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Abstract 

 
The wireless network toolkit provides students 

with an inexpensive means to study and 
experiment with general wireless network 
principles.  The toolkit provides tools that 
students can use in their own projects and can 
also be used to demonstrate wireless network 
principles in an undergraduate laboratory 
setting.  The toolkit is also an example layered 
network model that students can study in a 
classroom setting.  One goal of the toolkit is to 
provide a useful level of transparency so that 
students can be exposed to as much of the 
system as desired.  The field programmable gate 
array (FPGA) provides students with entirely 
new opportunities to examine the details of such 
enabling technology in a meaningful way. 

 
Introduction 

 
The wireless network toolkit provides students 

with an inexpensive means to study and 
experiment with general wireless network 
principles.  As technology moves forward the 
nature of what is practical in wireless networks 
advances.  The need for such a toolkit arises 
however as consumer market pressure to make 
products easier to use actually distances users 
from the technology.  While having very 
complicated wireless devices available that are 
also very easy to use helps promote sales, the 
details of the enabling technology that makes 
such products work is hidden from the user.  
The first goal of this toolkit is to provide 
students with an inexpensive means to study 
principles that are widely used in wireless 
networks.  The toolkit is composed of the 
following components: 

 
• The physical hardware – A wireless 

transceiver board and a field programmable  

 
gate array development board which hosts a 
soft-core processor system. 

• Peripheral description – The logic 
corresponding to the wireless transceiver 
behaves as a peripheral device accessed with 
memory mapped registers. 

• Low-level software library – Students using 
the toolkit in their own projects can use this 
function oriented library to access the 
hardware. 

• Utilities software library – Middle level 
software such as that used to check for 
transmission errors. 

• Demonstration applications – In a laboratory 
setting students will benefit from pre-written 
demonstration software. 

 
The toolkit has three purposes.  First, provide 

tools that students can use in their own projects.  
Second, serve as a demonstration tool in an 
undergraduate laboratory setting.  Third, serve 
as an example for study in a classroom setting.  
Our research has focused on the physical and 
media access aspects of wireless networks.  Two 
graduate students have been involved and have 
completed their master’s research.  A simple 
point to point keyboard chat program has been 
demonstrated.  In the current form the toolkit is 
useful to undergraduate student projects and 
demonstration software is being developed. 
Undergraduate students are using the toolkit in 
the design of a wireless electro cardiogram 
(ECG).  We have plans to incorporate the toolkit 
into a data networks course that will be 
developed for our technology students. 

 
One goal of the toolkit is to provide a useful 

level of transparency so that students can be 
exposed to as much of the system as desired.  
The field programmable gate array (FPGA) 
provides students with entirely new 
opportunities to examine the details of such 
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enabling technology in a meaningful way.  
Given the need for a supporting microprocessor 
system, this project showcases a new paradigm, 
the use of a single FPGA to construct an entire 
microprocessor system.  The Xilinx embedded 
developer’s kit (EDK) conveniently constructs 
the underlying microprocessor system using 
classic computer engineering principles.  
Students interested in such detail are welcome 
to examine the underlying microprocessor 
system.  Otherwise, students can use an existing 
system as-is. 

 
Network  Layers 

 
Tanenbaum[1] presents the OSI network 

model to introduce how a computer network 
node is divided into layers.  The toolkit is 
organized around the idea of the network layers 
in Figure 1.  The results from our recent 
research have focused on the physical layer and 
the media access (MAC) sub-layer.  The 
distinction seen here between layers and sub-
layers arises as the division between layers is 
fairly distinct, while sub-layers in a given layer 
share information about each other. 

 

Layer (MSG)

Layer (PHY)
Physical

Transceiver (TRX)

Encode / Decode (ERD)

Service Software (PSS)

Media Access (MAC)

Application Application
Layer (APP)

MessageLogical Link (LNK)

 
 

Figure 1: Network layers. 
 
