

COMPUTERS IN EDUCATION JOURNAL 85

REAL-TIME 3D RECONSTRUCTION FOR FACILITATING THE
DEVELOPMENT OF GAME-BASED VIRTUAL LABORATORIES

Zhou Zhang, Mingshao Zhang, Yizhe Chang, Sven K. Esche, Constantin Chassapis

School of Engineering and Science
Stevens Institute of Technology

Abstract

Game-based virtual laboratories (GBVLs)

represent an important implementation of virtual
reality and are often considered to be simulations
of real or artificial environments. They are based
on 2D/3D graphics and built using a specific
game engine. GBVLs are becoming increasingly
popular at various levels of education. In
addition to designing the story plot and game
logic, other essential tasks during the creation of
GBVLs are to virtualize the real world and to
insert all of the virtual representations of the real
objects into the GBVLs’ environments. The
traditional method for virtualizing real objects is
to design the models of these objects with some
CAD software and then to convert these models
to the model format of the GBVL. In creating
these models, one needs to not only measure the
real objects but also to draw their features. These
processes are tedious and time-consuming, thus
considerably limiting the potential application
and popularization of GBVLs.

This paper introduces a series of novel

procedures for creating virtual representations of
real objects based on 3D reconstruction
techniques. During these procedures, one
hand-held depth camera is used to scan the real
objects. First, the tracing of the pose of the
camera is discussed. Then, the processing
methods for the captured raw data are covered,
and based on the processed data, the registration
of the shape information of the model is
discussed. Subsequently, a method for
recognizing the scanned object is presented.
Finally, the generation of the final model file for
GBVLs is described. In order to validate this
method, a prototype GBVL used in an
undergraduate engineering course was designed
and implemented. Through a comparison

between the traditional methods and the
proposed procedures, it was demonstrated that
the latter significantly sped up the process of
creating virtual laboratory implementations.

Introduction

Although the concept of virtual reality (VR)

has not been universally defined, VR is used to
represent the real world by a computer-simulated
virtual representation of it. [1] Many forms of
VR can be found at present, and they can be
divided into four main types: desktop VR,
immersive VR, distributed VR and augmented
VR. In the environment of VR, multiple users
can manipulate and share the virtual
representations of the real world. At the same
time, they can also cooperate with each other.
VR systems are inherently safer and less failure
prone than their physical equivalents. Therefore,
VR is very appropriate to be taken as an
alternative solution for dangerous and costly
training programs (e.g., firefighter training,
military training, disaster relief training,
new-employee training, etc.). In addition, VR
can conserve most of the human and material
resources, and it can make them accessible
remotely for the participants. Thus, it is a good
candidate for the development of virtual
education systems. Among the various
implementations of virtual education systems,
virtual laboratories are used at various levels of
education, ranging from the education at
elementary schools to the education at
universities [2,3].

GBVLs that aim to provide the learners with a

feeling of immersion and to increase their
learning interest have recently been reported
[4,5,6]. Such GBVLs are often based on
multi-player computer game engines, which

86 COMPUTERS IN EDUCATION JOURNAL

provide various basic ready-to-use functions
such as physics modeling, graphics rendering,
sound generation, game logics, artificial
intelligence, user interactions and networking.
These capabilities of game engines enable the
design and implementation of immersive,
distributed and collaborative GBVLs. One of the
important advantages of GBVLs is that the users
can create their own models, avatars and other
virtual features. This advantage makes GBVLs
extensible and customizable [9].

Although the attribute of customization of

GBVLs is attractive for both developers and
users, the virtualization of the real world remains
a very tedious task. Firstly, the objects in the real
world must be measured in order to obtain all of
the necessary geometric parameters. Then, the
built-in toolkits of the game engine or third-party
3D software need to be employed to create
computer models of the real objects. Finally, the
models created following the steps outlined
above must be converted into the ready-to-use
format of the specific game engine used. It is an
undeniable fact that the process of virtualizing
artifacts of the real world is time-consuming and
requires patience. Therefore, the efficiency of
building a GBVL could be improved
dramatically if the models could be generated in
real-time by the method of 3D reconstruction.

3D reconstruction is a method for creating a

model of an object by scanning its surface with
one or multiple scanners. The 3D reconstruction
procedure can be divided into several steps:
obtaining the surface data of real objects using a
scanner, processing the raw surface data,
generating an improved point cloud and creating
the final model. The models can be stored in any
valid 3D model type. Then, they are imported
into and rendered in the specific virtual platform.
Among the various procedures involved in the
reconstruction of real-world artifacts, the
acquisition and processing of the shape
information are the most important [10].

