

COMPUTERS IN EDUCATION JOURNAL 93

NOVICES AND COLLABORATIVE COMPUTER PROGRAMMING:
LESSONS LEARNED

Maria T. Earle

ISWD Department
Mississippi State University

Abstract

This paper describes an empirical research

study that investigated what might occur when a
problem based learning (PBL) framework is
used to scaffold novice community college
students learning of computer programming,
collaboratively. While several PBL frameworks
exist, a variant of Nelson’s PBL framework was
chosen to scaffold students’ learning mostly due
to its support for a collaborative learning
environment. Overall, Nelson’s framework
proved beneficial. The findings showed that all
student groups met project goals. However,
study findings also revealed problems students
experienced while learning in this type of
environment. This paper will discuss the study
and offer several recommendations on how to
mitigate problems that emerged. In addition, in
light of study findings, this paper will offer
suggestions on how Nelson’s PBL framework
could be augmented to better scaffold a
computer programming learning project, such as
implemented in this study. Finally, study
participants’ perspectives on learning in this
student-centered collaborative environment will
be discussed.

Introduction

This study investigated how novice, non-

major students in an introductory computer’s
course at a community college learned
fundamental computer programming concepts
while working in student-centered collaborative
groups. The author’s prior research in this area
provided anecdotal data that suggests that
learning how to program in a collaborative
problem based learning (PBL) environment
could positively influence novices’ learning
experience. However, this learning occurred in
a teacher facilitated learning environment[13].

The author wanted to more formally assess how
a PBL framework might scaffold novice
students’ learning of computer programming, in
a student-centered, i.e not teacher-facilitated,
collaborative learning environment.

 The first step was to determine a suitable PBL
pedagogy to scaffold this collaborative, student-
centered, learning environment. There exist
several PBL pedagogies. However, Nelson’s
[24] PBL framework, known as Collaborative
Problem Solving (CPS), was eventually chosen
to scaffold the programming project. This
framework seemed ideal due mostly to its focus
on small group collaborative learning, among
other things.

Next, the researcher sought a learning aid that

would help these novice students learn
effectively. Learning about computer
programming concepts can be cognitively
challenging for novice learners, particularly
non-majors [13]. To help minimize their
cognitive load and add a little fun to the
programming project, a dynamic autonomous
humanoid robot was used as a learning aid and
programming platform in this study. How the
robot helped minimize students’ cognitive load
while learning collaboratively will be discussed
in a subsequent section.

 This rest of this paper is divided into six
sections. Section one, Course Overview,
provides a description of the course objectives.
Section two, Cooperative vs. Collaborative
Learning draws a distinction between
cooperative and collaborative learning. Section
three, Nelson’s CPS Framework and
Implementation outlines how Nelson’s
theoretical framework was implemented in the
computer programming project. Section four,
The Robot, describes the functionality of the

94 COMPUTERS IN EDUCATION JOURNAL

autonomous humanoid robot and how it was
used in the study as a programming platform
and learning aid. Section five, Findings,
provides a discussion of study findings, major
themes and data validity. And finally Section
six, Lessons Learned and Recommendations,
provides a discussion on how problems
evidenced by emergent themes could be
mitigated based on theory along with
augmentations to Nelson’s CPS framework.

Course Overview

In the fall of 2010, students enrolled in two

sections of an introductory computer course
(N=40) at a community college in TX were
introduced to computer programming via a
course semester project. The objectives of the
course were to have students gain an
understanding of computer hardware, software,
procedures, operating systems, and human
resources. In addition, students explored
integration and application of computers in
business and gained basic mastery in word
processing, spreadsheets, databases,
presentation graphics, and operating system
commands. Understanding such concepts
would be integral in completing the semester
programming project, the final course objective.

Participants in this study collaborated in small

groups over a period of three weeks to complete
the course semester project which was to learn
how to program an autonomous robot to
complete a task. In the process of learning
about computer programming collaboratively, it
was hoped that students would learn basic
computer programming concepts, such as
flowcharting, module calls, decision points, and
run time execution. In addition, while engaged
in group learning it was hoped that consequently
students’ collaborative and computational
thinking skills would increase.

Pedagogy

 The researcher sought a suitable pedagogy to
scaffold students learning in this collaborative,
problem solving computer programming

learning project. A problem based learning
(PBL) theory was subsequently used for this
study. Problem based pedagogies focus not
only on problem solving but in additional
support solving real world problems [30], which
is one of the many goals of computer
programming. There exist many PBL
pedagogies; however, Nelson’s [24] PBL
framework, known as collaborative problem
solving (CPS), was eventually chosen. This
framework seemed ideal due mostly to its focus
on small group collaborative learning, among
other things.

