
WIRELESS NETWORK TOOLKIT

Jonathan Hill
Electrical and Computer Engineering Department

University of Hartford
West Hartford, CT 06117

Abstract

The wireless network toolkit provides students

with an inexpensive means to study and
experiment with general wireless network
principles. The toolkit provides tools that
students can use in their own projects and can
also be used to demonstrate wireless network
principles in an undergraduate laboratory
setting. The toolkit is also an example layered
network model that students can study in a
classroom setting. One goal of the toolkit is to
provide a useful level of transparency so that
students can be exposed to as much of the
system as desired. The field programmable gate
array (FPGA) provides students with entirely
new opportunities to examine the details of such
enabling technology in a meaningful way.

Introduction

The wireless network toolkit provides students

with an inexpensive means to study and
experiment with general wireless network
principles. As technology moves forward the
nature of what is practical in wireless networks
advances. The need for such a toolkit arises
however as consumer market pressure to make
products easier to use actually distances users
from the technology. While having very
complicated wireless devices available that are
also very easy to use helps promote sales, the
details of the enabling technology that makes
such products work is hidden from the user.
The first goal of this toolkit is to provide
students with an inexpensive means to study
principles that are widely used in wireless
networks. The toolkit is composed of the
following components:

• The physical hardware – A wireless

transceiver board and a field programmable

gate array development board which hosts a
soft-core processor system.

• Peripheral description – The logic
corresponding to the wireless transceiver
behaves as a peripheral device accessed with
memory mapped registers.

• Low-level software library – Students using
the toolkit in their own projects can use this
function oriented library to access the
hardware.

• Utilities software library – Middle level
software such as that used to check for
transmission errors.

• Demonstration applications – In a laboratory
setting students will benefit from pre-written
demonstration software.

The toolkit has three purposes. First, provide

tools that students can use in their own projects.
Second, serve as a demonstration tool in an
undergraduate laboratory setting. Third, serve
as an example for study in a classroom setting.
Our research has focused on the physical and
media access aspects of wireless networks. Two
graduate students have been involved and have
completed their master’s research. A simple
point to point keyboard chat program has been
demonstrated. In the current form the toolkit is
useful to undergraduate student projects and
demonstration software is being developed.
Undergraduate students are using the toolkit in
the design of a wireless electro cardiogram
(ECG). We have plans to incorporate the toolkit
into a data networks course that will be
developed for our technology students.

One goal of the toolkit is to provide a useful

level of transparency so that students can be
exposed to as much of the system as desired.
The field programmable gate array (FPGA)
provides students with entirely new
opportunities to examine the details of such

104 COMPUTERS IN EDUCATION JOURNAL

enabling technology in a meaningful way.
Given the need for a supporting microprocessor
system, this project showcases a new paradigm,
the use of a single FPGA to construct an entire
microprocessor system. The Xilinx embedded
developer’s kit (EDK) conveniently constructs
the underlying microprocessor system using
classic computer engineering principles.
Students interested in such detail are welcome
to examine the underlying microprocessor
system. Otherwise, students can use an existing
system as-is.

Network Layers

Tanenbaum[1] presents the OSI network

model to introduce how a computer network
node is divided into layers. The toolkit is
organized around the idea of the network layers
in Figure 1. The results from our recent
research have focused on the physical layer and
the media access (MAC) sub-layer. The
distinction seen here between layers and sub-
layers arises as the division between layers is
fairly distinct, while sub-layers in a given layer
share information about each other.

Layer (MSG)

Layer (PHY)
Physical

Transceiver (TRX)

Encode / Decode (ERD)

Service Software (PSS)

Media Access (MAC)

Application Application
Layer (APP)

MessageLogical Link (LNK)

Figure 1: Network layers.

The transceiver (TRX) sub-layer comprises a

hybrid analog device which fits on a small
adapter board. The rest of the system is
implemented on a FPGA development board.
The Encode, Retime, and Decode (ERD) sub-
layer uses Manchester Coding along with
synchronous detection. The physical layer
service software (PSS) sub-layer provides a
function oriented interface to the hardware. The

message (MSG) layer manages the details of
reliably sending and receiving messages.

The primary assumption the MSG layer makes

regarding the PHY layer is that it is an
unreliable broadcast oriented data transport
mechanism. In being broadcast oriented the
media access (MAC) sub-layer handles the
addressing of messages. The MAC and logical
link (LNK) sub-layer work together to detect
message errors and provide the appearance of a
reliable data link. We currently do not have any
intermediate inter-networking layers, so the
application is atop the message layer.

