
MICROPORCESSOR ARCHITECTURE WITH FPGA IMPLEMENTATION
FOR UNDERGRADUATE COMPUTER ARCHITECTURE COURSES

Dr. Jonathan Hill

University of Hartford

Abstract

This paper presents a simple yet nontrivial
Von Neumann style computer architecture and
an corresponding implementation suitable for an
undergraduate course in computer architecture.
The processor is said to be soft as it is
implemented with a field programmable gate
array (FPGA). This paper incorporates the
latest nod4 implementation called nod4.1 which
has significant improvements over nod4.0,
including the use of unidirectional busses. The
processor architecture itself is worthy of study,
including such features as subroutines, stack
relative addressing, interrupts, and conditional
branching. The processor is able to pre-fetch
with some instructions and provides
performance comparable to traditional small
microprocessors such as the Freescale 68HC11.
The documentation is written so that several
options are possible for introducing nod4 into
the classroom curriculum. In particular,
students may investigate the nod4 processor or
implement the processor themselves. It is also
possible to present the processor architecture
entirely without the implementation.

Introduction

This paper presents a simple yet nontrivial

Von Neumann style computer architecture and
an implementation that undergraduate students
may implement as a soft-core processor.
Engineers are continually called upon to make
decisions regarding what is appropriate for a
given application. The grand vision serves as a
north-star to inspire and help the designer in
making decisions regarding a given architecture.
The nod4 processor is designed to be a tool for
teaching introductory computer architecture
principles to undergraduates. The nod4 motto is,
“simple yet nontrivial.” It is classic accumulator
based Von Neumann style architecture. The

design strives for clarity and is transparent so
nothing is hidden from the student. It has an 8
bit address bus and primarily supports unsigned
8 bit integer math.

Relevant references include Mano and

Kime[1] as well as Tanenbaum[2]. To
implement nod4 the target technology is the
field programmable gate array (FPGA). Other
than switches, light emitting diodes, and the
clock oscillator, the nod4 processor system is
implemented entirely in a FPGA. Students are
provided with VHDL modules used to make
schematic symbols. In this way students use
register level or higher schematics. The
development tools include a simulator for
examining the system cycle by cycle behavior.

The support provided to software is an

important concern. Compiler generated
machine code makes use of only a few
addressing modes and is generally supported by
certain processor hardware features. The nod4
architecture has a stack, uses subroutines, and
includes stack relative addressing for passing
parameters. Other than the possibility of a very
simple executive, we have no interest in
supporting a formal operating system. At the
very least, to perform a context switch requires
direct access to the processor stack.

Performance means something different for

each application we consider. In executing
simple demonstration programs nod4.1 strives
for a respectable level of performance
comparable to such classics as the Freescale
68HC11 microcontroller. As outlined by
Tanenbaum, to avoid expressing the fetch-
execute cycle as a binary tree, the microcode is
aided with jump ahead rules. Also, in fetching
an instruction, two bytes are read from memory,
allowing some instructions to pre-fetch the
following opcode. With nod4.1 students are

COMPUTERS IN EDUCATION JOURNAL 93

exposed to such classic metrics as cycles per
second, average cycles per instruction, and
integer operations per second.

The nod4 system is broken into three

documents. The nod4 architecture document[3]
focuses primarily on the assembly language
view of the processor. The memory system
document[4] and the implementation
document[5] together outline the actual
implementation. Documentation is also written
for optional peripherals. In other courses that
have a focus only on architecture, the processor
can be presented without the implementation.
Courses with a lack of development tools can
use the implementation as reference. With the
development tools on hand, a project can be
assigned to actually implement the project.
Otherwise, students could possibly use an
existing implementation to investigate the
nod4.1 processor, considering changes to the
nod4 architecture and implementation. There
are many opportunities such as adding
peripherals, new instructions, and addressing
modes. Each document includes homework
exercises.

The nod Series History

The first time I taught a computer architecture

course I wrote a hypothetical microprocessor
architecture called nod1, which was simply
meant to serve as an example. To my surprise I
discovered its value in teaching. I found the
instruction set and encoding worthy of
discussion, serving to contrast with text-book
examples. The assembly language is
educational without being a burden. Such an
example is a benefit in its own right and for this
I produced an improved version called nod2
which I used the next two times I taught the
course.