 In addition, this study sought to determine

how students would learn in a student-centered,
not teacher-led learning environment. In a
student-centered learning environment
knowledge is obtained when students work
together to solve a problem [18]. Also, in this
type of learning environment, there is the
expectation that learning is to be constructed
with minimal teacher intervention [5,18]. The
justification for this type of learning
environment was the lasting knowledge and
student motivation that can result [4,28].

 Finally, learning about computer programming
concepts can be cognitively challenging for the
novice learner, particularly non-majors [2, 13].
Thus, the researcher sought to minimize these
novices’ cognitive learning challenges. To help
minimize students’ cognitive load and in
addition add a little fun to the programming
project, a dynamic autonomous humanoid robot
was used in this study as a programming
platform. The robot and how it helped
minimize students’ cognitive load will be
discussed in a subsequent section.

Cooperative vs. Collaborative Learning

This section will draw distinction between

cooperative vs. collaborative learning. It is
important to establish this distinction because
prior research investigating group learning more
often than not involved cooperative, not
collaborative learning. Nonetheless, there is a
difference.

COMPUTERS IN EDUCATION JOURNAL 95

Developed in the seventies, cooperative
epistemologies attempted to move away from
the contemporaneous traditional individualized
learning during that time [1,22,26]. With
cooperative learning, small groups work
together to meet a learning goal; however tasks
to meet such goals are subdivided among group
members. Each member works individually on
their task and eventually reports back to the
group on their individualized findings/learning
[1].

 Not to suggest that cooperative learning does
not impact learning outcomes, but that this type
of piecemeal-learning may not scaffold an
understanding of all computer programming
concepts. In other words, each group member
may not have the opportunity to understand all
learning objectives in a cooperative learning
environment.

Similar to cooperative learning, collaborative
learning supports group learning. However,
unlike cooperative learning, during the group
learning process each member of the group has
the opportunity to understand all learning
concepts, not just some [32,1,14].

Some studies have shown the benefits of small
group collaborative learning in cognitive subject
areas, such as computer programming [20,25].
Not only does collaborative learning provide for
a more holistic learning experience for students
but in addition supports meaningful lasting
knowledge [1]. However, traditionally, learning
about computer programming tends to occur in
individualized, teacher-centered learning
environments [12]. Moreover, computer
programming teachers tend to “value”
individualized learning [17]; perhaps to better
assess learning outcomes.

Nelson’s Collaborative Problem Solving
(CPS) Framework and Implementation

Nelson's [24] CPS framework seemed to be an

ideal framework for this study, due mostly to its
focus on small group collaborative learning.
Nelson’s framework outlines components

necessary for collaborative problem solving. A
subsumed list of these components include the
following six components:

1. Determine group activity.

2. Form student groups.

3. Prepare students for the activity.

4. Students engage in group activity.

5. Students synthesize and reflect on activity.

6. Assessment/Closure.

The graphic in Figure 1 captures these

components. Each component is shown in a
chevron. Alongside the chevron are details of
how the component was implemented in this
study.

Figure 1: Nelson’s CPS Framework (subsumed).

96 COMPUTERS IN EDUCATION JOURNAL

 Details of each component follows.

Component 1: Build readiness. The week prior

to the start of the study, the instructor/researcher
introduced the research assistant (RA) to
students/participants. The instructor discussed
the research assistant’s responsibilities for the
study as follows; distribute and collect consent
forms, organize the groups, video tape the labs
and run each group’s final programming script.
To ensure a student-centered learning
environment, students were told that the
assistant was to provide programming assistance
only if students became stuck and could not
move forward. Then, in the absence of the
instructor, the assistant read and distributed the
consent forms to students who were instructed
to either sign the forms at that time or return
them on a later day.

To prepare students for the lab activity, four

in-class activities occurred prior to the lab. First,
in an attempt to increase an appreciation for
group work, the instructor discussed activities
where group work, as opposed to individual
efforts had proven beneficial to the final
product.

Second, a lecture on fundamental computer
programming concepts was provided prior to the
start of the lab. This lecture provided an
overview of programming and programming
languages, particularly script programming
languages. To introduce programming, students
engaged in a simple command line
programming activity. With instructor guidance,
they opened a DOS window on their computer
and entered a simple DOS command line code;
“echo Hello.” This rudimentary command
provided students with a first glimpse of writing
code to command the computer to complete a
task.