The Host and Transceiver

Figure 2 is an actual wireless network node.

The smaller upper board contains the transceiver
and antenna. The lower board is an off the shelf
Xilinx Spartan-3 FPGA starter board
manufactured by Digilent Inc.[2]. The FPGA is
a visible tan square to the middle right. The
light colored cable to the left is the JTAG
connector used for downloading the system and
debugging purposes. The dark cable to the left
provides power. The lower D-type connector is
for RS232 serial communications. The upper

Figure 2: Wireless network node.

COMPUTERS IN EDUCATION JOURNAL 105

D-type VGA display connector and PS2 style
keyboard connector to the lower right are
currently not in use. Buttons, switches, LEDs,
and four seven-segment displays are along the
lower edge or the board. The FPGA provides
ample space for a soft-core microprocessor as
well as peripheral devices.

The transceiver selected is the RF Monolithics

TR1100 hybrid[3] which operates in the
900MHz band. This transceiver is unique in its
speedy transition between transmit and receive
modes. The wireless link operates half-duplex,
either transmitting or receiving. This
transceiver is designed for short-range wireless
data communications, supporting data rates up
to 1Mbps. We arbitrarily selected 250 kbps as
the Baud rate. The small size, low power
consumption, operation with 3.3 volt logic, low
cost, and respectable data rate make this
transceiver ideal for our use.

In using a soft-core processor, the toolkit
provides an opportunity for students to study an
embedded microprocessor system. Apart from
the use of an FPGA which provides an amazing
level of flexibility, the soft-core microprocessor
system in Figure 3 follows classic
microprocessor systems design principles. The
ERD and TRX sub-layers appear to the
processor simply as another peripheral on the
system bus. Apart from on-chip memory
resources, the external memory controller
(EMC) provides access to off-chip memory
resources. The UART provides RS232 style
serial communications.

TRX

MEM

PROC.

OPB
BUS

FPGA

EMC

UART RS232

ERD

Figure 3: Soft-core microprocessor system.

While such a soft-core processor system is

described by means of a hardware description

language, the resulting description is not
considered software. The description is
compiled and fit to a device, producing an image
or bit file, used to configure the FPGA
resources. The bit file can be thought of as a
floor map used to configure the FPGA. Once
configured, the FPGA essentially becomes the
desired system so that writing programs and
programming the system involves the use of
conventional software development tools.
Software for the toolkit is currently written with
the C language.

Synchronous Communications

Synchronous serial communications is a

widely used technique whereby the transmitter
uses a code to convey the data and clock
together. A discrete time phase-lock loop inside
the FPGA reproduces the corresponding clock
to recover the received data. In our case, the
selected transceiver[3] uses a blocking capacitor
in the receiver to perform data slicing. Such AC
coupling is significant as it rules out
asynchronous communications protocols such as
RS232 which have significant DC and near DC
signal components.

To provide synchronous communications we

selected the popular Manchester Code, a topic
of nearly all computer network courses. In this
research we follow IEEE 802.3[4] in that a ‘1’
bit is represented by the sequence ‘low-high’
and that a ‘0’ bit is represented by the sequence
‘high-low’ as in Figure 4. Here we refer to each
such sequence as a symbol. The numbered
vertical dash lines are the boundaries between
symbols. Note that a transition always occurs at
the center of each symbol.

4

’0’ ’1’ ’1’

0 1 2 3

’1’

Figure 4: IEEE 802.3 Manchester coded data.

106 COMPUTERS IN EDUCATION JOURNAL

For the receiver to reproduce the
corresponding clock, the toolkit uses a discrete
time phase-lock loop. A broadcast message
starts with a preamble, followed by a start
frame delimiter (SFD). The preamble and SFD
provide an easy mechanism for the retiming
logic to obtain phase-lock. Starting from the
left, the preamble is as follows:

10101010 10101010 10101010 10101010

The SFD continues the preamble pattern and

ours ends with an all zeros nibble flag.

10101010 10101010 10101010 10100000

Figure 5 is how the preamble and SFD

are encoded to form the start of a message.
While the preamble pattern is broadcast,
transitions occur only at the center of each bit-
cell. Once phase-lock is achieved, the receiver
is directed to ignore transitions that occur at the
boundary between symbols.

