
 

82  COMPUTERS IN EDUCATION JOURNAL 

USING   EXCEL   TO   IMPROVE   UNDERSTANDING   OF 
CALCULUS   BASED   TECHNIQUES   IN   FLUID   MECHANICS 

AND   DEVELOPING  EXCEL   BASED   NUMERICAL   TECHNIQUES  
WHEN   CALCULUS   PROVIDES   NO   CLOSED   FORM   SOLUTION 

 
Cyrus  K.  Hagigat 

College  of  Engineering 
Engineering  Technology  Department 

The  University  of  Toledo 
 

Introduction 
 

The concept described in this paper was used 
in two courses, namely a fluid mechanics course 
and in an advanced engineering mathematics 
course.  

 
In the fluid mechanics course, the technique 

was used to illustrate the concept of 
Computational Fluid Dynamics (CFD). The 
technique illustrated the application of calculus 
in modeling fluid systems and then presented a 
technique for numerically solving the resulting 
equation when no closed form calculus based 
solution exists. 

 
In the advanced engineering math course, the 

example was used as a physical illustration of 
application of calculus in modeling actual 
physical systems. In the advanced engineering 
mathematics course the equation was setup 
using physical and mathematical reasoning, and 
then solved by using Differential Equation 
Solution techniques, and it was shown that only 
numerical techniques can be used when 
nonlinear elements are present. 

 
In both classes, a component of homework and 

exams was using EXCEL to solve problems of 
this nature.  
 

Concept 
 

Fluid flow analysis in a piping system is 
governed by the principle of conservation of 
energy. In the absence of pressure difference 
between the exposed surfaces of fluid flow, 
every fluid particle has energy from two 

sources, namely energy due to fluid height 
(potential energy), and kinetic energy (velocity 
of fluid flow). Friction takes energy out of the 
system. 

 
It is shown that when friction effects are 

excluded, the conservation of energy approach 
results in a differential equation for calculating 
rate of fluid flow in a piping system that has an 
exact solution. However, every differential 
equation can be solved by numerical techniques. 
The paper demonstrates that the results obtained 
by classical solution techniques and those 
obtained by numerical techniques are the same, 
and thereby demonstrating the accuracy of 
numerical techniques. 

 
The conservation of energy technique is then 

used to develop a differential equation for the 
system when friction effects are included in the 
formation of the relationship. Because of 
nonlinear nature of friction forces in fluid 
mechanics, this differential equation does not 
have a closed form calculus based solution and 
it can only be solved by numerical techniques. 
Solution of this equation using numerical 
techniques is then demonstrated. 

 
EXCEL is used to implement the numerical 

techniques for all the examples presented in this 
paper. 
 

Nomenclature 
 

V:  Velocity (ft / sec). 
g:  Specific gravity constant ( 32.2 ft / sec2). 
h:  Elevation (ft). 
hL:  Head lost due to friction (ft). 
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K:  Coefficient for determination of head loss 
due to friction (dimensionless). 

L:  Length of straight pipe (ft). 
D:  Pipe inside diameter (ft). 
f: Friction factor for straight pipes 

(dimensionless). 
NR: Reynolds number (dimensionless). 
ν:  Fluid kinematic viscosity (ft2/ sec).  
Ɛ:  Pipe material roughness (ft). 
Q:  Rate of fluid flow (ft3/sec). 
At:  Cross sectional area of tank (ft2). 
Aj: Cross sectional area of orifice where fluid 

flows out (ft2) 
 

Technical  Discussion 
 

Figure 1 illustrates flow from a tank with 
falling head. 

 

 
Figure 1: Fluid flowing out freely 

 under gravity action. 
 

For a given depth of fluid h, Torricelli’s 
theorem can be used to calculate the velocity of 
flow out of the orifice shown in Figure 1. 
Equation (1)[1] shows this relationship. 

