
SUBNETTING SUBNETS WITHOUT CONSTRAINTS

Larry R. Newcomer
The Pennsylvania State University

York Pennsylvania 17403

Abstract

Most available treatments of subnetting are
constrained by assumptions that classful
addressing is being used, that the number of bits
borrowed from the Host ID to create the Subnet
ID does not exceed eight, that the bits borrowed
from the Host ID to create the Subnet ID do not
cross an octet boundary, and that subnet zero is
not being used. This paper presents procedures
and formulas for use in the many common
situations not subject to the above constraints.
The procedures and formulas below solve the
subnetting problem using decimal rather than
binary arithmetic, making them more accessible
to students and faster and more reliable in
professional environments or when sitting for
certification exams. The methodology gives
faculty, networking professionals, and students
an effective tool for understanding and quickly
solving generalized subnetting problems.

Procedures for Subnetting Any Subnet

The following discussion assumes that the
reader is already familiar with basic subnetting
operations, their binary underpinnings, and their
uses and applications. This material can be
found in Ref. [1].

Most academic discussions of subnetting are
bound by at least some of the following
assumptions [2 – 8]:

• That the network being subnetted uses a
standard class A, B, or C classful address
and uses a standard default class A, B, or
C subnet mask

• That the number of bits borrowed from the
Host ID to create the Subnet ID does not
exceed eight bits (one octet)

• That the bits borrowed from the Host ID
to create the Subnet ID do not cross an
octet boundary

• That the all 0’s (subnet zero) and all 1’s
subnets are prohibited

This paper presents procedures and formulas
for use in situations not subject to the above
constraints. Examples include subnetting
problems where classless (CIDR) addressing is
being used, where the number of bits borrowed
from the Host ID to create the Subnet ID
exceeds eight or crosses an octet boundary, and
where subnet zero is deployed. In modern
networking these situations are common and
arise frequently when one needs to subnet a
network address that itself has been derived by
subnetting a higher-level address space. Real-
life examples include the following situations:

• When subnetting a private classless
(CIDR) or classful network address (which
may be a subnet of an encompassing
private network address)

• When subnetting a public classless
(CIDR) or classful network address
obtained from an ISP (which is likely to be
a subnet of the ISP’s public address space)

• When subnetting an existing subnet of any
type (for example, using Variable Length
Subnet Masks [VLSM])

In addition, the procedures and formulas
below solve the subnetting problem using
decimal rather than binary arithmetic, making
them more accessible to students and faster and
more reliable in professional environments or
when sitting for certification exams. The
methodology gives faculty, networking
professionals, and students an effective tool for
understanding and quickly solving generalized
subnetting problems.

COMPUTERS IN EDUCATION JOURNAL 107

Preliminary Operations

Given a dotted decimal subnet mask to be
further subnetted, carry out the following steps:

Step 1

Let L = the count of the number of leading
(leftmost) octets equal to 255 in the original
dotted decimal subnet mask

Step 2

Let V = the value of the first (leftmost) octet
NOT equal to 255 in the original dotted decimal
subnet mask (note that this may be a zero octet,
in which case V is zero)

Now perform the following calculations:

Step 3

b = 8 – log2 (256 – V), the number of
network/subnet bits (i.e., binary 1 bits) in the
“boundary” octet (where 1’s change to 0’s in the
subnet mask). Note that b is guaranteed to be an
integer value between 0 and 7 (see Lemmas 1
and 2 below for a proof of this assertion)

Step 4

p = 8 * L + b, the total number of
network/subnet bits in the custom subnet mask
(this is equal to the prefix in prefix notation)

Now carry out the following estimates:

Step 5

Estimate S = number of subnets needed. See
Ref. [1] for more information on estimating S

Step 6

Estimate H = maximum number of hosts per
subnet (i.e., number of hosts on the largest
subnet for this round of subnetting. If
implementing VLSM, H typically will decrease
with each round of subnetting). See Ref. [1] for
more information on estimating H

Now calculate:

Step 7

s = smallest integer x such that 2x – 2 >= S, the
number of additional subnet bits that must be
borrowed from the host ID

Note that initially subnet IDs consisting of all
0 bits (called the “all 0’s subnet” or “subnet
zero”) or all 1 bits (called the “all 1’s subnet”)
were prohibited. Modern software, when
properly configured, permits the use of these
subnet IDs. If your network is configured to use
subnet zero, then find the smallest integer x
such that 2x >= S

Step 8

h = smallest integer y such that 2y – 2 >= H, the
number of host ID bits that must be kept. Note
that since a valid host ID may not be either all
0’s or all 1’s (in binary), h must be >= 2

Step 9

Finally, ensure that s + h <= 32 – p

If s + h > 32 – p, the problem is not solvable.
You must either revise your estimates for S and
H and/or obtain a different address block and
subnet mask from your ISP or from private IP
address space. After successfully passing step 9,
you are ready to produce the three main
deliverables of the subnetting process: i) the
custom subnet mask for each subnet, ii) the
subnet address for each subnet, and iii) the
starting and ending IP addresses for each subnet
[2]. Each of these three deliverables is discussed
in turn below.