MAC frame

’1’ ’0’ ’1’ ’0’ ’1’ ’0’ ’0’ ’0’ ’0’ ’0’

Preamble Nibble Flag

Figure 5: Beginning of a message.

Following the nibble flag is a MAC frame

provided by the message layer. Encapsulation is
an important principle for students to
understand. The MAC frame is essentially
treated by the PHY layer as cargo. Besides
generating a Manchester coded message, to
make it easy for students to observe Manchester
coding, the toolkit provides a mechanism for the
transmitter to continuously code an arbitrary 32
bit long pattern.

The transmit encoder in Figure 6 is double

buffered in that a shift register and a one-bit
register encode a 32 bit word while a another
register holds the next word. Once the first
word is encoded, the next word is taken and the

transmit buffer empty flag is asserted. Students
have the option to either use software polling or
interrupts to service the encoder. Double
buffering ensures that in transmitting a long
message, the bit stream is continuous, without
any breaks.

Register
Shift

Register
Register

Parallel Load

Processor Bus

Encoded Data

Figure 6: Manchester encoder.

Symbol Retiming

It is common practice to use a phase-lock loop

to track a Manchester coded signal. In our case
the actual transceiver output does not provide a
signal-detect indicator. Without an actual
received signal the demodulated output has a
roughly periodic waveform that is otherwise
quite different from Manchester coded data.
The presence of a received signal is determined
here by actually obtaining phase-lock. Given
the shortness of the preamble, the time required
to obtain phase-lock is of particular importance.

The phase-lock loop we use is constructed

using well-known discrete time signal
processing techniques, outlined below. In
Figure 7 a flip-flop and exclusive-OR gate
detect a signal transition. The discrete time
signal generator (DCO) produces a saw-tooth
waveform. Once phase-lock is established the
PreLock signal is forced low, instructing the
register (Reg.) by means of the control logic
(Cntl) to load only near the center of each
symbol. Each symbol is sampled 16 times, to
produce one estimate of the phase error between
the local clock and that corresponding to the

COMPUTERS IN EDUCATION JOURNAL 107

PreLock
QD

FlipFlop

D Q

Reg.

ena
QG

RCV

DCO

Edge Cntl

load Filter

Phase

Err L()

 Figure 7: Discrete time phase-lock loop.

received data. The loop filter used to enhance
the dynamic behavior is just a scaling factor.

The phase-lock loop is followed by an

accumulate-and-dump module (ADM) that
counts for each symbol the number of
agreements between the received signal and
DCO sign bit. A significant number of
agreements or disagreements indicate phase-
lock, where a significant number of agreements
indicate a received ‘1’ bit and disagreements
indicate a ‘0’ bit. Figure 8 outlines the receiver
controller states.

Start RxLockRxSeek
RxRec

RxIgnore

Figure 8: Receiver States.

In the RxSeek state the PreLock signal is

asserted, with the assumption that during
preamble transitions occur only at the center of
each symbol. Upon achieving phase lock and
then the reception of the nibble flag, the
controller advances to the RxLock state and
RxRec state, respectively. The RxIgnore state
allows the receiver hardware to actively ignore a
message that is damaged or not addressed to the
station. The transmitter hardware in Figure 6 is
also controlled by a state machine.

Phase-Lock Loop Analysis

Analysis of the phase-lock loop falls along the

lines of classic theory and is of particular
interest to students familiar with discrete time

signal theory. As a useful reference I suggest
Freeman[5]. The key here is that each received
symbol is sampled times, essentially
scanned to produce one sample estimate of the
phase error. In the following, the stability is
considered and an optimal loop gain is selected
to minimize the pull-in time. The model in
Figure 9 assumes one estimate of the phase error
per symbol. The values

sN

θ and φ as well as the
corresponding values and are the received
and local phase, respectively.

Θ Φ

−1
L(z)

D(z)

DCO

Ke

Phase Compare

Φ

Θ
Loop Filter

C G
z

Figure 9: PLL signal model.

The delay in the phase comparison block

models how an entire scan produces one sample
estimate of the phase error. While steady state
phase error can be eliminated by including an
integrator in the loop filter, actually doing so
increases the system order by one and also
complicates the pull-in process. Given that a
modest phase error can be tolerated, the loop
filter is a simple scaling factor . With
the loop filter being a scaling factor, the phase
lock loop is modeled neatly as a second order
system. The DCO is modeled as a phase
accumulator, with sensitivity .