Although 3D reconstruction techniques have

been investigated for many years, their potential
for deployment in various fields of application

(e.g., medical applications [11] and
archaeological research [12], recovery of 3D
shapes of deformable surfaces [13]) makes them
a topic of ongoing research. With the
development of structured light cameras (laser
scanners and infrared cameras, etc.), 3D
reconstruction techniques have been improving
quickly recently. Many innovative applications
of 3D reconstruction have been reported, for
instance the reconstruction of 3D faces of people
[14], 3D voxel reconstruction of human motions
[15] and the reconstruction of urban scenes from
videos [16]. There are two main approaches for
obtaining the shape information of real objects.
The first method is to register the surface
information of these real objects by dynamic
scanning devices. For instance,
‘ReconstructMeQt’ can be used to build 3D
surfaces with a Kinect and to export 3D surface
files to other software [17]. The second method
is to retrieve the surface information from 2D
still images. For instance, ‘3DSOM Pro’ [18]
and ‘insight3d’ [19] can be utilized to produce
3D models through a series of alignment
pictures. The ‘KinectFusion’ is one of the most
interesting 3D reconstruction applications. In
conjunction with a ‘Microsoft Kinect for
Windows’, it can serve to acquire the shape
information of objects and then to process the
raw data to generate the corresponding 3D
models in real time [20,21]. Such a method for
generating 3D models in real time can then be
applied to build the models used in a GBVL.

Besides the creation of the models, it is also

very useful to segment and recognize the
scanned scenarios. Suppose that during scanning,
many experimental tools are laid out on a table.
They would often be abutting or overlapping
when being observed from different view
orientations. A straightforward method for
creating computer models of the objects would
be to pick up the objects one at a time and to scan
them separately. Obviously, this approach would
not be convenient when there are too many
individual objects to be scanned. Therefore, it
becomes important to segment the images before
creating them.

COMPUTERS IN EDUCATION JOURNAL 87

The GBVL presented here was created based
on Garry’s Mod (GMod). As a modification of
the ‘Source’ game engine, GMod has been
developed into a user-friendly multi-player
computer game platform which enables users to
create their own plug-ins, to program their own
features with G_LUA and to design and
implement their own stories [22,23]. In addition,
GMod has all of the characteristics of general
game engines such as graphics rendering, sound
generation, physics modeling, game logics,
artificial intelligence, user interactions and
networking [7]. These basic functions can
facilitate the development of GBVLs. Each game
engine requires a specific model format.
Therefore, a specific GBVL is implemented
based on a specific modeling approach. The
conventional method used to build models of
physical artifacts in GMod can be divided into
the following steps: (i) obtain the geometric
parameters of the real objects, (ii) plot the
models of the real objects with built-in tools such
as ‘Hammer’ [24] or third-party software such as
‘3ds Max’, (iii) convert the models into
‘StudioMDL’ [25] data (SMD) files, (iv) use
‘VTFEdit’ to generate VTF texture files and (v)
use ‘GUIStuidoMDL’ to compile SMD and VTF
textures into models that are ready to be used in
GMod. SMD files store 3D models in ASCII
format for analysis and compilation by
‘StudioMDL’. The contents of SMD files mainly
include the vertex and texture information of the
models. Figure 1 illustrates the conventional
modeling process of GBVLs in Garry’s Mod. It

also shows that the laborious work is to measure
real objects and create the corresponding models
in ‘3ds Max’.

Real-time Creation of Game Models

Necessary Improvements for the
Conventional Modeling Process

The conventional modeling process as shown

in Figure 1 involves complicated procedures.
The objects are measured by some measuring
tools, and at the same time, pictures of the object
surfaces are taken. Then, the parameters are
imported into 3D software to create models, and
the pictures are converted to textures in order to
be attached to the surface of the models. Last, the
combination of models and textures are
converted to MDL models, which can be
recognized by GMod. Thus, this method has
several natural shortcomings, namely it is
laborious, time consuming, costly and
complicated. Therefore, the simplification of the
process and shortening of the processing time are
the main objectives, and real-time modeling can
realize these objects.

The realization of real-time modeling depends

on the method of acquiring the geometric
parameters and the processing of this
information. Therefore, the first task is to
identify a sensor to replace the traditional
measuring devices, and the second task is to

Figure 1: Conventional modeling process of GBVLs in Garry’s Mod.

88 COMPUTERS IN EDUCATION JOURNAL

develop a special tool for processing the obtained
raw data of objects to automatically generate the
corresponding models that are ready to be used in
the game.

Alternative Measuring Device Selection

As an alternative method for obtaining the
geometric parameters of objects, various kinds of
scanners are employed widely, including 3D
depth scanners and 2D scanners. Based on their
operating principles, 3D depth scanners are
divided into laser depth scanners and infrared
depth scanners. Laser depth scanners are often
used in high accuracy and high resolution
applications [26], and infrared depth scanners are
commonly favored in less demanding
applications [27]. 2D scanners often are simply
common cameras, which can be used in
applications whose requirements for both
accuracy and real-time suitability are not too
strict [28]. The main disadvantage of common
cameras is that they can only acquire 2D
information of the object of interest. This means
that much more complicated algorithms are
required, which in turn prolongs the modeling
time dramatically. Thus, 3D depth scanners are
more appropriate than common cameras for
realizing real-time modeling. On the other hand,
laser depth scanners are usually very expensive,
and their operation also requires a certain amount
of professional knowledge. Infrared scanners, of
which the Microsoft Kinect is a representative,
are much more affordable and much more
accessible and flexible as compared with laser
depth scanners, even though they are somewhat
more expensive than common cameras. It should
be noted that the Kinect has been used for
instance as a data acquisition device in
laboratory environments [29,30].