First with nod1 and then nod2, students had a

project to write a simulator program to model
the respective architecture behavior. In
reviewing feedback, while the students felt that

each of the architectures was useful, the
corresponding simulator project was too
abstract. I was also concerned that the simulator
did not fully help to convey a sense of the fetch-
execute cycle. It seems that anything less than
an actual implementation would not be
acceptable.

After deciding to have an actual

implementation, I considered a number of
factors and made some decisions. I cannot
require my computer architecture students to
know a hardware description language like
VHDL and I feel that pure schematic capture
techniques are too intensive in this regard. I
selected a hybrid approach where students use
pre-written VHDL modules to define the blocks
in a schematic. In this way students encounter
higher-level schematics. This is similar to using
MSI parts in that the underlying VHDL code
describing the behavior is already provided.
Students perform simulation and once ‘things
look good,’ the design can be configured into a
field programmable gate array.

Refining nod2 led to nod3. Given the prior
student feedback, I introduced nod3 as example
architecture in the same manner that I
introduced nod1 as well as nod2. Later in the
course, students actually implemented nod3. In
the following year, refinements led to the
current nod4 architecture and the nod4.0
processor which uses a bidirectional data bus
and students hand wrote test benches.

In considering my experience with nod4.0 and

student issues, I realized that an improvement
was needed. I realized that unidirectional
busses are somewhat common with soft core
processors. As an example the Microblaze[6]
soft core processor makes some use of
unidirectional busses. A final revision led to the
current nod4.1 processor which uses
unidirectional busses and a simpler data path. A
simple graphical tool is used with nod4.1 to
develop test-bench files. The nod4.0 and nod4.1
processors are both examples of the nod4
architecture.

94 COMPUTERS IN EDUCATION JOURNAL

The nod4 Architecture

To introduce nod4 to students we start with a

fairly abstract view, presenting the registers,
assembly language, and encoding. The nod4
architecture has an 8-bit data path and an 8-bit
address bus. From the programmer’s point of
view nod4 has the following CPU registers

• A – accumulator
• C – condition code register (Z,C,I) and IID
• S – stack pointer
• X – index register
• PC – program address counter

The A register is primarily for handling data.

The C register contains the zero flag (Z),
carry/borrow flag (C), and the interrupt enable
flag (I). The lower five C register bits store the
ID for an interrupting device (IID). The stack
pointer maintains the stack data structure. The
X register is a fairly general purpose index
register. The program counter (PC) can be
thought of as referring to the next instruction
however due to pre-fetching has a twist
discussed later, that the assembly language
programmer is less concerned with.

Students typically resist the notion that data is

accessed by address. The nod4 syntax is
inspired by the Borland Turbo Assembler
(TASM) ideal-mode syntax[7], which is more
intuitive than most and is helpful in this regard.
In particular, square brackets imply the contents
of the address, which makes the syntax for the
addressing modes almost self explanatory.

Until recently, nod4 programs were assembled

by hand to produce machine code. A recent
change is the development of an actual
assembler program called nod4asm. To avoid
having to memorize a numeric value, nod4
assembly language programs allow symbols, or
symbolic names for values. A label is like a

symbol, but the value it represents must be an
address. The assembler determines the actual
value assigned to each label. An assembly
language program is written in lines of text,
each with as many as four fields.

• The left-most field contains a label, symbol,

or semicolon to start a comment line. Each
label or symbol ends with a colon ‘:’.

• The second field contains either a mnemonic
or an assembler directive which is a
command directed at the assembler

• The third field, called the operand field may
contain instruction data which is dependent
on the addressing mode, or data for an
assembler directive

• The fourth field is for comments and starts
with a semicolon ‘;’.

The effective address or EA is the location for

a memory data access. Four addressing modes
are supported, namely implied, immediate,
direct, and indexed. With implied addressing
(IMP) there is no operand however as with push
and pop the EA is implied. An immediate
instruction (IMM) follows the mnemonic by the
required data. With direct addressing the
mnemonic is followed by the EA value. With
index addressing the EA is calculated by adding
an offset value following the mnemonic to the
corresponding index register (S or X). The
following is the general format for lines in an
assembly language program

; here is a comment line
Label: mnemonic Operand ; comment text
Symbol: directive Data ; another comment

A directive or pseudo-instruction is an explicit

command directed at the assembler. The
following are the directives, presented in
context

COMPUTERS IN EDUCATION JOURNAL 95

ORG Address
Sets the current point of assembly to ‘Address’

symbol: equ val

The symbol is assigned the constant value ‘val’.

label: FCB val1, val2,…

Inserts successive byte values into memory. The address of the first or left
most value is assigned to the label

label: RMB n

Reserves n bytes without inserting any values. The address of the first byte
reserved is assigned to the label.