)(zL lK

dK

1)(
)(

−
=

Φ
z
K

zG
z d

(1)

The system function from input θ to output g

is as follows. The terms and fK K are the
forward gain and the overall loop gain,
respectively.

Kzz

zK
z
zG f

+−

−
=

Θ 2

)1(
)(
)(

(2)

108 COMPUTERS IN EDUCATION JOURNAL

 where: lKKK ef =
 fd KKK =

To select a value for the loop gain and

consider the stability of the system we inspect
the denominator of (2) to identify regions for
which the poles are contained by the unit circle.
The Schur-Cohn stability criterion described by
Freeman formally identifies the region of
stability. Inspecting the denominator of (2)
produces the ranges that we consider.

• - unique real poles 25.00 << K
• - poles repeat at 25.0=K 5.0=z
• - complex poles, decreasing

dampening
0.125.0 << K

• or - non-responsive or
unstable system

0=K 0.1≥K

The root locus in Figure 10 is the trajectory of

the system poles with respect to K . In
considering that each pole contributes to the
system response, the furthest pole is closest to
the origin, implying the greatest damping, when

. 25.0=K

0 0.25 0.5 0.75 1 1.25 1.5
Real Axis

-1

-0.5

0

0.5

1

Im
ag

. A
xi

s

K = 0 K = 0K = 0.25

K = 1

K = 1

Figure 10: Phase-lock loop root locus.

Given the short preamble, the step response is

of particular importance. With , the
phase error step response is in (3). Given an
initial phase error of one-half symbol, the model
suggests that after 10 symbols, the phase error is

25.0=K

less than 0.01 of a symbol. Further, in being an
exponential response, we can have confidence
that this will satisfy the requirements for
acquisition with some margin to spare.

0;
2

)(>
−

=− nn
nstepφθ

(3)

Message Layer

The message layer manages the physical layer

in a way to provide the appearance of a reliable
point-to-point data link. It does this with three
mechanisms. First, addressing gives the
appearance of a point to point link. Second, a
cyclic redundancy check (CRC) code is used to
detect transmission errors. Third, in the case of
a transmission error, a mechanism retransmits
data as is necessary. Tanenbaum[1] discusses
retransmission techniques commonly used in
networks. Having the MAC sub-layer examine
the PHY status before broadcasting reduces the
number of broadcast collisions that occur
between stations. Other than a CRC which
checks for bit errors, no actual method is
currently used to detect collisions. To reduce
the probability of a collision, the LNK can be
responsible for establishing a protocol between
stations, such as a token passing protocol.

The MAC frame in Figure 11 is produced by

encapsulating a frame provided by the LNK
sub-layer, with additional information that has
meaning to the MAC sub-layer. In this case
addressing is achieved by pre-pending a header
to the LNK sub-frame and CRC checksums are
used to check for transmission errors. The use
of CRC codes is truly a classic computer data
networking technique. Besides the myriad of
reference material available on the Internet,
Tang and Chien[6] as well as Williams[7]
provide tutorial introductions to CRC codes.
The wireless network toolbox uses the X.25
standard CRC generator polynomial as
described by Williams.

COMPUTERS IN EDUCATION JOURNAL 109

LNK Frame

Src Dst Ck1 Ck2LnkLnk

Figure 11: MAC message frame.

The MAC message frame header contains 8 bit

message source (SRC) and destination (DST)
address values. A first checksum (Ck1) in the
header checks for errors in the source and
destination addresses. A second checksum
(Ck2) checks for errors in the LNK frame. In
detecting a checksum error in the header the
MAC layer only instructs the PHY layer to
actively ignore the remainder of the message.
In detecting a checksum error in the LNK frame
however, the MAC layer also alerts the LNK
that a damaged message was received from the
indicated station. Address zero is reserved as a
destination address for broadcast messages sent
to all listening stations. The source address zero
could represent a master station.

Use in the Undergraduate Curriculum.

The toolkit was developed with three uses in

mind. First, provide tools that students can use
in their own projects. Second, serve as a
demonstration tool in an undergraduate
laboratory setting. Third, serve as an example
for study in a classroom setting. The project
website[8] provides more technical information
and useful information available to educators.
In the following we elaborate on such uses of
the wireless network toolkit.