As a popular entertainment medium, computer

games have their own attraction and specific
characteristics. In educational game
environments, figures and clues are used
primarily to submerge players into the game
world. These features of games are often
idealized or conceptualized. Hence, instead of
focusing on the precision of the models, the

players simply enjoy the game playing process.
Although highly accurate models can improve
GBVLS, their accuracy does not, in fact, affect
the function of the GBVLs significantly. Thus,
when taking into consideration the cost of the
device, the efficiency of the modeling and the
attributes of the games, the Kinect becomes a
true alternative for replacing the traditional
measuring tools for acquiring geometric
information of real objects.

The Microsoft Kinect for Windows sensor was

designed for devices and computers running the
Windows operating system. It can also be used
with Windows embedded-based devices. The
Kinect is composed of an accelerometer, a
structured light projector, a microphone array
and two sensors (cameras), namely an ‘infrared
(IR) depth sensor’ and a ‘color (RGB)’ sensor.
The IR sensor captures the depth information of
the object with a resolution of up to
640×480 in pixels while the color sensor
captures the color information of the object with
a resolution of up to 1280×960 in pixels [31,32].
The absolute error of the depth values is more
than 1 mm, which implies that the accuracy of
the models created with the Kinect is more than
1 mm. Therefore, the accuracy of the Kinect is
not comparable with accurate scanning tools
such as laser scanners. The obvious advantages
of the Kinect, as described above, are its
affordability and its user-friendliness. In order to
enable users to extend the function of the Kinect,
Microsoft publishes a software development kit
(SDK) and developer toolkits. The Kinect for
Windows SDK and developer toolkits include
device drivers, development tools, development
APIs, device interfaces and code samples. This
SDK is updated frequently, and future updates
are expected to add improvements for more
control and deeper access to sensor data.
Nowadays, the usage of the Kinect is becoming
more and more popular and convenient because
of the introduction of these SDKs.

COMPUTERS IN EDUCATION JOURNAL 89

Feasibility of Automatic Real-time Model
Creation for GBVLs

The Kinect can be used as a sensor for
scanning real objects in two ways: either by
moving the Kinect relative to the object to be
scanned or by moving the object relative to the
Kinect [33]. The former method is more flexible
and more failsafe than the latter method, even
though the pose of the Kinect must be tracked. In
the work described here, one hand-held Kinect
was used to acquire the data. Thus, after
acquiring the raw data of the objects, the pose of
the Kinect is tracked. This can be realized by a
fast stereo matching algorithm [34]. Then, a 3D
point cloud of the object can be obtained once the
coordinates of the Kinect have been determined.
The next problem to be solved is to mesh the 3D
point cloud and attach the corresponding texture
to every mesh element. If the number of mesh
elements and the resolution of the textures are
limited, then the processing time of modeling can
be kept at a reasonable level. The shape
information contained in the SMD files is stored
with the triangular mesh elements, and therefore,
the SMD files can be generated simultaneously if
the 3D point cloud is meshed with triangles. Both
‘VTFEdit’ (the conversion tool for textures) and
‘GUIStudioMDL’ (the compilation tool) also
have executable files in ‘command prompt’
format. Thus, by using the API provided by the
Windows shell, the above two executable files

can be executed automatically [35] Therefore, it
is feasible to realize real-time modeling
automatically.

Acquisition of Shape Information and
Processing of Objects

The main procedures of data acquisition and
processing are depicted in Figure 2. As
illustrated in this flow chart, the green-screen
technique is used to extract the useful
information of the objects from the background
which is of uniform color and shade [36]. This
approach reduces the time required for matching
the images and saves storage space because of
the reduction of the amount of data to be
processed. Figure 3 shows an object before and
after the background information has been
removed by green-screen processing. In this
figure, the green background has been replaced
by black.

A set of sequential color frames is used to

determine the pose of the Kinect using the
‘parallel tracking and mapping’ (PTAM) method

[37] After obtaining the 3D point cloud, there are
two different operations based on the objects’
occlusion conditions. If there are no occlusions,
the 3D point cloud is directly transferred to a
feature extractor and classifier for classification.
If the objects occlude each other, segmentation
must be implemented. Then, the 3D point cloud

Figure 2: Flow chart of data acquisition and processing.

90 COMPUTERS IN EDUCATION JOURNAL

Figure 3: Object before and after background removal using green-screen processing.

is divided into multiple clusters which represent
the different scanned objects separately. After
that, these clusters are put into the feature
extractor and classifier. Finally, the 3D point
cloud is meshed using the 3D Delaunay
triangulation algorithm [38].