The transceiver (TRX) sub-layer comprises a 

hybrid analog device which fits on a small 
adapter board.  The rest of the system is 
implemented on a FPGA development board.  
The Encode, Retime, and Decode (ERD) sub-
layer uses Manchester Coding along with 
synchronous detection. The physical layer 
service software (PSS) sub-layer provides a 
function oriented interface to the hardware.  The 

message (MSG) layer manages the details of 
reliably sending and receiving messages. 

 
The primary assumption the MSG layer makes 

regarding the PHY layer is that it is an 
unreliable broadcast oriented data transport 
mechanism.  In being broadcast oriented the 
media access (MAC) sub-layer handles the 
addressing of messages.  The MAC and logical 
link (LNK) sub-layer work together to detect 
message errors and provide the appearance of a 
reliable data link.  We currently do not have any 
intermediate inter-networking layers, so the 
application is atop the message layer.  

 
The  Host  and  Transceiver 

 
Figure 2 is an actual wireless network node.  

The smaller upper board contains the transceiver 
and antenna.  The lower board is an off the shelf 
Xilinx Spartan-3 FPGA starter board 
manufactured by Digilent Inc.[2].  The FPGA is 
a visible tan square to the middle right.  The 
light colored cable to the left is the JTAG 
connector used for downloading the system and 
debugging purposes.  The dark cable to the left 
provides power.  The lower D-type connector is 
for  RS232  serial   communications.  The  upper  

 
 

 
 

Figure 2: Wireless network node. 
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D-type VGA display connector and PS2 style 
keyboard connector to the lower right are 
currently not in use.    Buttons, switches, LEDs, 
and four seven-segment displays are along the 
lower edge or the board.  The FPGA provides 
ample space for a soft-core microprocessor as 
well as peripheral devices. 

 
The transceiver selected is the RF Monolithics 

TR1100 hybrid[3] which operates in the 
900MHz band.  This transceiver is unique in its 
speedy transition between transmit and receive 
modes.  The wireless link operates half-duplex, 
either transmitting or receiving.  This 
transceiver is designed for short-range wireless 
data communications, supporting data rates up 
to 1Mbps.  We arbitrarily selected 250 kbps as 
the Baud rate.  The small size, low power 
consumption, operation with 3.3 volt logic, low 
cost, and respectable data rate make this 
transceiver ideal for our use. 
 

In using a soft-core processor, the toolkit 
provides an opportunity for students to study an 
embedded microprocessor system.  Apart from 
the use of an FPGA which provides an amazing 
level of flexibility, the soft-core microprocessor 
system in Figure 3 follows classic 
microprocessor  systems design principles.  The 
ERD and TRX sub-layers appear to the 
processor simply as another peripheral on the 
system bus.  Apart from on-chip memory 
resources, the external memory controller 
(EMC) provides access to off-chip memory 
resources.  The UART provides RS232 style 
serial communications. 

 

TRX

MEM

PROC.

OPB
BUS

FPGA

EMC

UART RS232

ERD

 
 
Figure 3: Soft-core microprocessor system. 

 
While such a soft-core processor system is 

described by means of a hardware description 

language, the resulting description is not 
considered software.  The description is 
compiled and fit to a device, producing an image 
or bit file, used to configure the FPGA 
resources.  The bit file can be thought of as a 
floor map used to configure the FPGA.  Once 
configured, the FPGA essentially becomes the 
desired system so that writing programs and 
programming the system involves the use of 
conventional software development tools.  
Software for the toolkit is currently written with 
the C language. 

 
Synchronous  Communications 

 
Synchronous serial communications is a 

widely used technique whereby the transmitter 
uses a code to convey the data and clock 
together.  A discrete time phase-lock loop inside 
the FPGA reproduces the corresponding clock 
to recover the received data.  In our case, the 
selected transceiver[3] uses a blocking capacitor 
in the receiver to perform data slicing.  Such AC 
coupling is significant as it rules out 
asynchronous communications protocols such as 
RS232 which have significant DC and near DC 
signal components. 

