic logic unit, and all the so 
called interconnect plumbing including 
multiplexers.  The data bus register (DX), 
temporary register (ND) and instruction register 
(IR) are all said to be hidden from the assembly  
 
 

 
language programmer’s view.  The action of the 
data path is directed by enable signals (not 
shown here) produced by the controller.  The 
arithmetic logic unit (ALU) is the real worker in 
the data path.  Students learn that the so-called 
program counter (PC) is not a counter.  The data 
path in return provides the controller with status 
information, namely the values in the DX, C and 
IR registers. 

 

Z

ADDRESS

DATA

clk

ax[7:0]

di[7:0]

rd

Z

 
 

Figure 4: Memory read cycle. 
 

In performing a read from memory the DX 
register loads the value.  Care is taken so that 
the actual value fetched is only used inside the 
data path once it is actually loaded into DX. 
Using a buffer register in this way, so that the 
data bus is not directly inspected by logic is 
significant.  This means that the fetch and 
decode  phases of  the fetch-execute  cycle  will 
not be combined.  This is an elementary form of 
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Figure5: The nod4.1 data path. 
 

pipelining, though we normally do not think of 
it that way.  The arrangement shortens the 
overall read path and allows for a higher clock 
frequency. 

 
The controller is essentially a state machine 

that uses status information to direct the actions 
of the data path to provide the desired cycle-by-
cycle behavior.  Based solely on the controller it 
is possible to cause the behavior of the data path 
to be like that of an entirely different processor.  
The processor controller is microcoded to both 
emphasize how the fetch-execute cycle behaves 
like an interpreter, and also to provide 
opportunities to experiment with the 
implementation.  Students can also consider the 
performance of instructions by counting 
microcode instructions. 

 
Figure 6 outlines the microcode by 

representing related blocks of code as states.  
The actual microcode is listed in the nod4.1 
implementation document[5].  Starting at init, 
the program start address or PSA is loaded in 
the PC register.  In fetch1 the opcode is fetched 
from memory.  In fetch2 the opcode is decoded 
and a second byte is fetched from memory.  
With the opcode and the following byte fetched, 
implied and immediate type instructions can be 
executed.  Direct and indexed instructions 
access data at the corresponding effective 
address or EA.  The access-EA code calculates 
the effective address (EA) as necessary and 

reads data from or writes data to the EA.  Once 
the instruction is executed, as necessary the 
interrupt code prepares for an interrupt.  

 

fetch2

init

EA
access

execute
interrupt

fetch1

 
 

Figure 6: Microcode overview. 
 
In starting at fetch1, the first instruction has 

two fetches performed.  For immediate, direct, 
and extended addressing instructions, fetch2 
obtains the operand.  For implied instruction 
however, the fetch2 produces the next opcode so 
that most implied instructions treat the second 
fetch as a pre-fetch.  In pre-fetching the next 
opcode, the current implied instruction or the 
next instruction can be thought of as executing 
in one less clock cycle.   

 
The use of two fetches follows our motto of 

“simple yet nontrivial.”  The choice to 
arbitrarily fetch two bytes in sequence from 
memory in this fashion has less to do with 
implied instructions, and more to do with the 
rest.  By immediately fetching a second byte, 
regardless of addressing mode, the microcode is 
simpler and no time is used to decide if a second 
fetch is required, so all instructions execute 
faster.  The idea of pre-fetching and having 
implied instructions execute faster yet is a 
happy coincidence. 

 
 The downside is that the exact meaning of the 

PC register is less clear.  Once fetch2 is 
complete, the PC register contains the address of 
the current opcode plus two, which could be the 
next instruction or something after that.  Thus 
the PC is more of a fetch counter.  Normally this 
is not a problem as we know the situations 
where the PC is expected to refer to the next 
opcode in memory.  All jump instructions are 
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two bytes long so that in executing a jump to 
subroutine (JSR) instruction, the PC refers to the 
return address, and will properly be pushed onto 
the stack.   

 
The nod4 architecture has one vector for 

supporting exceptions.  The lower five bits of 
the C register store the interrupt identifier (IID) 
value, where zero is reserved for the software 
interrupt instruction (swi).  In invoking an 
interrupt, the previous completed instruction 
may not be two bytes long.  In completing most 
implied instructions, the pre-fetching must be 
first be undone before jumping to the interrupt 
service routine (ISR), so that the correct return 
address is pushed onto the stack.  The swi 
instruction in particular is one byte long.   