Tracking of Kinect Pose

Determining the pose of the Kinect with the
PTAM method is a very important step after
obtaining the raw data of the objects. In the
PTAM method, the tracking and mapping work
is split into two threads that run in parallel. This
method is thought of as probably the most
reliable solution for small spaces (e.g.,
8 m × 8 m). The Kinect is a kind of camera, and
any camera is characterized by intrinsic and
extrinsic parameters. The intrinsic parameters
represent the relationships between the pixel
coordinates and the camera coordinates. The
extrinsic parameters include the camera’s
location and orientation in the world coordinates.
Both of these parameters compose the project
matrix P (see Eq. 1). Points with homogenous
coordinates (x,y,z,1) in world coordinates are
mapped into image coordinates with
homogenous coordinates (u,v,w). The intrinsic
parameters are represented by 3×3 matrix K3×3,
and the extrinsic parameters are represented by
3×4 matrix [R3×3 t3×1]3×4 [39].

=

= ××××

1

][

'

'

'

43133333

z

y

x

P

w

v

u

tRKP

 (1)

If the motion of the camera is represented by a
matrix M, then the transformation from world
coordinates (x,y,z,1) to camera-centered
coordinates (x’,y’,z’,1) can be performed using a
4×4 camera pose matrix Cp (see Eq. 2).

=

11

'

'

'

z

y

x

C
z

y

x

p (2)

Then, the projection from camera-centered
coordinates to image coordinates is expressed by
Eq. 3.

=

1

z

y

x

PC

w

v

u

p (3)

If the Kinect undergoes a motion, the pose matrix
Cp is changed correspondingly. If matrix M
represents the motion of the Kinect, Eq. 4
describes the change of the Kinect’s pose. The
motions of the Kinect include 3 rotations about

COMPUTERS IN EDUCATION JOURNAL 91

the 3 axes and 3 translations along the 3 axes.
Thus, they can be expressed by a 6-dimensional
vector vm using the exponential map of Eq. 4
[40]. Once vm has been determined, the pose of
the Kinect can be obtained.

The procedures for tracking the pose of the

Kinect were described in detail elsewhere [37].

 p
v

pp CeMCC m=='

 (4)

3D Point Cloud Generation and Triangular
Meshing

Once the pose of the Kinect has been
determined, the point cloud representing the
object surfaces can be obtained. The first pose of
the Kinect is taken as the reference for the entire
world space. The coordinates of the points on the
object surfaces can be identified according to the
reference pose of the Kinect. Figure 4 depicts n
poses of the Kinect. The relative values of the
other poses, which are represented by camera
pose matrix Cp, can be obtained by Eq. 4. The
point coordinates of the object surfaces are first
expressed in camera-centered coordinates [29].
Left-multiplication of both sides of Eq. 2 by the
inverse of the camera pose matrix Cp

-1 results in
the point coordinates of the object surfaces in
world coordinate space.

Figure 4: Identification of coordinates

of object surfaces.

The point cloud of the object surfaces is
meshed using the 3D Delaunay triangulation
algorithm [38]. The basic idea of this algorithm
is to mesh points into a set of triangles. The
advantage of this algorithm is that the resulting
meshes are unique and avoid triangles with acute
angles. The justification for using this method is
that the point cloud generated by the Kinect is
not random, but rather exhibits a certain topology
because the pixels are arranged row by row with
the width specified in the configuration of the
resolution. This configuration is completed
during the initialization of the Kinect. Hence, the
basic Delaunay triangulation algorithm satisfies
the requirements of modeling. The meshing is
performed face by face until all orientations of
the object have been completed.

Generation of Textures and Models

After the processing of the data, the
ready-to-use textures and models for the GBVL
are generated. Figure 5 illustrates this process.
After triangulation, all surfaces of the object are
composed of a set of triangles. Every triangle
defines a unique domain. The color pixel points
falling within the triangular domain and the color
pixel points located on the boundary of the
domain form an image patch. In order to simplify
the texture structure, the texture is composed of 6
images which represent the 6 views of the object.
Every image is generated from the triangular
patches of the corresponding view. Using
‘VTFCmd.EXE’, these 6 images are then
converted into 6 VTF texture files, which are
then saved in the game folder. The information
of the 3 vertices is stored in the SMD model file,
one by one for all triangles. After all triangles
have been processed, the entire SMD file is
generated.

A QC file is a script that is used to compile the

SMD file into a ready-to-use binary file that is
compatible with GMod [41]. The QC file used to
compile the SMD file of the model is generated
automatically during the execution of the
modeling program. The format of the QC file is a
special ‘Valve’ data format derived from
QuakeC [42] – a language similar to C. The QC,

92 COMPUTERS IN EDUCATION JOURNAL

Figure 5: Mesh, texture and model generation.

SMD, VTF and VTM files are compiled by
‘StudioMDL.EXE’. Both ‘StudioMDL.EXE’
and ‘VTFCmd.EXE’ are executable files in
command prompt format, and they are called
back in the modeling program with the API of
the Windows shell. This method guarantees an
automatic modeling flow.