 Third, the class engaged in an activity on
logic. The activity seemed straightforward -
students were instructed to write step-by-step
instructions for preparing a peanut butter
cracker using peanut butter, two crackers and a
knife. The instructor then randomly chose three

instruction sheets and attempted to assemble the
peanut butter cracker carrying out student
instructions exactly. One such attempt netted an
entire peanut butter jar on top of a single
cracker- the student’s first instruction was to
“put peanut butter on cracker”. After three
renditions of this exercise, students seem to
grasp the idea for the analogy proposed of
creating a peanut butter cracker with the logical
sequential code needed to program a computer.

Finally, students were introduced to the
robotic programming lab project. First they
were given a demonstration of the robot’s
capabilities. A lab packet was also distributed
containing the robot’s owner’s manual,
supplemental lab material, sample lab
deliverables, and a list of relevant websites.
Upon completion of this programming project,
three deliverables were expected from each
student; programming scripts, individual
reflection papers, and a programming flowchart.
Since one of the key lab deliverables was a
document depicting a programming flowchart,
the instructor demonstrated how to create a
flowchart using the MS Word software
application.

 Components 2 and 4: Form and norm groups,
define and assign roles. To capture an authentic
accounting of how novice students might work
together to program a computer in a discovery
learning environment, there was an assumption
that students had no prior exposure to computer
programming or the robot. In general, at this
community college non-computer science
students take this course to fulfill requirements
for certification. However, in the event prior
programming experience surfaced, one of the
participant groups was reserved for those
students and labeled as the “abstainer group.”
Although one student had very minimal
experience in 5th grade, no students qualified
for the abstainer group.

Students who agreed to participate in the study

were divided into small groups. This resulted in
each of the two course sections containing four
groups for a total of eight participant groups.

COMPUTERS IN EDUCATION JOURNAL 97

Groups met five times for thirty minutes at a
time over a two-week period during class time.
They also had access to an online discussion
forum to continue the conversation.

 On the first day of the project, and in the
absence of the teacher/researcher, the assistant
collected research study consent forms and
finalized group assignments in the classroom.
Given the novelty of the learning experience
and accounting for how students might go about
learning computer programming, roles were
purposely not assigned at that time.

This section will discuss the observation phase

of the study. During the observation phase,
students actively participated in the lab with
their group mates while the assistant videotaped
them.

Component 3: Problem definition. For the
purposes of the study, each group was expected
to figure out how to program the robot to
complete a task. Students could work on a task
of their choosing, or select one of the following:

1) Program the robot to pick up a ball, throw

it, and then make any sound.

2) Program the robot to bowl, knocking

down at least two pins, and then make any
sound.

Component 5: Engage in collaborative
problem-solving process. On days two and
three, students further engaged in collaborative
work with each other and the robot, becoming
more familiar with its functions and capabilities.
Using the remote controller they began to
explore the robot’s three programmable
modules; main, vision, and sound. They would
start to question how the robot’s main memory
and sub-memories (vision and sound) worked in
order to have the robot solve the problem.

By day four, students were expected to be
relatively familiar with controller programming.
When the robot is put in controller mode, it can
be programmed to carry out a task by executing
step-by-step instructions. Students would write
this script using Microsoft Word. Then, using
the robot’s handheld remote controller (Figure
2), students would enter their script code into
the robot’s memory areas (main, vision, and
sound).

The final script should contain three main

areas; an algorithm, the programming script, and
run instructions. The SH# indicates a button on
the remote handheld device that must be pushed
in order to complete a programming step. Other
functional symbols on the remote control
include a square and the letters a,b,c, and x.

Figure 2: Robot’s Handheld Remote Controller.

98 COMPUTERS IN EDUCATION JOURNAL

Dials on either side of the remote allow for
positional programming. Asterisks in the script
indicate comments. Bolded and italicized text
in the script is not part of the executable script.
For the example script, upon successful code
entry and execution the robot will make five
moves, pick up a ball, throw the ball and finally
laugh and roar.

Algorithm

The robot must show the following five basic
moves:

 Lie down/stand up
 Bulldoze forward over an obstacle
 Back bulldoze
 Left Kick then Right Karate Chop
After throwing a ball the robot must laugh and

roar.
 Pick up green ball
 Throw a green ball
 Laugh and then roar
END

Script

Initial conditions: Face the robot towards a

white wall.

Main program

SH1+SH2+c *enter main module
Sh1+Sh2+square *clear contents of
memory

*Once standing, place an
*object 1/2ft in front of robot.