The first student project using the toolkit is in

cooperation with the neonatal intensive care unit
(NICU) at Hartford Hospital. In this project the
toolkit is used to construct a wireless
electrocardiogram (ECG) that itself is a first
step in the development of a wireless central
apnea response system. The ECG system is
wireless in the sense that it eliminates the use of
long wires. Rather than using a simplex point to
point wireless link, a personal area network

oriented approach allows for a more robust
system. In particular, bidirectional data
transmission allows status information to be
shared, to better monitor the reliability of the
system.

The toolkit provides many opportunities to

demonstrate wireless network principles in a
laboratory setting. This aspect is being
developed in preparation for a new computer
networks course for our technology students.
Access to the entire ERD sub-layer is through
memory mapped registers. There is a
transmit/receive data register, a configuration
register, and a status register. The top-most
PHY sub-layer is actually software that provides
higher software with a function oriented
interface to the hardware. The wxlib library
provides a simple means for students to write
programs that directly investigate the hardware.
In the following, the receive-wait function is
based on the simple idea of a spin-lock.

• WxSignal – start to continuously code a 32

bit message
• WxStop – stop continuously coding a 32 bit

message
• WxRecWait – wait to receive a message
• WxSendStr – transmit an ASCII string

message

Figure 12 has an exchange with a

demonstration program written using the above
functions. Choices 1 and 2 provide a means to
start and stop producing a Manchester coded bit
stream that students observe using an
oscilloscope. Choice 3 is used to broadcast a
message. A storage oscilloscope is used to
examine the preamble and message body. Here
the board receives a simple message from a
remote station. This first demonstration
program works the physical layer directly, so
that all stations within range receive the
message.

110 COMPUTERS IN EDUCATION JOURNAL

Figure 12: Screenshot demonstrating physical layer.

In a classroom setting the toolkit helps to

crystallize together numerous wireless network
topics that are in common use. In scanning this
paper you will find references to such topics as
Manchester encoding, retiming, CRC error
detection, encapsulation, network layers, and
more. In time a collection of classroom
materials will be developed. Please visit the
online website[8] for the project.

Summary

This paper outlines a wireless toolkit

developed to provide students with an
inexpensive means to study and experiment with
general wireless network principles. In the
current state students can use the toolkit in their
own projects. One group is using the toolkit for
a wireless electrocardiogram. Two graduate
students completed their master’s degree
research by contributing to the development of
the wireless toolkit. We are developing
applications that can be used to demonstrate
wireless network principles in an undergraduate
laboratory setting and are planning on using the
toolkit in a networking course being developed
for our technology students. The toolkit also
serves as an example worthy of classroom
study. In closing, as a summer faculty research
fellow, I send thank to my colleagues at the
NASA Johnson Space Center for their
discussion and interest in this project.

References

1. Andrew S. Tanenbaum, Computer

Networks, Fourth Edition, copyright 2002
by Prentice Hall.

2. Digilent Inc., http://www.digilentinc.com/

3. RF Monolithics Inc., TR1100 data sheet,
http://www.rfm.com/

4. IEEE Std 802.3-2002, Part 3: Carrier sense

multiple access with collision detection
(CSMA/CD) access method and physical
layer specifications, available at
http://grouper.ieee.org/groups/802/11/

5. H. Freeman, Discrete-Time Systems,

copyright 1965 by John Wiley & Sons.

6. D. T. Tang and R. T. Chien, “Coding for

Error Control,” IBM System’s Journal,
volume 8, number 1, 1969, pp.48-86,
available online from http://www.ibm.com

7. R. N. Williams, “A Painless Guide to CRC

Error Detection Algorithms,” version 3,
August 19, 1993, http://www.ross.net/crc/
Downloar/crc_v3.txt

8. Project homepage, http://uhaweb.hartford.

 edu/jmhill/projects/WNTkit/index.htm

Biographical Information

Dr. Jonathan Hill is an Assistant Professor of
Computer Engineering in the College of
Engineering, Technology, and Architecture
(CETA) at the University of Hartford, located in
Connecticut. His Ph.D. and M.S. are from
Worcester Polytechnic Institute and his bachelor’s
degree is from Northeastern University. He was
previously an Applications Engineer with the
Networks and Communications Division of
Digital Corporation. He was a 2006 NASA
Summer Faculty Fellow at the Johnson Space
Center. His research interests involve embedded
microprocessor based systems.

COMPUTERS IN EDUCATION JOURNAL 111

http://www.ross.net/crc/
http://uhaweb.hartford/