Produce the New Custom Subnet Mask

If the inequality in step 9 holds (in which case
the problem is solvable), calculate:

p' = p + s, the new total of network/subnet bits
in the Custom Subnet Mask (note that p' is also
the new prefix value when prefix notation is
used)

L' = floor (p' / 8), where floor (x) is the largest
integer <= x

r = remainder (p' / 8), where remainder (x/y) is
the remainder upon dividing the integer x by the
integer y. “r” is the remaining number of 1 bits
to be borrowed for the subnet ID in the
“boundary” octet

If r = 0, then form the new custom subnet mask
as L' octets consisting of all binary 1’s (written
as 255 in dotted-decimal) followed by enough

108 COMPUTERS IN EDUCATION JOURNAL

octets consisting of all binary 0’s (written as 0
in dotted-decimal) to make up a total of 4 octets

If r <> 0, then form the new custom subnet
mask as

• L' octets consisting of all binary 1’s
(written as 255 in dotted-decimal),
followed by

• An octet equal to 256 – 2(8 – r), followed by

• Enough octets consisting of all binary 0’s
(written as 0 in dotted-decimal), if any, to
make up a total of 4 octets

Produce the Subnet Address for Each New
Subnet

1. Start with the original network/subnet

address, which is the address of subnet-zero
when the new custom subnet mask is applied.

2. Work in the L' + 1 octet from the left.

3. Add 2(8 – r) to the working octet to get the
address of subnet 1.

4. Add 2(8 – r) to the working octet a second time
to get the address of subnet 2.

5. All adding must be modulo 256: when the
“working” octet sum equals 256, set the
working octet to 0 and carry 1 into the next
octet to the left. If the carry causes the octet
to become 256, set it to 0 and carry 1 into the
next octet to its left, etc.

6. Continue adding 2(8 – r) to the working octet
until you reach the subnet address that, if
incremented, would produce the address of
the subnet immediately following the original
subnet address that you began with. This is
the “all ones” subnet – the last possible
subnet.

7. You should have a total of 2s subnets,
counting the all-zeros and all-ones subnets
(or 2s – 2 subnets if you are not using subnet
zero). See Ref. [1] for more examples and
discussion on calculating subnet addresses.

Produce the Starting and Ending IP
Addresses for Each New Subnet

To generate the valid IP addresses for a given
subnetwork, start with that subnetwork’s subnet
address. Add 1 to the rightmost octet in the
subnet address to obtain the first valid IP
address on that subnet. For example, if the
Network ID of the first subnet is 152.201.16.0,
then the first valid IP address on that subnet
would be 152.201.16.1.

Continue to add 1 to the rightmost octet until
one of the following three conditions occurs:

1. The octet that you are incrementing reaches
255. When incrementing the value 255,
instead of adding 1 (to get 256), roll the 255
back to 0 and add 1 to the next octet to the
left. This operation is similar to a carry in
ordinary decimal addition. For example,
assume you have just added 1 to
152.201.16.254 to obtain 152.201.16.255.
The next step would not be to add 1 again to
obtain 152.201.16.256 (which is not a valid
IP address). Instead, roll the 255 back to 0
and add 1 to the next octet to the left (the
16), yielding 152.201.17.0. From this point,
continue to increment as before to obtain
additional IP addresses for the current
subnet.

2. While incrementing, you get to the point
where another increment would reach one
less than the network ID for the next subnet.
In this case, you have listed all the valid IP
addresses for the current subnet, and you
must move on to the next subnet (by starting
with its network ID and repeatedly
incrementing the rightmost octet by 1).

3. You reach a total of 2h – 2 IP addresses for a
given subnet. This is equivalent to condition
2 above, and in fact is just another way of
looking at the same situation. As in
condition 2, you have listed all the valid IP
addresses for the current subnet. Move on to
the next subnet by starting with its network
ID and repeatedly incrementing by 1.

COMPUTERS IN EDUCATION JOURNAL 109

Repeat this process for all subnetworks to
obtain a complete list of valid IP addresses for
each subnet. See Ref. [1] for more examples and
discussion on calculating IP addresses for a
subnet.