 
                           Vj = (2gh)0.5                          (1) 

 

The volume flow rate through the nozzle is 
governed by Equation (2).[1] 

 
                           Q = Aj Vj                                              (2) 
 

In a small amount of time dt, the volume of 
fluid flowing through the nozzle is governed by 
Equation (3).[1] 

 
Volume flowing = Q (dt) = Aj Vj (dt)             (3) 
 

Since fluid is leaving the tank, the fluid level is 
decreasing. During the small time increment dt, 
the fluid level drops a small distance dh.  

 
Volume of the fluid removed from the tank 
 
                    = -At dh                                    (4)[1] 

 

Volume flowing (Equation 3) and volume 
removed (Equation 4) are equal to each other. 
This results in the equality shown in Equation 
(5).1 

 
                Aj Vj (dt) = -At dh                         (5) 
 
Solving for dt in equation (5) results in 

Equation (6).[1] 

 
                  dt = {-(At / Aj) / Vj} dh               (6) 
 
Substituting for Vj from Equation 1 into 

Equation 6 results in Equation (7).[1] 

 
           dt = {(-At / Aj)/ (2gh).5 )} dh              (7) 
 
Equation (7) is a differential equation that has 

a known solution. The known solution is shown 
in Equation (8).[4] 

 
t2 – t1 = {2 (At / Aj) / (2g).5} (h1

.5 – h2
.5)       (8) 

 
EXCEL can directly be used to make 

calculations using algebraic Equation (8) for a 
desired range. 

 
EXCEL can also be utilized to numerically 

solve equation (7) where small increments dh 
are used to find small increments for dt. In this 
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technique the output of each calculation step is 
the input for the next calculation step.[3] 

 
Figure 2 shows the rate of change for fluid 

height calculated by using the algebraic 
relationship shown in Equation (8). 

 
Figure 3 shows the rate of change of fluid 

height calculated by numerically solving the 
differential equation shown in Equation (7) by 
using .1 inch height increments and using the 
output from each step as the starting point for 

the next step. EXCEL is used to perform this 
calculation. 

 
Review of Figures 2 & 3 shows that Equations 

(7) & (8) produce almost identical result if 
sufficiently small increments are used in 
Equation (7). For this example, a .1 inch 
increment is sufficiently small. This illustrates 
that the numerical technique of solving a 
differential equation produces the same result 
that using the algebraic solution obtained from 
directly solving the differential equation would 
produce.

 
 
 

 
 

Figure 2. 
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Figure 3. 
 

Equations (7) and (8) were developed 
assuming the system of Figure 1 had no friction. 
This assumption resulted in the relationship 
shown in Equation (7) that had a readily 
available solution shown in Equation (8). 
However, assumption of no friction is not a 
realistic assumption. 

 
If frictional losses are included in the 

calculations, Equation (7) must be modified as 
shown in Equation (9).[1] 

 
      dt = {(-At / Aj)/ (2g(h – hL)).5 )} dh           (9) 

 
Equation (9) has no exact analytical solution. 

Consequently, unlike Equation (7), the 
differential equation shown in Equation (9) has 
no exact classical solution and it cannot be 
reduced to an algebraic relationship and can 
only be solved by numerical techniques. The 
same numerical technique used for solving 
Equation (7) can be used to solve Equation (9). 

Friction losses in a system can be determined 
by a general relationship shown in Equation 
(10).[1] 

 

                         hL= K (V2 / 2g)                     (10) 
 
Coefficient K in Equation (10) for a straight 

pipe can be determined by Equation (11).[1] 
 

                             K = fL / D                         (11) 
 
Flow in a pipe is either classified as laminar or 

turbulent. The classification is determined by 
calculating a quantity referred to as Reynolds 
number for the flow of fluid in a pipe. If the 
Reynolds number is less than 2000 the flow is 
laminar. Between Reynolds numbers of 2000 
and 4000, it is not possible to determine the 
flow classification. For Reynolds numbers 
greater than 4000, the flow is turbulent. 
Reynolds number for flow in a pipe can be 
determined from Equation (12).[1] 

 