SH1+Sh3+square *bulldoze 4 steps
forward
Sh2+Sh3+square *bulldoze 4 steps back
Sh3+z *left kick
Sh3+c *right karate chop
Press square button *stop
Sh1+Sh2+b *run vision module
Sh1+Sh2+a *run sound module
SH1+SH2+x *Store main program;
run

Vision module

Sh1+Sh2+b *enter vision module; set ball
Sh1+Sh2+square *clear contents of memory
Sh1+c *right arm pickup ball
 *Move pedestal out of the
way
Push L 3 times *robot walks 3 times
Sh1+a *right arm throw ball
Press square button *stop
SH1+SH2+x *store vision module;
run

Sound Module

Sh1+Sh2+a *enter sound module
Sh1+Sh2+square *clear contents of
memory
Sh1+Sh3+a * robot laughs
Sh2+Sh3+a * robot roars
Press square button *stop
SH1+SH2+x *store sound module;
run

Run Instructions

Press Sh1+Sh2+x *robot starts moves

*As soon as the robot stands up, place an
object ½ foot in front of robot’s right foot.

*As soon as robot finishes the karate chop,
place pedestal directly in front of right foot and
place green ball in center of pedestal.
Press square button *stop

 Prior to developing the programming script,
groups had to create a flowchart using
flowcharting symbols found in the Microsoft
Word application. In developing the flowchart,
students came to understand decision points and
data flow. The script was then developed based
on their flowchart. All groups struggled with
trying to understand how to run individual
modules, sound and vision. Eventually they
came to realize that the code for the sound and
vision modules had to be entered into the
robot’s memory before they could call those
modules from the main program.

COMPUTERS IN EDUCATION JOURNAL 99

 Component 6: Finalize the project, provide
closure. To finalize the project students had to
demonstrate their final programming code to the
research assistant, write a reflection paper, and
assess their group-mates.

 By day five, groups were to demonstrate their
final program to the research assistant by
entering their final code into the robot using the
handheld remote controller. After the code had
been entered, the group would hand the assistant
the run instructions for the program and he
would carry out those instructions exactly as
stated.

Due to IRB requirements, the researcher had
to maintain minimum interaction with students
during the study and thus the teacher did not
formally assess the students programming lab.
In lieu of a teacher’s assessment, students
assessed their group mates. A peer-evaluation
form was completed by each student and turned
into the assistant. Students programming scripts
and peer-evaluation forms were stored in the
division offices along with the daily lab video
recordings.

Finally, after lab completion, students wrote
lab reflection papers about their experiences. In
addition, the instructor provided students with a
debriefing on their learning experience
including a detailed explanation of computer
programming and how they had discovered
fundamental computer programming concepts
by engaging in their programming activity.
Each student turned in the following:

1. Group lab paper depicting their group’s

algorithm, flowchart, programming
script, and run instructions.

2. Peer-evaluation form for each of their

group mates.

3. A lab reflection paper.

The Robot

The focus of the computer programming
project was not to teach robotics but to use the
robot as a learning platform, a learning aid.
Educators’ use of robotics in their classrooms
has enhanced learning [3,31]. The robot used in
this project was the Robosapien TM V2 Robot as
depicted in Figure 3.

 This robot seemed ideal for this study. This
24" tall second generation Robosapien is
capable of “autonomous free roam behavior
(i.e., it can be programmed to move around the
room) and is capable of multiple levels of
environmental interaction with humans”
including sensing colors and making and
sensing sound [34].

Figure 3. Robosapien Robot.

The Robosapien™ V2 has two programming

modes, positional and controller. In controller
mode, and with the aid of the hand-held
controller, the robot could automatically carry
out a series of preprogrammed modular tasks
with one instructional code – the objective of
the lab. In positional mode, with the aid of the
hand-held controller, the robot could carry out a
series of individual tasks; however, each task
required use of the hand-held remote to code
each individual step of the programming script.

100 COMPUTERS IN EDUCATION JOURNAL

Student’s programming cognitive load was
scaffolded and minimized by using the robot.
First, an understanding of programming
language syntax was not required. The robot
was programmed via a basic scripting language.
This essentially reduces the cognitive load on
novices for they can forego one of the more
daunting concepts of computer programming,
programming language syntax [2].
Furthermore, the scripted code was entered into
the robot’s memory via a handheld remote
controller, not a keyboard.

Study Findings and Validity

This section will discuss the findings of the

study in light of students’ perspectives and
emergent themes. In addition, the reliability and
validity of study data will be discussed.

Student Perspectives and Themes. As
discussed earlier, one of the deliverables of the
programming project was a student reflection
paper. Each individual student from all eight
groups were to discuss their perspective and
feelings on any aspect of their learning
experience. One of the major themes that
emerged from analysis of the student reflection
papers was that overall, students enjoyed the
learning experience with their group mates.
Furthermore, some students expressed an
appreciation for the opportunity to learn about
computer programming with a robot. A few
verbatim quotes regarding working
collaboratively:

“I enjoyed working with my class mates and

thought they were extremely helpful in the
process of researching and working with the
robot.”