Table 1: Instruction distribution.

 Addressing Modes Registers
Mnemonic & Behavior IMP IMM DIR IND A C S X
clra clear A – –
inva ones comp. A – –
nega negate A – –
rts return from sub. – –
rti return from int. – – – – –
swi software int. – – – – –
pshR push R – o o – o
popR pop to R – o o – o
decR decrement R – o o o
incR increment R – o o o
jsr jump to sub. – –
jumps(7) jumps – 7 total –
andR bitwise-and w. R o o o o o o
cmpR compare w. R o o o o o o
orR bitwise-or w. R o o o o o o
addR add to R o o o o o o
stR store R o o o o o
subR subtract from R o o o o o o
ldR load into R o o o o o o

Table 2: Instruction Encoding Summary.

 Register Choices Addressing Mode
Opcode Formats Reg. Encoding Modes mmn
1. 0 ACX mmn xx A 0 0 IMP 0 0 x
2. 0 10 mmn xx C 0 1 IMM 0 1 x
3. 1 ASX mmn xx S 1 0 DIR 1 0 x
4. 1 01 mmn xx X 1 1 IND-S 1 1 0
 IND-X 1 1 1

96 COMPUTERS IN EDUCATION JOURNAL

The nod4 Instruction Encoding Example Program

The first part of an actual machine code

instruction is called an opcode. The means by
which an opcode conveys an action, addressing
mode, and the registers involved is called the
encoding. The nod4 encoding is meant to
contrast with the principle of the expanding
opcode presented by Tanenbaum[2]. The nod4
instruction encoding is formulated from Table 1.
The headings IMP, IMM, DIR, and IND refer to
implied, immediate, direct, and index addressing
modes, respectively. The headings A, C, S, and
X refer to the corresponding registers. The ‘–’
symbol means use of an item without a choice
and ‘o’ means a choice among items.
Instruction mnemonics use the nameR format
where R may refer to a source or destination
register. Instructions not ending with R either
imply or otherwise do not refer to any registers.

The following program named ex0.asm
illustrates the assembly language as well as
many of the architecture features. The system
has ROM from addresses $00 to $BF and RAM
from $C0 to $FB. The first two addresses in
memory are reserved for storing the program
start address (PSA) and program interrupt
address (PIA). Without an interrupt service
routine, it is wise to use the PSA as the PIA so
that an accidental interrupt will restarts this
system. The last four addresses are for
peripheral devices.

In the code, the first appearance of each

addressing mode type is indicated in the
comment field, as in IMM, IND, IMP, and DIR.
The push instruction decrements the S register
before writing to memory, so that the subroutine
return address is written to address $FB. Before
returning, the final value is written for display to
the output port. To take this example further,
consider the online documention[3].

The encoding is not orthogonal and takes

advantage of patterns in the instruction
distribution. Note that certain registers are
sometimes excluded. There is no point in
incrementing or decrementing the condition
code register C or pushing or popping the S
register. In examining the instruction
distribution we make several observations:

The nod4.1 Implementation

A hardware designer looks at a microprocessor

in a different way than the assembly language
programmer. Figure 1 is the classic Von
Neumann structure I had in mind when I
designed the nod4 system. The memory
contains executable code and data. The
controller produces enable signals to control the
actions of the data path, which in return
produces status information. Here the input and
output (I/O) devices are said to be memory
mapped in that the devices are also accessed by
address. In the following, each block is
considered in turn.

• The register choices are indicated with three

patterns, either none, the set A, C, and X
(ACX), or the set A, S, and X (ASX).

• The jump instructions only use immediate
addressing with no choice of registers

• Mnemonics that write to memory only make
use of direct and indexed addressing modes

Table 2 outlines the encoding. The items

ACX and ASX refer to a two bit code that
references one of the given registers. The item
mmn refers to the addressing mode. The ‘x’
symbol indicates a bit involved in selecting an
instruction from the group. The remaining
details of the instruction encoding are in the
Architecture document[3].

DATA PATH

CONTROLLER

EnablesStatus

ReadEn

WriteEn

Address

Data

M
E

M
O

R
Y

I/O

Figure 1: Processor system overview.

