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Abstract 

 
 Self-avoiding walks are a more realistic 

model than random walks. This paper explores 
the properties of such walks in different 
dimensions by employing Monte Carlo 
computer simulations. The ability to construct 
such models and to develop a computer 
simulation are important skills for engineering 
and science students to acquire. 

 
Introduction 

 
 In a previous publication in this journal, Zajac 

and Bishop [1] used a Monte Carlo (MC) 
growth method to simulate three dimensional 
self-avoiding linear N “bead” polymers. They 
computed a variety of properties such as the 
mean-square radius of gyration, <S2>, its 
components along the principal orthogonal axes 
[2], λ1, λ2, and λ3, the mean-square end-to-end 
distance, <R2>,  and the mean asphericity, <A>. 
They found excellent agreement with theoretical 
values. In this work, their MC growth method 
for a three dimensional simple cubic lattice is 
extended to examine self-avoiding walk linear 
polymers on a square lattice in two dimensions 
and a hypercubic lattice in four and five 
dimensions.  A wide variety of properties are 
computed and compared to theoretical 
predictions in order to examine the influence of 
spatial dimension on the system properties. 

 
 
 
 
 
 
 
 
 

Method 
 
 The self-avoiding walk growth algorithm 

utilizes portions of the ideal linear polymer 
growth algorithm described in Barillas, 
Borgeson and Bishop [3], with major 
modifications to account for the self-avoidance 
condition. The first polymer bead is placed at 
the origin of a lattice. The second bead is 
randomly placed in any of the four possible 
lattice site locations in the two dimensional 
simulation and any of the eight possible 
locations in the four dimensional study or the 
ten possible locations in five dimensions. 

 
 Then a new random number is used to select 

the possible location where the third bead could 
be placed. However, before allowing that bead 
to be put at the new location, a test is made to 
ensure that another bead is not already 
occupying that lattice site. This procedure grows 
a non-intersecting chain and is continued until N 
beads have been successfully placed. Each bead 
is placed one unit apart from the previously 
placed bead. If at any time in the process the 
chain intersects itself, it is erased and a new 
chain is started. After each polymer is 
completely constructed, a number of properties 
are calculated for that configuration, as was 
done in Barillas, Borgeson and Bishop [3]. The 
process is continued until M independent 
samples have been created.  

 
    Figure 1 presents a typical configuration of a 
25-bead self-avoiding walk, two dimensional 
chain. The underlying square lattice structure is 
readily apparent. 
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Figure 1: A configuration of a 25 bead self-

avoiding walk, two dimensional chain. 
 

Results 
 

 It becomes increasingly difficult to grow 
chains using this direct static sampling MC 
method [4]. Indeed, the probability of obtaining 
a chain with N beads decreases exponentially: 

                                                            
 Prob = C e – λN .                             (1) 
 

Here, C is a normalization coefficient and λ is 
the attrition constant. Table I presents the results 
of fitting Eq. 1 in the different current 
simulations, as well as, previous findings for 
three dimensions. The agreement between the 
MC λ values and the theoretical predictions is 
very good. The two dimensional value of the 
attrition constant is larger than the three 
dimensional value which in turn is larger than 
the four dimensional value which again is larger 
than the five dimensional value because growth 
in lower dimensions is quite hindered compared 
to higher dimensions; e.g. there is a larger 
chance of overlapping in lower dimensions.  
 
 
 
 
 
 
 
 

Table I: The attrition constant, λ, in different 
dimensions. 

 
Dimension λ Theory 

2 0.400 0.416[b] 
3     0.242[a] 0.248[b] 
4        0.164 0.167[b] 
5        0.123 0.123[b] 

 
              (a) reference[1]   (b) reference [4] 

 
  All the data for the MC runs are contained in 

Tables II A, B and C. The components of <S2>, 
along the principal orthogonal axes [2], are the 
eigenvalues of a real, symmetric square matrix 
and were obtained by the Jacobi method [5]. 
Since the polymer generation process provides 
M independent samples, the mean and standard 
deviation of the mean of general properties can 
be computed from the usual simple equations 
[6], but more care is needed in computing the 
errors of ratios [1]. In these tables the number in 
parenthesis denotes one standard deviation in 
the last displayed digit; for example <λ1> = 
8.21(1) means that <λ1> = 8.21 ± 0.01.   
  

The <R2> and <S2> data in these tables  were 
fit by a weighted nonlinear least-squares 
program [6] to determine the exponent, 2ν, in 
their scaling laws [7]:  

 

                <R2>  =  C1 (N − 1) 2ν  ,               (2a) 
 
 and               
                <S2>  =  C2 (N − 1) 2ν    .             (2b) 
 

The coefficients, C1 and C2, are model 
dependent amplitudes but the exponent, 2ν, is 
universal. Table III contains the fit results, as 
well as, the known theoretical values. As the 
dimension increases the self-avoiding walk 
polymers behave more and more like a random 
walk ideal chain, which has an exponent value 
of 1.00. The self-avoidance condition causes the 
chains to be expanded and therefore the 
exponent will be larger at lower dimensions. 
The small chains examined here are not 
expected to yield the same values for properties 
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which have been predicted for very long chains.  
 

  Table IIA: Two Dimensional Properties as a function of N. 
 