After compiling the QC and SMD files with

‘StudioMDL.EXE’, six final output files are
generated. They include MDL, VVD, VTX and
PHY files. The MDL file defines the structure of
the model, including material, mesh, animation,
bounding box, hit box and level of detailed
information. The VVD file contains the
information used by the MDL file, including
normals, tangents, vertices and texture
coordinates. Three VTX files (sw.vtx (rendering
software), .dx80.vtx (DirectX 8.0) and .dx90.vtx
(DirectX 9.0)) store hardware optimized
material, skinning and triangle strip/fan
information for each ‘level of detail’ of each
mesh in the MDL file. The PHY file includes a
rigid or jointed collision model. These files are
stored in the models folder of GMod and are
available for use by the game [41].

Segmentation and Recognition

In the above discussion, it was tacitly assumed
that all of the objects to be scanned are isolated
and separated from each other. However, in the
conditions such as shown in Figure 6, problems
arise when these objects are scanned since they
block each other at some viewing orientations. In
order to generalize the modeling method,

segmentation and recognition of the obtained 3D
point cloud become necessary. 3D point cloud
segmentation is one method used to divide a
point cloud into different clusters according to
some specific criteria (e.g., color, intensity value,
depth value, etc.). Therefore, the objects (for
instance the digital scale, pump and Xplorer
GLX shown in Figure 6) should be segmented
and then reconstructed.

The scenario depicted in Figure 6 was scanned

using a Kinect. Once the point cloud had been
generated, it was segmented using the k-means
clustering method. This method uses iteration to
divide the point cloud into k clusters [43]. The
procedure of this method can be described by the
pseudo code shown in Figure 7. The 3 objects of
the scene were segmented very well with this
method as depicted in Figure 8. Even if the point
cloud is segmented perfectly, there still remains
another problem. There is always at least one
side of an object that is occluded (here the one in
contact with the table). This means that the
whole model cannot be created unless the object
is freely hovering in the air to allow observations
from all 6 directions. In order to deal with this
problem, the ability to recognize the scanned
object becomes desirable.

Although the game engine provides some form

of artificial intelligence (AI), it is significantly
different from traditional AI which is aimed at
finding methods for realizing real intelligence.
Hence, the recognition of real objects here relies
on pattern recognition algorithms. In addition,
the recognition of real objects requires the

COMPUTERS IN EDUCATION JOURNAL 93

Figure 6: Scenario of partially occluded objects.

Figure 7: K-means clustering pseudo code.

94 COMPUTERS IN EDUCATION JOURNAL

Figure 8: Multiple objects occluding each other.

support of a huge library which includes vast
data of various kinds of objects. In order to
validate the proposed method, only 4 types of
classes were included in the classifier: digital
scale, pump, Xplorer GLX and unidentified. For
these classes, the dimensions of length, width
and height of the 3 objects were selected as the
features used in the classification process.
Therefore, after segmentation, these features
were extracted by the feature extractor. Then,
these features were input into the classifier.
Basically, the classifier can recognize these 3
objects with very high accuracy (89.1% for the
digital scale, 91.3% for the pump and 98.4% for
the Xplorer GLX. The relatively low accuracy of
the recognition is attributable to the Kinect’s
inability to cope with reflective surfaces which
reduces the scanning accuracy.

Validation and Evaluation by

Implementation of a Virtual Fluid
Experiment

A flow rig experiment is used to teach the basic

principles of fluid mechanics by focusing on the
study of the flows in ducts and jets. The model of

a step motor used in this experiment was created
to validate the method presented here (see Figure
9). The complete experimental setup in the
GBVL is illustrated in Figure 10. It is composed
of a test tube with base, multiple step motors and
Pitot tubes. The Pitot tubes are controlled by the
step motors and are used to measure the pressure
distributions at various cross sections of the test
tube. A more detailed description of this
experiment was given elsewhere [9].

The PTAM method is only suitable for small

spaces, and the dimensions of the test tube and its
base exceed this limitation. Therefore, they were
built with the conventional modeling process
(see Figure 1). The step motor models were
generated with the method discussed here. The
most noticeable difference between the actual
step motor (see Figure 9a) and its virtual model
(see Figure 9b) is in the image quality. This
difference results from the control of the
resolution of the texture. The low resolution
texture chosen here guarantees that the modeling
can be performed in real time.

COMPUTERS IN EDUCATION JOURNAL 95

 (a) (b)

Figure 9: Step motor (a) photograph of physical step motor; (b) model in GBVL.

Figure 10: Flow rig experiment setup in GBVL.

When generating the model of a step motor

using the conventional process, the first step is to
measure the larger dimensions with a ruler and
the smaller dimensions with a slide caliper,
which may take about 20 minutes. The second
step is to take pictures of the step motor from 6
different orientations, which may take about
3 minutes. The third step is to create a 3D model
of the step motor in a software package such as
‘3ds Max’, which may take about 30 minutes.
The fourth step is to convert the ‘3ds Max’ file
into a SMD file, which may take about 1 minute.
The fifth step is to convert the pictures of the step
motor to VTF format using a software package
such as ‘VTFEdit’, which may take about 1

minute. The sixth step is to create a QC file,
which may take about 5 minutes. The final step is
to compile the SMD and QC files, which may
take about 1 minute. Therefore, the total time
consumed by this multi-step procedure may be
about 1 hour.