“…I believe the work group is a key element

as everybody´s ideas enrich the experience.”

“Working with my group mates was fun.”

In addition, to gather a deeper understanding

of student perspectives, a purposeful sampling
of students drawn from two of the eight groups
were interviewed by the researcher. Members

from groups A and B were contacted for
interviews; six were subsequently interviewed.
Demographics of these six students were as
follows: four Caucasians, one African-American
and one Hispanic, ages ranged from 18 – 55,
five females and one male. A representative
picture, of Group A is shown in Figure 4.

The interviews were given after the

completion of the programming lab. What
resulted were over 900 minutes of video
interviews and over 100 pages of interview
transcriptions. During the interview, students
watched a video of their groups’ interaction
over the 3-week lab period and discussed their
experience. This method of interviewing during
video playback is known as IPR, interpersonal
process recall [19].

Figure 4. Study Participants - Group A.

A sociological analysis approach was used to

analyze transcribed video data, using open
coding methods [10, 6, 8]. Such analysis netted
381 raw codes whereby seven themes emerged.
After further analysis of the seven themes it was
deemed that two themes were subthemes of
others and thus were subsumed resulting in the
following five emergent themes: 1) frustration
with using the robot, 2) frustration while
attempting to program, 3) adversity while
working collaboratively, 4) premature success,
and 5) not staying on course of the stated lab
objectives. Details of these themes will be

COMPUTERS IN EDUCATION JOURNAL 101

discussed next in light of two of the eight
groups in the study.

Theme 1: Frustrations with Technology

The computing platform used in this study
was an autonomous dynamic humanoid
programmable robot. Most of the frustration
students experienced with the robot were due to
its novelty. Students were unfamiliar with the
robot’s capabilities. Some assumed it had super
powers. In addition, the remote controller
proved awkward to use. Some students
experienced hand fatigue resulting from a fair
amount of moving switches, buttons, and sliders
around while entering the script and then later
while debugging.

Theme 2: Frustrations with Programming

Programming frustration mounted over the

three weeks of the lab period. There was
considerable frustration experienced by both
groups from trying to understand how to write
the programming script and then debugging and
revising their scripted code. One participant felt
that repeated trials indicated failure. However,
revising and debugging programming code is a
normal, expected part of writing a program.
This fact was later disclosed to students during a
debriefing session that occurred after the end of
the project.

Theme 3 - Premature Celebration

On the first day of the lab, both groups A and

B thought they had successfully completed the
lab objective and celebrated as could be
witnessed on the video. However their
celebration was premature. While both groups
had successfully programmed the robot to
complete a task, they had done so by
programming the robot positionally, not
automatically.

 As discussed in the Robot section, the robot
could be programmed positionally or
automatically. The expectations were that
students would enter code into the robot’s
memory using the robot’s handheld remote

controller. Then with a push of a button the
robot would automatically complete all steps
necessary to complete the programming
objective, automatically, not in a piece-meal,
step -by-step fashion.

Theme 4 – Getting off Course

Groups could choose to work on one of two

lab assignments, as described in the lab handout,
or they could develop their own task. For
instance, while Group A initially chose one of
the lab options, they subsequently decided to
pursue an alternative, yet more challenging
approach.

By day four, Group A realized they were not
being successful. In spite of such and with very
little time left, the group quickly opted for one
of the original lab assignments and went on to
successfully complete the project. In addition,
in seeking knowledge, some participants found
inappropriate material, such as a video showing
how to program the robot to complete advanced
tasks, a task not associated with the lab
objective.

Theme 5: Adversity

Members in both groups seemingly worked

well together, as witnessed on the lab videos.
Moreover, students appeared motivated and
excited to complete the programming task.
However, signs of adversity showed in
teammates working/learning style. In trying to
construct knowledge collaboratively, group
members had to try and come to some
understanding on how to work with teammates
whose work style differed.

Validity

 Before a discussion on how the problems
alluded to by these five emergent themes, a
discussion on data validity. A concern of any
empirical study should be reliability and validity
of the data. According to Merriam (1998), these
concerns can be approached through “careful
attention to data collection, analysis,

102 COMPUTERS IN EDUCATION JOURNAL

interpretation, and the way in which the findings
are presented” (p. 2398). This attention was
applied to several sources of data that were
collected and analyzed, and subsequently
corroborated. Data included videotaped
observations, interview transcriptions, reflection
papers, and assistant field notes.