COMPUTERS IN EDUCATION JOURNAL 97

Memory systems is a topic that itself is worthy

of several lectures. As such, discussion of the
nod4.1 memory system is split off to a separate
document[4]. Students learn from the
architecture document[3] and memory system
document that the nod4 memory system has
three regions comprised of ROM, RAM, and
device registers. They also learn that ROM is
suitable for permanent executable code and
constant data, and that RAM is suitable for
variables and the stack. Device registers
provide access to the peripheral devices.

For discussions of memory types and memory

maps to be more than a simple exercise,
students learn about what a simple memory bus
is. In reality the bus comprises several busses
that together convey address, data, and control
information. Students learn what address
decoding is and how a memory access is
performed. In studying the memory system
document[4], students discover how each region
is a manifestation of a device, on a bus, mapped
by the address-decode logic to a range of
addresses. Besides memory, so-called memory
mapped peripheral devices are accessed by

address, as part of the memory system. These
are general principles that aid further learning.
With an understanding of the basics, students
can appreciate more advanced memory systems.

Figure 2 is the nod4.1 memory system. Each

block corresponds to a small bit of VHDL code
that students are welcome to explore. Unlike
symbols that refer to conventional discrete logic
devices, these symbols are simply part of a
larger description. A key point with FPGAs is
being able to tailor to an application. While a
192 byte ROM or a 60 byte RAM may not be
practical by itself as a discrete device, the FPGA
has the necessary resources. The tools simply
allocate the required FPGA resources and
automatically route the corresponding logic.

In Figure 2 the signal ax is the address bus,

which conveys the address for a memory system
access. The signal do is the data bus from the
CPU and di is the data bus to the CPU. Three-
state logic allows multiple devices to share the
di bus. Devices also share the read (rd) and
write (wr) control lines. Enables are produced
by the memena component so that each device

; ex0.asm – Jonathan Hill – Dec. 7, 2007
; Demo nod4 program showing some features
TOS: EQU $FC ; top of stack
OUTP: EQU $FC ; output port
 ORG $00 ; set origin
 FCB Start, Start ; PSA, PIA

Start: lds TOS ; (IMM) init. stack
 ldx Valx ; address of val.
 jsr Absval ; call sub.
Done: jmp Done ; all done

Absval: lda [X+0] ; (INDX) get val.
 cmpa $80 ; compare endval
 jlo Posval ; already pos?
 nega ; (IMP) form opposite
Posval: sta [OUTP] ; (DIR) store val
 rts ; sub. Done
Valx: FCB $37 ; a value

98 COMPUTERS IN EDUCATION JOURNAL

Figure 2: Memory system for nod4.1

appears separately in a region of memory. The
memory used in the RAM is called
asynchronous-read, synchronous-write and is
similar to conventional static RAM, except that
a write, as in Figure 3 is committed at the rising
clock edge. As with static RAM, in performing
a read from memory as in Figure 4 there is a
delay to the arrival of valid data. Students can
consider different ways to implement the enable
logic.

X

ADDRESS

DATA

clk

ax[7:0]

do[7:0]

wr

X

Figure 3: Memory write cycle.

The data path in Figure 5 is what performs the

work of the microprocessor. The data path
includes all the visible registers, hidden
registers, arithmetic logic unit, and all the so
called interconnect plumbing including
multiplexers. The data bus register (DX),
temporary register (ND) and instruction register
(IR) are all said to be hidden from the assembly

language programmer’s view. The action of the
data path is directed by enable signals (not
shown here) produced by the controller. The
arithmetic logic unit (ALU) is the real worker in
the data path. Students learn that the so-called
program counter (PC) is not a counter. The data
path in return provides the controller with status
information, namely the values in the DX, C and
IR registers.

Z

ADDRESS

DATA

clk

ax[7:0]

di[7:0]

rd

Z

Figure 4: Memory read cycle.

In performing a read from memory the DX
register loads the value. Care is taken so that
the actual value fetched is only used inside the
data path once it is actually loaded into DX.
Using a buffer register in this way, so that the
data bus is not directly inspected by logic is
significant. This means that the fetch and
decode phases of the fetch-execute cycle will
not be combined. This is an elementary form of

COMPUTERS IN EDUCATION JOURNAL 99

ax

D B
ALU

YF

di ND

PC

X

S

C

A

IRDX

Data
do

Bus

Address
Bus

Data
Bus

Figure5: The nod4.1 data path.

pipelining, though we normally do not think of
it that way. The arrangement shortens the
overall read path and allows for a higher clock
frequency.