 
Considering  Student  Feedback 

 
Prior to nod3, our standard college course 

questionnaire asked students a number of 
detailed questions that provide students with 
opportunities to make comments.  Based on 
these comments I discerned that many students 
felt the nod processor architecture was helpful 
but that writing a simulator program was too 
abstract.  Because of the feedback I was 
motivated to have students actually implement 
nod series processors.  More recently a 
questionnaire was first e-mailed out to students 
who were exposed to the versions up till nod4.0.  
From a typically small course, a smaller 
response was received.  Two studied nod2, three 
studied nod3, and two studied nod4.0.  Despite 
that two of the students wrote the nod2 
simulator program, their responses were very 
similar to those who implemented at least a 
significant part of a nod3 or nod4.0 processor.  
Nine of the students first exposed to nod4.1 
were given the questionnaire in class.  Some 
questions asked students to reply with a 
numerical answer and others asked for a 
statement.  Students were also welcome to make 
any comments they wished. 
 

The questions are listed below along with the 
average values. Questions 2 and 4 are similar 
and are a general gauge of student satisfaction 
with the nod series processors.  In the ‘Until’ 

group, other than one student, who in question 2 
indicated indifference, all students at least 
agreed and on average moderately strongly 
agreed that the nod series is helpful and helped 
their understanding.  Only one student in the 
‘nod4.1’ group disagreed in question 2 and the 
rest agreed at some level. 

 
Questions 5 and 6 are contrasting in that I was 

concerned with the size of the project.  Question 
5 asks if there is educational value in the 
exercise.  Of all the questions, number 5 has the 
highest score in both groups.  In contrast, 
question 6 proposes that students be given a 
completed processor to study.  I am surprised by 
the cool response in the ‘Until’ group and that 
on average there is a slight disagreement with 
the question.  Two students gave similar 
comments that their learning resulted from 
having to complete either the simulator or an 
actual implementation.  While the ‘nod4.1’ 
group differs, the question 6 average is also 
lowest. 

 
Undergraduate computer engineers take this 

course, and it appears that implementing such a 
microprocessor is welcome and may account for 
some of the cool reply to question 6.  Perhaps 
having a completed system available would 
make nod4 more accessible to other students as 
well.  In particular, straight electrical 
engineering students and computer science 
majors may benefit. 

 
In examining the comments made to questions 

2 and 3, students indicated that yes, the nod 
series processors helped in their understanding 
of what a data path is, what micro-coding is, and 
what the fetch-execute cycle is and what 
instruction encoding and decoding is. One 
student asked that some method be used for 
nod4 to introduce larger computers.  Another 
student commented that if additional  material is 
added to the course, then nod4 would probably 
find even more use.  To summarize, the 
feedback for the nod series processors is 
positive.   
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 0 Disagree 
Strongly 

1 Disagree 2 Neutral  
or 
Indifferent 

3 Agree 4 Agree 
Strongly  

 
 

 Question Until 
nod4.0 

First 
nod4.1 

1. Which nod series processor did you study? – – – – 
2. Overall the nod processor helped to introduce computer architecture related topics 

and is a benefit to the ECE335 class in itself.  Also list a topic that nod4 helped your 
understanding 

3.43 3.33 

3. Is there a computer architecture topic that nod4 can be used to better introduce? – – – – 
4. The nod4 processor implementation or architecture helped me to better understand 

the internals of microprocessors and the fetch-execute cycle 
3.57 3.11 

5. The nod3 and nod4 processors involved having students implement a significant part 
of a microprocessor.  Do you see this exercise as having educational value? 

3.71 3.67 

6. Suppose that rather than having students implement a complete4 processor, a 
completed processor was provided to students to study in detail.  Having such a 
completed would further improve my understanding of microprocessors. 

1.71 3.00 

 
Conclusion 

 
The field programmable gate array (FPGA) 

and modern computer aided design tools 
provide new opportunities in teaching computer 
architecture.  This paper presents a simple yet 
nontrivial Von Neumann style computer 
architecture called nod4 and a soft core 
implementation called nod4.1 that is suitable for 
an undergraduate course in computer 
architecture.  As of this writing the nod series 
processors have reached a level of maturity 
where few if any modifications are planned.  
The processor architecture itself is worthy of 
study, including such features as subroutines, 
stack relative addressing, interrupts, and 
conditional branching.  The architecture and 
implementation documents are written so that 
several options are possible for introducing 
nod4 into the classroom curriculum.  In 
particular, students  may  investigate  the nod4.1 
processor or implement the processor 
themselves.  It is also possible to present the 
processor architecture entirely without the 
implementation.   
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