 In addition, the notion of trustworthiness as a
form of validity is often used in qualitative
studies in lieu of validity measures typically
found in quantitative studies. This study
employed the following measures to increase
the trustworthiness of research findings:

1. Member checks

2. Researcher bias check

3. Peer-Check

Member checks were completed by having

interviewees review their transcribed interviews
for accuracy. Researcher biases were checked
via two methods. First, researcher colleagues
analyzed the interview protocol strategy and
suggested modifications that were implemented.
Second, purposeful sampling was used to select
participants for interviews by having the
researcher’s selection of participants
corroborated against the research assistant’s
assessment of viable interview participants.
Finally, a peer debriefer analyzed and developed
a set of codes and themes which closely aligned
with the study’s five emergent themes.

Lessons Learned

Mitigating Emergent Themes. While the

majority of students enjoyed their programming
experience, the five emergent study themes
pointed to problems students experienced while
learning. How to mitigate these problems will
be discussed in this section.

Theme 1 - Minimizing Frustrations with

Technology

The technology used in this study was an

autonomous dynamic humanoid programmable

robot. At the time of this study robots were not
seen widely as a learning aid, although they
were beginning to take their place on the
educational landscapes in several disciplines.

 Some of the frustration students experienced
might have been minimized if they had properly
prepared for the lab by completing pre-lab
activities. One pre-lab activity was to review
lab handouts and robot user’s guide that
explained how to use the robot and the robot’s
controller. Another pre-lab activity was to
view a video of the robot in action.

 Students could have benefited from viewing a
YouTube video that was provided to show them
robot functionality. But, as later disclosed, some
students did not complete these lab
prerequisites. Also, as was witnessed on the lab
videos, several students seemed to enjoy playing
with the robot alone.

 TPACK (technology, pedagogy, and content
knowledge) is a theoretical learning framework
that scaffolds dynamic technology rich learning
environments [23,27,16], such as the one used
in this study. The following components of
TPACK could help mitigate this behavior:

1. Ascertain student knowledge with a lab

pretest.

2. To get to understand the robot better,
allow for individualized play time.

3. Provide additional time for students to

understand novel technology during their
collaboration.

Theme 2 - Minimizing Frustrations with

Programming

Programming frustration mounted over the
three- week period. However, this is to be
expected when learning about programming,
particularly when learning in this type of
discovery based learning environment [4].
Nonetheless, a considerable amount of
frustration resulted from debugging and revising
programming scripts. It became obvious that

COMPUTERS IN EDUCATION JOURNAL 103

students did not understand that a given task in
programming is debugging the programming
script, repeatedly.

Hackman (1999), known for his work in social

and organizational psychology, stated that for
successful group work, group members should
have an understanding of the task needed to
complete a project. In addition, Weinstein
(1999) suggested use of organizing cognitive
strategy when learning cognitive subject matter,
such as computer programming. In addition,
the Computer Science Teachers Association
(CSTA) provides a set of standards relating to
computer science education [7]. One such
standard states that students should understand
group mates programming experience.

Thus, based on these components, the

following recommendations are suggested to
minimize frustrations during programming:

1. During pre-lab initiation activities,

specifically the PBJ activity, engender an
appreciation for debugging, a necessary
component in computer programming by
requiring students to redo PBJ instructions
until perfectly correct.

2. Determine group mates’ experience and

then ensure all group members understand
group skills

Theme 3 - Forestalling Premature Celebration

 On the first day of the lab, both groups A and
B thought they had successfully completed the
lab objective and subsequently began to
celebrate. However their celebration was
premature. Students required some way of
knowing what success looks like, what a
successful execution meant.

Weinstein and Mayer [33] recommend use of

metacognition and modifying for cognitive tasks
such as computer programming. Metacognition
requires a higher level of thinking whereby a
skeptic would scrutinize group tasks, failures
and successes. Based on this component, the

following recommendations are suggested to
minimize premature celebration.

1. Ensure that students fully understand what

denotes successful program execution by
demoing the final lab solution.

2. Provide a lab pretest questioning students

understanding of the lab objective.

3. Groups should assign one member to be a

skeptic to question group successes.

4. Allow students time to recover from
failure.

Theme 4 - Recommendations to Stay on

Course

Groups could choose to work on one of two
lab assignments, as described in the lab handout,
or they could develop their own assignment.
However, this creative permission resulted in
some groups getting off course. In addition
some students spent too much time viewing
non-germane videos.

 When learning in a group collaborative
student-centered environment, certain
limitations should be imposed. This study
suggests the following to stay on course:

1. Several well piloted computer

programming assignments should be
assigned and adhered to by students.