 
To provide synchronous communications we 

selected the popular Manchester Code, a topic 
of nearly all computer network courses.  In this 
research we follow IEEE 802.3[4] in that a ‘1’ 
bit is represented by the sequence ‘low-high’ 
and that a ‘0’ bit is represented by the sequence 
‘high-low’ as in Figure 4.  Here we refer to each 
such sequence as a symbol.  The numbered 
vertical dash lines are the boundaries between 
symbols.  Note that a transition always occurs at 
the center of each symbol. 

 
 

4

’0’ ’1’ ’1’

0 1 2 3

’1’

 
 
Figure 4: IEEE 802.3 Manchester coded data. 
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For the receiver to reproduce the 
corresponding clock, the toolkit uses a discrete 
time phase-lock loop.  A broadcast message 
starts with a preamble, followed by a start 
frame delimiter (SFD).  The preamble and SFD 
provide an easy mechanism for the retiming 
logic to obtain phase-lock.  Starting from the 
left, the preamble is as follows: 

 
10101010  10101010  10101010  10101010 
 
The SFD continues the preamble pattern and 

ours ends with an all zeros nibble flag. 
 
10101010  10101010  10101010  10100000 

 
Figure   5   is   how   the   preamble   and  SFD 

are encoded to form the start of a message.  
While the preamble pattern is broadcast, 
transitions occur only at the center of each bit-
cell.  Once phase-lock is achieved, the receiver 
is directed to ignore transitions that occur at the 
boundary between symbols. 

 

MAC frame

’1’ ’0’ ’1’ ’0’ ’1’ ’0’ ’0’ ’0’ ’0’ ’0’

Preamble Nibble Flag  
 

Figure 5: Beginning of a message. 
 
Following the nibble flag is a MAC frame 

provided by the message layer.  Encapsulation is 
an important principle for students to 
understand.  The MAC frame is essentially 
treated by the PHY layer as cargo.  Besides 
generating a Manchester coded message, to 
make it easy for students to observe Manchester 
coding, the toolkit provides a mechanism for the 
transmitter to continuously code an arbitrary 32 
bit long pattern. 

 
The transmit encoder in Figure 6 is double 

buffered in that a shift register and a one-bit 
register encode a 32 bit word while a another 
register holds the next word.  Once the first 
word is encoded,  the next  word is taken and the  

 
 
 

transmit buffer empty flag is asserted.  Students 
have the option to either use software polling or 
interrupts to service the encoder.  Double 
buffering ensures that in transmitting a long 
message, the bit stream is continuous, without 
any breaks.   

 
 

Register
Shift

Register
Register

Parallel Load

Processor Bus

Encoded Data

 
 

Figure 6: Manchester encoder. 
 

Symbol  Retiming 
 
It is common practice to use a phase-lock loop 

to track a Manchester coded signal.  In our case 
the actual transceiver output does not provide a 
signal-detect indicator.  Without an actual 
received signal the demodulated output has a 
roughly periodic waveform that is otherwise 
quite different from Manchester coded data.  
The presence of a received signal is determined 
here by actually obtaining phase-lock.  Given 
the shortness of the preamble, the time required 
to obtain phase-lock is of particular importance.   

 
The phase-lock loop we use is constructed 

using well-known discrete time signal 
processing techniques, outlined below.  In 
Figure 7 a flip-flop and exclusive-OR gate 
detect a signal transition.  The discrete time 
signal generator (DCO) produces a saw-tooth 
waveform.  Once phase-lock is established the 
PreLock signal is forced low, instructing the 
register (Reg.) by means of the control logic 
(Cntl) to load only near the center of each 
symbol.   Each  symbol  is  sampled 16 times, to 
produce one estimate of the phase error between  
the  local  clock  and  that  corresponding  to  the  
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   Figure 7: Discrete time phase-lock loop. 

 
received data.  The loop filter used to enhance 
the dynamic behavior is just a scaling factor. 

 
The phase-lock loop is followed by an 

accumulate-and-dump module (ADM) that 
counts for each symbol the number of 
agreements between the received signal and 
DCO sign bit.  A significant number of 
agreements or disagreements indicate phase-
lock, where a significant number of agreements 
indicate a received ‘1’ bit and disagreements 
indicate a ‘0’ bit.  Figure 8 outlines the receiver 
controller states. 