In contrast, the only work necessary when

using the method proposed here is to scan the
step motor with a Kinect, and then the model is
generated automatically. The efficiency of this
procedure depends significantly on the hardware
and operating system employed and the time
required differs greatly for different computer
configurations. All of the scanning and

96 COMPUTERS IN EDUCATION JOURNAL

reconstruction algorithms described here were
implemented on a DELL XPS 8500 desktop with
the following specifications: Intel i7-3770 CPU
with 3.40 GHz processor, 8 GB RAM and
NVIDIA GeForce GTX750 GPU with 4GB
graphics memory running on the Microsoft
Windows operating system. The procedure
described above took about 10 minutes running
on the above listed hardware/software
configuration. In addition to speeding up the
process, the proposed method is also less
complicated and requires fewer tools. Therefore,
anyone even without any measuring and
modeling experience can easily and quickly
create virtual objects.

Conclusions and Future Work

In this paper, a method for creating virtual

models of real physical objects in real time using
a hand-held Kinect was introduced. First, the
conventional modeling method applied in GMod
was summarized. Second, a real-time method for
creating models was introduced whereby data
acquisition and processing were emphasized.
The methods for tracking the hand-held Kinect,
triangular meshing and final model generation
procedures were discussed in detail. Third, the
point cloud segmentation method was described
and the importance of the object recognition was
highlighted. Finally, the example of a step motor
used in a GBVL was chosen to validate the
proposed method. Although the resolution of the
texture in this example was low, it was sufficient
for the purposes of the GBVL.

At present, the method proposed here is only

suitable for objects of convex shape and the
resolution and accuracy of the models generated
are fairly low. Although the object recognition
aspect was discussed briefly, there remains a lot
of work to be done before the proposed method
will be suitable for recognizing any arbitrary
object. The quality of the models can be
improved by applying advanced 3D computer
vision algorithms that can improve the resolution
and accuracy. The recognition capability can be

expanded by enriching the data library of the
scanning objects. Future work will be focused on
improving the precision of the modeling, the
quality of the models and the ability to recognize
specific objects. If a high enough precision can
be achieved, this method could be widely
employed in many application fields, for
example engineering reconstruction, intelligent
prostheses manufacturing, 3D printing and
computer aided design.

Acknowledgements

The authors wish to thank Dr. El-Sayed Aziz

for many stimulating discussions on the topic.

References

1. De Mauro, A., 2011, “Virtual reality based
rehabilitation and game technology”,
EICS4Med 2011, Vol. 1, pp. 48-52.

2. http://www.wecanchange.com/elementary-

school/resources/virtual-labs, accessed in
January 2015.

3. Weimer, J., Xu, Y., Fischione, C.,

Johansson, K. H., Ljungberg, P., Donovan,
C. & Fahlén, L. E., 2012, “A virtual
laboratory for micro-grid information and
communication infrastructures”,
Proceeding of the 3rd IEEE PES
International Conference and Exhibition,
October 14-17, 2012, Berlin, Germany,
pp. 1-6.

4. Aziz, E.-S., Chang, Y., Esche, S. K. &

Chassapis, C., 2013, “A multi-user virtual
laboratory environment for gear train
design”, Computer Applications in
Engineering Education, Vol. 22, No. 4,
pp. 788–802.

5. Barham, W., Preston, J. & Werner, J., 2012,

“Using a virtual gaming environment in
strength of materials laboratory”,
Proceedings of Computing in Civil
Engineering, June 17-20, 2012, Clearwater
Beach, FL, USA, pp. 105-112.

http://www.wecanchange.com/elementary-school/resources/virtual-labs
http://www.wecanchange.com/elementary-school/resources/virtual-labs

COMPUTERS IN EDUCATION JOURNAL 97

6. http://www.virtualgamelab.com, accessed
in January 2015.

7. Baba, S. A., Hussain, H. & Embi, Z. C.,

2007, “An overview of parameters of game
engine”, IEEE Multidisciplinary
Engineering Education Magazine, Vol. 2,
No. 3, pp. 10-12.

8. Thorn, A., 2010, “Game Engine Design

and Implementation”, Chapter 1, 1st Ed.,
Jones & Bartlett Publishers.

9. Zhang, Z., Zhang, M., Tumkor, S., Chang,

Y., Esche, S. K. & Chassapis, C., 2013,
“Integration of physical devices into
game-based virtual reality”, International
Journal of Online Engineering, Vol. 9,
No. 5, pp. 25-38.

10. Mouragnon, E., Lhuillier, M., Dhome, M.,

Dekeyser, F. & Sayd, P., 2006, “Real time
localization and 3D reconstruction”,
Proceedings of the 2006 IEEE Conference
on Computer Vision and Pattern
Recognition, New York, NY, USA, June
17-22, 2006, Vol. 1, pp. 363-370.