Lemmas

Lemma 1

log2 (256 – V) is an integer between 1 and 8
(thus making b = 8 – log2 (256 – V) an integer
value between 0 and 7), where V is the leftmost
non-255 octet in a subnet mask. This means V is
a properly formed octet in a subnet mask that is
not equal to 255, i.e., V is an 8-bit string
consisting of an uninterrupted substring of one
or more 1 bits followed by an uninterrupted
substring of one or more 0 bits, with the total
number of combined bits being 8.

Proof:

If V = 0, then log2 (256 – V) = log2 (256 – 0) =
8, as claimed

If V is not zero, then in order to be the leftmost

non-255 octet in a properly formed subnet mask,
V must be of the form V = 27 + 26 + … + 2d + 0
+ … + 0, where d is the binary digit position in
the octet corresponding to the last 1 before the
first 0 (positions being numbered according to
the powers of 2 represented, i.e., 76543210)

Note that d must be an integer between 1 and 7

(if d falls in position 0, the octet value would be
255 and therefore it would not be the leftmost
non-255 octet, a contradiction). Hence 8 – d
must be an integer between 1 and 7, which is
greater than zero (as required for Lemma 2
below)

Thus 256 – V

= 28 – V, since 28 = 256
= 28 – (27 + 26 + … + 2d), by substituting the
value of V
= 2d * [2(8 – d) – (2(7 – d) + 2(6 – d) + … + 2(d – d))],
by factoring 2d out of the above expression

= 2d * [2(8 – d) – (2(7 – d) + 2(6 – d) + … + 20)]
= 2d * [2(8 – d) – (2(8 – d) – 1)], by substitution for
the inner parenthetical expression per Lemma 2
below
= 2d * 1, since the expression in square brackets
evaluates to 1
= 2d ,which is a power of two

Since 256 – V = 2d, log2 (256 – V) = log2 (2d) =
d, an integer between 1 and 7.

Thus in all cases, log2 (256 – V) is between 1
and 8, which was to be proved.

Lemma 2

For any integer n > 0, 2n – 1 = 2(n – 1) + 2(n – 2) +
... + 21 + 20

Proof (by induction):

Since n must be greater than 0, we start with the
case n = 1:
21 – 1 = 1 = 20 = 2(1 – 1), which was to be shown
Now assume that for any k > 0, 2k – 1 = 2(k – 1) +
2(k – 2) + ... + 21 + 20. We must then show that 2(k

+ 1) – 1 = 2(k + 1 – 1) + 2(k + 1 – 2) + … + 21 + 20. We
do this as follows:
2(k + 1) – 1
= 2(k + 1) – 2 + 1, since – 2 + 1 = – 1
= 2 * (2k – 1) + 1, by factoring out 2
= 2 * (2(k – 1) + 2(k – 2) + ... + 21 + 20) + 1, by
substitution based on the inductive assumption
= (2k + 2(k – 1) + ... + 22 + 21) + 1, by multiplying
by 2
= 2k + 2(k – 1) + ... + 22 + 21 + 20, by rewriting the
trailing 1 as 20
= 2(k + 1 – 1) + 2(k + 1 – 2) + … + 21 + 20, which was
to be proved

110 COMPUTERS IN EDUCATION JOURNAL

COMPUTERS IN EDUCATION JOURNAL 111

References

 1. L. R. Newcomer, “Subnetting Made Simple:
IP Subnetting without Tables, Tools or
Tribulations,” Computers in Education
Journal, vol. XII, no. 3, July – September
2002.

2. K. Caudle and K. Cannon, CCNA Guide to

Cisco Networking, 3rd ed., Thomson/Course
Technology, Boston, 2004.

 3. M. Craft, B. Mayo, and J. Pherson, CCNA

Cisco Certified Network Associate Study
Guide (Exam 640-407), Osborne McGraw-
Hill, Berkeley, CA, 1998.

4. E. Dulaney, L. Sherwood, and R. Scrimger,

MCSE Training Guide TCP/IP, New Riders
Publishing, Indianapolis, IN, 1998.

5. T. Lammle, CCNA Cisco Certified Network

Associate Study Guide (Exam 640-507), 2nd
ed., SYBEX, Alameda, CA, 2000.

6. W. Odom, CCNA Exam Certification Guide,

Cisco Press, Indianapolis, IN, 1999.

7. W. Odom, Cisco CCNA Exam #640-507

Certification Guide, Cisco Press,
Indianapolis, IN, 2000.

8. M. Poplar, J. Waters, S. McNutt, and D.

Stabenaw, CCNA Routing and Switching,
Coriolis, Scottsdale, AR, 2000.

Biographical Information

Larry Newcomer is an Associate Professor of
Information Sciences & Technology at The
Pennsylvania State University. He has
published textbooks and papers in the general
areas of networking, databases, and
programming. In addition, he is currently
engaged in a long-term project to become a
decent drummer.