The controller is essentially a state machine

that uses status information to direct the actions
of the data path to provide the desired cycle-by-
cycle behavior. Based solely on the controller it
is possible to cause the behavior of the data path
to be like that of an entirely different processor.
The processor controller is microcoded to both
emphasize how the fetch-execute cycle behaves
like an interpreter, and also to provide
opportunities to experiment with the
implementation. Students can also consider the
performance of instructions by counting
microcode instructions.

Figure 6 outlines the microcode by

representing related blocks of code as states.
The actual microcode is listed in the nod4.1
implementation document[5]. Starting at init,
the program start address or PSA is loaded in
the PC register. In fetch1 the opcode is fetched
from memory. In fetch2 the opcode is decoded
and a second byte is fetched from memory.
With the opcode and the following byte fetched,
implied and immediate type instructions can be
executed. Direct and indexed instructions
access data at the corresponding effective
address or EA. The access-EA code calculates
the effective address (EA) as necessary and

reads data from or writes data to the EA. Once
the instruction is executed, as necessary the
interrupt code prepares for an interrupt.

fetch2

init

EA
access

execute
interrupt

fetch1

Figure 6: Microcode overview.

In starting at fetch1, the first instruction has

two fetches performed. For immediate, direct,
and extended addressing instructions, fetch2
obtains the operand. For implied instruction
however, the fetch2 produces the next opcode so
that most implied instructions treat the second
fetch as a pre-fetch. In pre-fetching the next
opcode, the current implied instruction or the
next instruction can be thought of as executing
in one less clock cycle.

The use of two fetches follows our motto of

“simple yet nontrivial.” The choice to
arbitrarily fetch two bytes in sequence from
memory in this fashion has less to do with
implied instructions, and more to do with the
rest. By immediately fetching a second byte,
regardless of addressing mode, the microcode is
simpler and no time is used to decide if a second
fetch is required, so all instructions execute
faster. The idea of pre-fetching and having
implied instructions execute faster yet is a
happy coincidence.

 The downside is that the exact meaning of the

PC register is less clear. Once fetch2 is
complete, the PC register contains the address of
the current opcode plus two, which could be the
next instruction or something after that. Thus
the PC is more of a fetch counter. Normally this
is not a problem as we know the situations
where the PC is expected to refer to the next
opcode in memory. All jump instructions are

100 COMPUTERS IN EDUCATION JOURNAL

two bytes long so that in executing a jump to
subroutine (JSR) instruction, the PC refers to the
return address, and will properly be pushed onto
the stack.

The nod4 architecture has one vector for

supporting exceptions. The lower five bits of
the C register store the interrupt identifier (IID)
value, where zero is reserved for the software
interrupt instruction (swi). In invoking an
interrupt, the previous completed instruction
may not be two bytes long. In completing most
implied instructions, the pre-fetching must be
first be undone before jumping to the interrupt
service routine (ISR), so that the correct return
address is pushed onto the stack. The swi
instruction in particular is one byte long.

Considering Student Feedback

Prior to nod3, our standard college course

questionnaire asked students a number of
detailed questions that provide students with
opportunities to make comments. Based on
these comments I discerned that many students
felt the nod processor architecture was helpful
but that writing a simulator program was too
abstract. Because of the feedback I was
motivated to have students actually implement
nod series processors. More recently a
questionnaire was first e-mailed out to students
who were exposed to the versions up till nod4.0.
From a typically small course, a smaller
response was received. Two studied nod2, three
studied nod3, and two studied nod4.0. Despite
that two of the students wrote the nod2
simulator program, their responses were very
similar to those who implemented at least a
significant part of a nod3 or nod4.0 processor.
Nine of the students first exposed to nod4.1
were given the questionnaire in class. Some
questions asked students to reply with a
numerical answer and others asked for a
statement. Students were also welcome to make
any comments they wished.

The questions are listed below along with the
average values. Questions 2 and 4 are similar
and are a general gauge of student satisfaction
with the nod series processors. In the ‘Until’

group, other than one student, who in question 2
indicated indifference, all students at least
agreed and on average moderately strongly
agreed that the nod series is helpful and helped
their understanding. Only one student in the
‘nod4.1’ group disagreed in question 2 and the
rest agreed at some level.