                              NR= VD/ ν                       (12) 
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By having the relative roughness of a pipe 
(D/Ɛ) and the Reynolds number of fluid flow in 
a pipe, the friction factor can be read from 
Moody’s diagram. However, use of Moody’s 
diagram is not suitable for computerized 
analysis of piping systems. In place of Moody’s 
diagram Equations (13) and (14) can be used. 
Equation (13)[1] is for laminar flow conditions 
and Equation (14)[2] is for turbulent flow 
conditions. Generally, fluid flow is considered 
to be laminar below a Reynolds number of 2000 
and turbulent above a Reynolds number of 
4000, and flow condition is unknown between 
Reynolds numbers of 2000 and 4000. Since the 
theme of this article is numerical techniques, an 
unknown region will lead to errors. 
Consequently, an approximate compromise has 
been chosen by considering flow to be laminar 
below a Reynolds number of 3000, and 
turbulent above it. 

 
               f= 64 / NR                                                 (13) 
 

f= 0.25 / {[log (1 / 3.7 (D/Ɛ)) + (5.74/ NR
0.9)]2}    

                                                                       (14) 
 

Figure 4 is an example of a fluid flow system 
where the assumption of no friction would not 
be a reasonable one and consequently Equation 
(9) instead of Equation (7) must be used. 
  
Equations (9) through (14) are used to 
recalculate the results shown on Figure 3 using 
the same incremental numerical technique used 
for calculating the data of Figure 3. The fluid is 
assumed to be water at 70 degrees F (ν = 1.05 X 
10-5 ft2/sec), pipe roughness (ε) is assumed to be 
0.0004 ft (pipe is assumed to be coated ductile 
pipe) and dimensions are as shown on Figure 4. 
One-third of the results of these calculations 
along with the results used to plot Figure 3 are 
summarized in Table 1. (Only one-third is 
shown in order not to include too long of a 
table, but at the same time providing enough 
sample data points).  

 
                 

     
 

Figure 4: Fluid flowing through a piping system due to gravity 
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Table 1: Fluid discharge rate for piping system of Figure 4 with and without 
 including friction influence in the calculations. 

 
Fluid height (inch) Discharge time ignoring friction 

(sec) 
Discharge time accounting for 
friction (sec) 

15 0 0 
14.7 3.9 47.2 
14.4 7.9 94.9 
14.1 11.9 143.1 
13.8 15.9 191.8 
13.5 20.1 241.1 
13.2 24.2 290.9 
12.8 29.8 358.1 
12.5 34.1 410.0 
12.2 38.9 461.1 
11.9 42.7 513.5 
11.6 47.2 566.5 
11.3 51.6 620.3 
11.0 56.2 674.8 
10.7 60.8 730.0 
10.4 65.4 786.0 
10.1 70.2 842.9 

 

 

      
 

Figure 5. 
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Figure 5 is a plot that shows the rate of height 
change when friction is included.  

 
Reviewing the data in Table 1, and comparing 

Figures 3 and 5 shows the drastic influence of 
fluid viscosity (friction) on the discharge rate of 
fluid. 
 

These results clearly show the necessity of 
using numerical techniques for situations where 
classical differential equation techniques cannot 
be used to obtain a closed form solution. 
 

Summary  &  Conclusion 
 

In this article a fluid system where the fluid 
flows due to fluid head (potential energy of 
fluid) was used to demonstrate several concepts. 
The concepts are as follows: 

 
1. By choosing small increments of time and 

elevation difference a calculus based 
approach can be used to setup a 
differential equation that describes system 
behavior. 
 

2. When friction effects are excluded from 
the differential equation, a classical 
solution for the flow equation exists. 

 
3. The equation with exact solution was 

solved using algebra and numerical 
techniques. Comparison of the results 
demonstrated the accuracy of numerical 
techniques. EXCEL was used to for both 
solution techniques. 

 
4. The basic flow equation was then 

expanded by including frictional losses. 
 

5. A discussion was presented showing that 
the expanded equation does not have an 
exact calculus based solution. 

 
6. The expanded equation was then solved 

using numerical techniques. EXCEL was 
used to implement the numerical 
techniques. 

 

In summary, this article demonstrates how 
EXCEL can be used to solve fluid mechanics 
systems where classical mathematics cannot 
provide a solution. 
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