2. Time should be allowed for students to

elaborate and extend their knowledge and
creative pursuits of computer
programming.

3. Students should be provided with a list of

relevant videos.

Theme 5: Adversity

 While members in both groups seemingly
worked well together, as witnessed on the lab
videos, signs of adversity were disclosed during
the interviews. In trying to construct knowledge
collaboratively, group members had to try and

104 COMPUTERS IN EDUCATION JOURNAL

come to some understanding on how to work
with teammates’ work style particularly when it
opposed their style of learning.

To minimize such adversity, first this study,

recommends use of a group charter. Next, it
recommends use of methodologies espoused by
SCRUM, one of the better known Agile
frameworks. Agile frameworks preference
group interaction and trust over processes and
tools [29]. The following SCRUM values are
recommended:

• Focus. Because we focus on only a few

things at a time, we work well together
and produce excellent work. We deliver
valuable items sooner.

• Courage. Because we are not alone, we

feel supported and have more resources at
our disposal. This gives us the courage to
undertake greater challenges.

• Openness. As we work together, we

practice expressing how we're doing and
what's in our way. We learn that it is good
to express concerns so that they can be
addressed.

• Commitment. Because we have great

control over our own destiny, we become
more committed to success.

• Respect. As we work together, sharing

successes and failures, we come to respect
each other and to help each other become
worthy of respect.

In summary, the five aforementioned

recommendations are suggested to minimize
unnecessary frustrations as emerged from the
study. In addition, this study recommends
augmentation of Nelson’s CPS framework when
utilized in a student-centered computer
programming project. The next section will
discuss this augmentation. Nelson’s CPS calls
for teacher intervention and sufficient time to
complete a learning activity. However, this
study utilized a student-centered learning
environment. In addition, the project time was a

little over three weeks. In retrospect, this may
not have been enough time to fully engage.

Nonetheless if a student-centered learning

environment is still desired for your computer
programming project and time is of the essence,
the following recommendations are suggested to
augment Nelson’s step #5:

• Use piloted, vetted computer

programming learning aids.

• Keep on hand, all robotic user’s manuals
and resources.

• Mandate that students work on one of

the lab options, only. As a first
programming experience in this type of
environment, no creative extensions
should be allowed.

• Student groups should keep a log of

programming debugging efforts.

• A lab pre-test should be given to assess
student's understanding of lab objectives.

• Each group should assign a skeptic or a

"devil's advocate" to scrutinize group
tasks.

• Novices should work in their natural

comfort zone. They should be allowed
to determine which tasks they feel most
comfortable working on in the group.

• Each group creates a group charter.

• Add SCRUM values to the group

charter.

Bibliography

1. Barkley, E. F., Cross, K. P., & Major, C.
H. (2005). Collaborative learning
techniques. San Francisco, CA: John
Wiley & Sons, Inc.

2. Black, M. (2009). A processor design

project for a first course in computer

COMPUTERS IN EDUCATION JOURNAL 105

organization. Computers in Education
Journal, 20(1), 95-103.

3. Bratzel, B. (2005). Physics by Design.

Knoxville, TN: College House
Enterprises.

4. Bruner, J. (1961). The act of discovery.

Harvard: Harvard Educational Review.

5. Bruning, R. H., Schraw, G. J., Norby, M.

M., & Ronning, R. R. (2004). Cognitive
psychology and instruction. Upper
Saddle River, NJ: Prentice Hall.

6. Carspecken, P. F. (1996). Critical

ethnography in educational research.
New York, NY: Routledge.

7. CSTA. (2011). Computer Science

Teachers Association. Retrieved April
20, 2011, from New CS Curriculum
Standards (Draft for Public Comment):
http://csta.acm.org/includes/Other/
CSTAStandardsReview2011.pdf

8. Corbin, J. & Strauss, A. (2008). Basics

of qualitative research (3e). Thousand
Oaks: Sage Publications, Inc.

9. Del-Siegle. (2003). Mentors on the net:

Extending learning through
telementoring. Gifted Child Today,
26(4), 51-54,63.

10. Denzin, N. K., & Lincoln, Y. S. (2003).
Collecting and interpreting qualitative
materials (2nd ed.). Thousand Oaks, CA:
Sage Publications, Inc.

11. Denzin, N. K., & Lincoln, Y. S. (1998).

The landscape of qualitative research:
Theories and issues. Thousand Oaks,
CA: SAGE Publications, Inc.

12. D'Souza, C., Kazlauskas, A., & Thomas,

T. (2009). Scaffolding strategies for
teaching introductory programming.
Doctoral Student Consortium of

Proceedings of the 17th International
Conference on Computers in Education
(pp. 32-41). Hong Kong: Asia-Pacific
Society for Computers in Education.