Questions 5 and 6 are contrasting in that I was

concerned with the size of the project. Question
5 asks if there is educational value in the
exercise. Of all the questions, number 5 has the
highest score in both groups. In contrast,
question 6 proposes that students be given a
completed processor to study. I am surprised by
the cool response in the ‘Until’ group and that
on average there is a slight disagreement with
the question. Two students gave similar
comments that their learning resulted from
having to complete either the simulator or an
actual implementation. While the ‘nod4.1’
group differs, the question 6 average is also
lowest.

Undergraduate computer engineers take this

course, and it appears that implementing such a
microprocessor is welcome and may account for
some of the cool reply to question 6. Perhaps
having a completed system available would
make nod4 more accessible to other students as
well. In particular, straight electrical
engineering students and computer science
majors may benefit.

In examining the comments made to questions

2 and 3, students indicated that yes, the nod
series processors helped in their understanding
of what a data path is, what micro-coding is, and
what the fetch-execute cycle is and what
instruction encoding and decoding is. One
student asked that some method be used for
nod4 to introduce larger computers. Another
student commented that if additional material is
added to the course, then nod4 would probably
find even more use. To summarize, the
feedback for the nod series processors is
positive.

COMPUTERS IN EDUCATION JOURNAL 101

 0 Disagree
Strongly

1 Disagree 2 Neutral
or
Indifferent

3 Agree 4 Agree
Strongly

 Question Until
nod4.0

First
nod4.1

1. Which nod series processor did you study? – – – –
2. Overall the nod processor helped to introduce computer architecture related topics

and is a benefit to the ECE335 class in itself. Also list a topic that nod4 helped your
understanding

3.43 3.33

3. Is there a computer architecture topic that nod4 can be used to better introduce? – – – –
4. The nod4 processor implementation or architecture helped me to better understand

the internals of microprocessors and the fetch-execute cycle
3.57 3.11

5. The nod3 and nod4 processors involved having students implement a significant part
of a microprocessor. Do you see this exercise as having educational value?

3.71 3.67

6. Suppose that rather than having students implement a complete4 processor, a
completed processor was provided to students to study in detail. Having such a
completed would further improve my understanding of microprocessors.

1.71 3.00

Conclusion

The field programmable gate array (FPGA)

and modern computer aided design tools
provide new opportunities in teaching computer
architecture. This paper presents a simple yet
nontrivial Von Neumann style computer
architecture called nod4 and a soft core
implementation called nod4.1 that is suitable for
an undergraduate course in computer
architecture. As of this writing the nod series
processors have reached a level of maturity
where few if any modifications are planned.
The processor architecture itself is worthy of
study, including such features as subroutines,
stack relative addressing, interrupts, and
conditional branching. The architecture and
implementation documents are written so that
several options are possible for introducing
nod4 into the classroom curriculum. In
particular, students may investigate the nod4.1
processor or implement the processor
themselves. It is also possible to present the
processor architecture entirely without the
implementation.

Bibliography

1. M. Morris Mano and Charles Kime, Logic and
Computer Design Fundamentals, third edition,
copyright 2003 by Prentice Hall.

2. Andrew S. Tanenbaum, Structured Computer

Organization, copyright 2006 by Pearson
Education, Inc.

3. J. Hill, nod4 Architecture, copyright Sep 25,
2006, http://uhaweb.hartford.edu/jmhill/
projects/nod4/index.htm

4. J. Hill, nod4.1 Memory System, copyright
Sept. 20, 2007.

5. J. Hill, nod4.1 Implementation, copyright Oct

23, 2007.

6. Xilinx, MicroBlaze Processor Reference
Guide, Embedded Developers Kit EDK 9.2i,
UG081 (v8.0)

7. Tom Swan, Mastering Turbo Assembler,
second edition, copyright 1995 by Tom Swan,
published by Sams.

Biographical Information

Dr. Jonathan Hill is an assistant professor in the

College of Engineering, Technology, and
Architecture (CETA) at the University of Hartford,
Connecticut. He received the Ph.D. and M.S. from
Worcester Polytechnic Institute and B.S. from
Northeastern University. Previously an applications
engineer with the Networks and Communications
division of Digital Corporation, his interests involve
embedded microprocessor based systems.

102 COMPUTERS IN EDUCATION JOURNAL