Property 20 25 30 
M 121,875 16,587 2,222 

<λ1>   8.21(1) 11.47(4)  15.17(14) 

<S2>        9.51(1) 13.29(4)   17.53(13) 

<R2>    66.74(12)   93.86(47)   123.78(169) 

<A>      0.502(1)     0.498(2)     0.508(5) 
<λ1>/<S2>     0.864(1)    0.863(1)    0.866(2) 
<S2>/<R2>     0.142(1)      0.142(15)      0.142(19) 

 
Table IIB: Four Dimensional Properties as a function of N. 

 

Property 20 25 30 35 
M     598,520 263,714 115,879     50,766 

<λ1>     3.49(1) 4.49(1)    5.49(1)        6.53(1) 

<S2>         4.72(1) 6.07(1)    7.43(1)        8.83(1) 

<R2>    28.42(2)      36.69(4)        45.02(8)      53.54(15) 

<A>       0.422(1)        0.421(1)      0.419(1)  0.419(1) 
<λ1>/<S2>      0.740(1)         0.740(1)           0.739(1) 0.739(1) 
<S2>/<R2>      0.166(1)  0.165(1)     0.165(1) 0.165(1) 

 
Table IIC: Five Dimensional Properties as a function of N. 

 

Property 20 25 30 35 
M 1,178,090 637,943 345,029 186,678 

<λ1>     3.04(1) 3.86(1)    4.68(1)        5.51(1) 

<S2>         4.27(1) 5.42(1)    6.58(1)        7.76(1) 

<R2>    25.21(1)      32.19(2)        39.20(4)      46.31(6) 

<A>       0.412(1)        0.410(1)      0.409(1)  0.408(1) 
<λ1>/<S2>      0.713(1)  0.712(1)           0.711(1) 0.711(1) 
<S2>/<R2>      0.169(1)  0.168(1)     0.168(1) 0.167(1) 

 
Table III: Exponents in different dimensions. 

 

Dimension 2ν  <R2> 2ν  <S2> Theory 
2 1.46(2) 1.44(1) 1.500[b] 
3     1.19(1)[a]         1.18(1)[a] 1.176[b] 
4 1.09(1) 1.08(1)  
5 1.04(1) 1.03(1)  

 
(a) reference[1]   (b) reference [7] 
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    The computer results displayed in Tables IIA, 
B and C are for finite N whereas the theoretical 
values are for infinite N. The data have been 
extrapolated in 1/N to 0 (e.g. N →∞) via the 
method reported in Barillas, Borgeson and 
Bishop [3]. The final extrapolated values are 
presented in Table IV along with known results.  
Nearly all of the simulation results reported in 
Table IV are within two standard deviations of 
the mean, or in the 95% confidence interval, 
compared to literature values. However, some of 

the earlier studies used only one value of N and 
thus, did not extrapolate to determine the long 
chain limit.   
 
    One can clearly see that the polymers are 
becoming less stretched out and are behaving 
more and more like random walk chains as the 
dimension is increased; e.g. <S2>/<R2> is 
approaching the known value for random walks in 
all dimensions, 0.167 [7]. 
 

 
Table IV Comparison of Simulation and Literature Results.  

 
Dimension <A>  

MC 
<A> <λ1>/<S2> 

MC 
<λ1>/<S2> <S2>/<R2> 

MC 
<S2>/<R2> 

2 0.495(9) 0.503(4)[b] 0.865(5) 0.870(15)[e] 0.142(75) 0.1403[g] 
3 0.425(9)[a] 0.429(2) [c] 0.775(6)[a] 0.785[f] 0.156(5)[a] 0.1603(h) 
4 0.414(2) 0.434(12)[d] 0.737(2) 0.749(38)[e] 0.163(3)  
5 0.403(2) 0.437(8) [d] 0.708(2) 0.726(21)[e] 0.165(2)  

 
   (a) reference [1]  (b) reference [8] (c) reference [9] (d) reference [10] (e) reference [11] (f) 
reference [12] ]  (g) reference [13] (h) reference [14] 
 

Conclusion 
 

  We have investigated two, four and five 
dimensional self-avoiding linear polymers on  
square and hypercubic lattices, respectively, 
using a Monte Carlo growth method. Many 
different properties have been calculated. There 
is fine agreement with theoretical results and 
other simulations. The self-avoiding conditions 
are mitigated as the dimension is increased. 
Modeling projects such as the one described 
here provide a clear demonstration of some 
aspects of polymers and thus strongly enhance 
student understanding and intuition. 

 
Appendix: The Manhattan College 
Undergraduate Research Program 

 
Manhattan College has a long tradition of 

involving undergraduates in research and was 
one of the original members of the Oberlin 50. 
This is a group of undergraduate institutions 
whose students have produced many PhDs in 
engineering and science.  At Manhattan College, 
students can elect to take an independent study  

 
course for three credits during the academic 
year.  In addition, the College provides grant 
support to the students for ten weeks of work 
during the summer. I have personally recruited 
the students from my junior level course in 
Systems Programming. Previously published 
articles in this journal by Manhattan College 
student co-authors are a very effective 
recruitment tool.  The students have also 
presented their results at a variety of 
undergraduate research conferences including 
the Hudson River Undergraduate Mathematics 
Conference and the Spuyten Duyvil 
Undergraduate Mathematics Conference. 
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