13. Earle, M.T. (2010, Spring). Connecting

kinesthetic learners to computer science
concepts. The Journal for Computing
Teachers.

14. Gokhale, A. A. (1995). Collaborative

learning enhances critical thinking.
Journal of Technology Education, 7 (1),
22-30.

15. Hackman, J. (1990). Groups that work

(and those that don't). San Francisco:
Jossey-Bass.

16. Harris, J. B., & Hofer, M. J. (2011).

Technological pedagogical content
knowledge (TPACK) in action: A
descriptive study of secondary teachers'
curriculum-based, technology-related
instructional planning. JRTE, 43 (3),
211-229.

17. Hoganson, K. (2008). Concepts in

computing. Sudbury, MA: Jones and
Bartlett Publishers.

18. Jonassen, D. H., & Land, S. M. (2000).

Theoretical foundations of learning
environments. Mahwah, NJ: Lawrence
Erlbaum Associates.

19. Kagan, N., Krathwohl, D., & Miller, R.

(1963). Stimulated recall in therapy
using video tape: A case study. Journal
of Counseling Psychology, 10 (3), 237-
243.

20. Matzko, S., & Davis, T. (2006). Pair

design in undergraduate labs.
Consortium for Computing Sciences in
Colleges , 123

21. Merriam (2001). Qualitative research

and case study applications in education:

http://csta.acm.org/includes/Other/%20CSTAStandardsReview2011.pdf
http://csta.acm.org/includes/Other/%20CSTAStandardsReview2011.pdf

106 COMPUTERS IN EDUCATION JOURNAL

Revised and expanded from Case Study
Research in Education. San Francisco:
Jossey-Bass

22. Michaelsen, L. K., Knight, A. B., &

Fink, L. D. (2002). Team-based
learning: A transformative use of small
groups in college teaching. Westport:
Greenwood Publishing Group, Inc.

23. Mishra, P., & Koehler, M. J. (2006).

Technological pedagogical content
knowledge: A framework for teacher
knowledge. Teachers College Record,
108 (6), 1017-1054.

24. Nelson, L. (1999). Collaborative

Problem Solving. Mahwah, NJ:
Lawrence Erlbaum Associates.

25. Pastel, R. (2006). Student assessment of

group laboratories in a data structures
course. Consortium for Computing
Sciences in Colleges, 221.

26. Pederson, J. E., & Digby, A. D. (1995).

Secondary schools and cooperative
learning. New York: Garland Publishing,
Inc.

27. Pierson, M. E. (1999). Technology

integration practice as a function of
pedagogical expertise. Arizona State
University.

28. Prince, M. J., & Felder, R. M. (2006).

Inductive Teaching and Learning
Methods: Definitions, Comparisons, and
Research Bases. Journal of Engineering
Education, 95(2), 123-138.

29. SCRUM Alliance, 2011. Core SCRUM.

Values and Roles. Retrieved August 8,
2013 from http://www.scrumalliance.
org/ why-scrum/core-scrum-values-roles

30. Smith, P. L., & Ragan, T. J. (1999).
Instructional design (2nd ed.). Hoboken:
John Wiley & Sons, Inc.

31. Wang, E. (2004). Engineering with

LEGO bricks and RoboLab. Knoxville,
TN: College House Enterprises.

32. Weinberger, A., Ertl, B., & Fischer, F.

(2005). Epistemic and social scripts in
computer-supported collaborative
learning. Instructional Science, 33 (1), 1-
30.

33. Weinstein, C. F., & Mayer, R. F. (1986).

The teaching of learning strategies: In
M.C. Wittrock (Ed.), Handbook of
research on teaching (3rd ed.) (pp. 315-
329). New York: Macmillan.

34. Wowwee. (2011). RoboSapien v2.

Retrieved September 16, 2008 from
wowwee.com: www.wowwee.com

Biographical Information

Maria T. Earle is an Assistant Professor at

Mississippi State University, ISWD department.
She received her Bachelors in Electrical
Engineering from Boston University, Masters in
Software Engineering from Penn State
University, and her Doctorate in Education from
University of Houston. Prior to academia, she
worked for over fifteen years in the software
industry. Her research interests include
studying how instructional technology coupled
with motivational pedagogies could
scaffold/maintain students’ interest in STEM
disciplines. She wishes to thank study
participants and to express a deep appreciation
to her dissertation committee: Dr. Melissa E.
Pierson (Chair and Doctoral Advisor), Dr.
Allen R. Warner, Dr. Mimi M. Lee, and Dr.
Farrokh Attarzadeh.