11. Hibbard, L. S., Grothe, R. A.,

Arnicar-Sulze, T. L., Dovey-Hartman, B. J.
& Page, R. B., 1993, “Computed
three-dimensional reconstruction of
median eminence capillary modules”,
Journal of Microscopy, Vol. 171,
pp. 39-56.

12. Fiz, I. & Orengo, H. A., 2007, “The

application of 3D reconstruction
techniques in the analysis of ancient
Tarraco’s urban topography”, Proceeding
of the 35th International Conference on
Computer Applications and Quantitative
Methods in Archaeology, Berlin, Germany,
April 2-6, 2007.

13. Varol, A., Shaji, A., Salzmann, M. & Fua,

P., 2012, “Monocular 3D reconstruction of
locally textured surfaces”, IEEE
Transactions of Pattern Analysis and
Machine Intelligence, Vol. 34, No. 6,
pp. 1118-1130.

14. Choi, J., Medioni, G., Lin, Y., Silva, L.,
Regina, O., Pamplona, M. & Faltemier, T.
C., 2010, “3D face reconstruction using a
single or multiple views”, Proceeding of
International Conference on Pattern
Recognition, Istanbul, Turkey, August
23-26, 2010.

15. Cheung, G. K., Kanade, T., Bouguet, J. Y.

& Holler, M., 2000, “A real time system for
robust 3D voxel reconstruction of human
motions”, Proceedings of the 2000 IEEE
Conference on Computer Vision and
Pattern Recognition, June 13-15, 2000,
Hilton Head, SC, USA.

16. Pollefeys, M. et al., 2008, “Detailed

real-time urban 3D reconstruction from
video”, International Journal of Computer
Vision, Vol. 78, No. 2, pp. 143-167.

17. http://reconstructme.net/projects/reconstru

ctmeqt, accessed in January 2015.

18. http://www.3dsom.com/, accessed in

January 2015.

19. http://insight3d.sourceforge.net, accessed

in January 2015.

20. http://msdn.microsoft.com/en-us/library/d

n188670.aspx, accessed in January 2015.

21. Izadi, S., Kim, D., Hilliges, O., Molyneaux,

D., Newcombe, R. A., Kohli, P., Shotton, J.,
Hodges, S., Freeman, D., Davison, A. J. &
Fitzgibbon, A. W., 2011, “KinectFusion:
real-time 3D reconstruction and interaction
using a moving depth camera”,
Proceedings of the 24th Annual ACM
Symposium on User Interface Software
and Technology, Santa Barbara, CA, USA,
October 16-19, 2011, pp. 559-568.

22. http://garrysmod.com/, accessed in January

2015.

23. http://source.valvesoftware.com/, accessed

in January 2015.

http://www.virtualgamelab.com/
http://insight3d.sourceforge.net/
http://source.valvesoftware.com/

98 COMPUTERS IN EDUCATION JOURNAL

24. https://developer.valvesoftware.com/wiki/
Valve_Hammer _Editor, accessed in
January 2015.

25. https://developer.valvesoftware.com/wiki/

Studiomdl_Data, accessed in January
2015.

26. Hoffman, A., Goetz, M., Vieth, M., Galle,

P. R., Neurath, M. F. & Kiesslich, R., 2006,
“Confocal laser endomicroscopy: technical
status and current indications”, Endoscopy,
Vol. 38, No. 12, pp. 1275-1283

27. Khoshelham, K. & Elberink, S. O., 2012,

“Accuracy and resolution of Kinect depth
data for indoor mapping applications”,
Sensors, Vol. 12, No. 2, pp. 1437-1454.

28. Wulf, O. & Wagner, B., 2003, “Fast 3D

scanning methods for laser measurement
systems”, Proceeding of International
Conference on Control Systems and
Computer Science, Bucharest, Romania,
July 2-5, 2003, pp. 2-5.

29. Zhang, M., Zhang, Z., Aziz, E.-S., Esche, S.

K. & Chassapis, C., 2013, “Kinect-based
universal range sensor for laboratory
experiments”, Proceeding of the ASME
2013 International Mechanical
Engineering Congress & Exposition, San
Diego, CA, USA, November 15-21, 2013.

30. Zhang, M., Zhang, Z., Esche, S., &

Chassapis, C., 2013, “Universal range data
acquisition for educational laboratories
using Microsoft Kinect”, Proceedings of
the ASEE 2013 Annual Conference and
Exposition, Atlanta, Georgia, USA, 2013.

31. Karayev, S., Jia, Y., Barron, J., Fritz, M.,

Saenko, K. & Darrell, T., 2011, “A
category-level 3-D object dataset: putting
the Kinect to work”, Proceedings of the 1st
IEEE Workshop on Consumer Depth
Cameras for Computer Vision, November
6-13, 2011, Barcelona, Spain,
pp. 1167-1174.

32. http://msdn.microsoft.com/en-us/library/jj
131033.aspx, accessed in January 2015.

33. Zhang, Z., Zhang, M., Aziz, E.-S., Esche, S.

K. & Chassapis, C., 2013, “Real-time 3D
model reconstruction and interaction using
Kinect for a game-based virtual laboratory”,
Proceeding of ASME 2013 international
mechanical engineering congress &
exposition, San Diego, CA, USA,
November 15-21, 2013.

34. Humenberger, M., Zinner, C., Weber, M.,

Kubinger, W. & Vincze, M., 2010, “A fast
stereo matching algorithm suitable for
embedded real-time systems”, Computer
Vision and Image Understanding, Vol. 114,
No. 11, pp. 1180-1202.

35. http://msdn.microsoft.com/en-us/library/w

indows/desktop/bb762154(v=vs.85).aspx,
accessed in January 2015.

36. Horprasert, T., Harwood, D. & Davis, L. S.,

2000, “A robust background subtraction
and shadow detection”, Proceedings of the
Asian Conference on Computer Vision,
Taipei, Taiwan, January 8-11, 2000,
pp. 983-988.

37. Klein, G. & Murray, D., 2007, “Parallel

tracking and mapping for small AR
workspaces”, Proceedings of the 6th IEEE
and ACM International Symposium on
Mixed and Augmented Reality, Nara,
Japan, November 13-16, 2007,
pp. 225-234.

38. Devillers, O., 2012, “Delaunay

triangulations, theory vs. practice”,
Proceedings of the 28th European
Workshop on Computational Geometry,
Assisi, Italy, March 19-21, 2012.

39. Szeliski, R., 2010, “Computer Vision:

Algorithms and Applications”, Springer,
2010.

40. Hall, B., 2003, “Lie Groups, Lie Algebras,

and Representations: an Elementary
Introduction”, Springer, 2003.

http://msdn.microsoft.com/en-us/library/windows/desktop/bb762154(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb762154(v=vs.85).aspx

COMPUTERS IN EDUCATION JOURNAL 99

41. https://developer.valvesoftware.com/wiki/
QC, accessed in January 2015.

42. Hesprich, D., 1998, “DarkGrue QuakeC

Reference Manual”, 1998.

43. Hartigan, J. A. & Wong, M. A., 1979,
“Algorithm AS 136: A k-means clustering
algorithm”, Applied Statistics, Vol. 28,
No. 1, pp. 100-108.

Biographical Information

Zhou Zhang is a Ph.D. candidate in

Mechanical Engineering at Stevens Institute of
Technology. He received a Master’s degree in
Electrical Engineering from Southeast
University, Nanjing, China in 2009 and a
Bachelor’s degree in Mechanical Engineering
from Southwest Jiaotong University, Chengdu,
China in 1999. His current research topics
include game-based virtual laboratories, 3-D
reconstruction and computer vision.

Mingshao Zhang is currently a Ph.D. student

in the Mechanical Engineering Department at
Stevens Institute of Technology. Before joining
Stevens, he received a Bachelor's degree from
the University of Science and Technology of
China. His current research interests include
computer vision, applications of the Microsoft
Kinect, educational laboratories and desktop
virtual reality

Yizhe Chang is a doctoral student in

Mechanical Engineering at Stevens Institute of
Technology, Hoboken, New Jersey. He received
a Bachelor’s degree in Precision Instruments
from Tianjin University, Tianjin, China. His
current research topics include mechanical
assembly modeling, engineering education
theory, online laboratory technology and virtual
laboratories based on game engines. He is a fan
of simulated movies and an enthusiast of turn-
based games.

Sven Esche earned a Ph.D. in Mechanical
Engineering from The Ohio State University in
1997. He currently holds a position as Associate
Professor in the Department of Mechanical
Engineering at Stevens Institute of Technology,
where he also serves as the Associate Director
of the Department and the Director of Graduate
Programs. His recent research interests include
cyber-physical systems with applications to
educational laboratories as well as advanced
learning technologies and pedagogical
approaches.

Constantin Chassapis, is Professor of

Mechanical Engineering and Vice Provost of
Academics at Stevens Institute of Technology.
His current research involves remote sensing
and control, integrated product and process
development, knowledge based system
development, and manufacturing systems
optimization. All efforts are multi-disciplinary
in nature and integrate mathematical modeling,
engineering principles, integration and
optimization methods and experimental studies.
He has received best paper awards from the
Injection Molding Division of the Society of
Plastics Engineers, and the Instrumentation
Division of the American Society of
Engineering Education. He is a member of the
American Society for Engineering Education
and the American Society of Mechanical
Engineers.

	Real-time 3D Reconstruction for Facilitating the Development of Game-based Virtual Laboratories
	Abstract
	Introduction
	Real-time Creation of Game Models
	Necessary Improvements for the Conventional Modeling Process
	Alternative Measuring Device Selection
	Feasibility of Automatic Real-time Model Creation for GBVLs
	Acquisition of Shape Information and Processing of Objects
	Tracking of Kinect Pose
	3D Point Cloud Generation and Triangular Meshing
	Generation of Textures and Models
	Segmentation and Recognition

	Validation and Evaluation by Implementation of a Virtual Fluid Experiment
	Conclusions and Future Work
	Acknowledgements
	References