 

Start RxLockRxSeek
RxRec

RxIgnore
 

 
Figure 8: Receiver States. 

 
In the RxSeek state the PreLock signal is 

asserted, with the assumption that during 
preamble transitions occur only at the center of 
each symbol.  Upon achieving phase lock and 
then the reception of the nibble flag, the 
controller advances to the RxLock state and 
RxRec state, respectively.  The RxIgnore state 
allows the receiver hardware to actively ignore a 
message that is damaged or not addressed to the 
station.  The transmitter hardware in Figure 6 is 
also controlled by a state machine. 

 
Phase-Lock  Loop  Analysis 

 
Analysis of the phase-lock loop falls along the 

lines of classic theory and is of particular 
interest to students familiar with discrete time 

signal theory.  As a useful reference I suggest 
Freeman[5].  The key here is that each received 
symbol is sampled  times, essentially 
scanned to produce one sample estimate of the 
phase error.  In the following, the stability is 
considered and an optimal loop gain is selected 
to minimize the pull-in time.  The model in 
Figure 9 assumes one estimate of the phase error 
per symbol.  The values 

sN

θ  and φ  as well as the 
corresponding values  and  are the received 
and local phase, respectively. 

Θ Φ

 

−1
L(z)

D(z)

DCO
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Θ
Loop Filter
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Figure 9: PLL signal model. 
 
The delay in the phase comparison block 

models how an entire scan produces one sample 
estimate of the phase error.  While steady state 
phase error can be eliminated by including an 
integrator in the loop filter, actually doing so 
increases the system order by one and also 
complicates the pull-in process.  Given that a 
modest phase error can be tolerated, the loop 
filter  is a simple scaling factor .  With 
the loop filter being a scaling factor, the phase 
lock loop is modeled neatly as a second order 
system.  The DCO is modeled as a phase 
accumulator, with sensitivity . 

)(zL lK

dK
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The system function from input θ  to output g  

is as follows.  The terms  and fK K  are the 
forward gain and the overall loop gain, 
respectively. 
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 where: lKKK ef =   
  fd KKK =   

 
To select a value for the loop gain and 

consider the stability of the system we inspect 
the denominator of (2) to identify regions for 
which the poles are contained by the unit circle.  
The Schur-Cohn stability criterion described by 
Freeman formally identifies the region of 
stability.  Inspecting the denominator of (2) 
produces the ranges that we consider. 

 
• - unique real poles 25.00 << K
• - poles repeat at  25.0=K 5.0=z
• - complex poles, decreasing 

dampening 
0.125.0 << K

•  or  - non-responsive or 
unstable system 

0=K 0.1≥K

 
The root locus in Figure 10 is the trajectory of 

the system poles with respect to K . In 
considering that each pole contributes to the 
system response, the furthest pole is closest to 
the origin, implying the greatest damping, when 

. 25.0=K
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Figure 10: Phase-lock loop root locus. 
 
Given the short preamble, the step response is 

of particular importance.  With , the 
phase error step response is in (3).  Given an 
initial phase error of one-half symbol, the model 
suggests that after 10 symbols, the phase error is  

25.0=K

less than 0.01 of a symbol.  Further, in being an 
exponential response, we can have confidence 
that this will satisfy the requirements for 
acquisition with some margin to spare. 

 
 
 

0;
2

)( >
−

=− nn
nstepφθ  

(3) 

 
 

Message  Layer 
 
The message layer manages the physical layer 

in a way to provide the appearance of a reliable 
point-to-point data link.  It does this with three 
mechanisms.  First, addressing gives the 
appearance of a point to point link.  Second, a 
cyclic redundancy check (CRC) code is used to 
detect transmission errors.  Third, in the case of 
a transmission error, a mechanism retransmits 
data as is necessary.  Tanenbaum[1] discusses 
retransmission techniques commonly used in 
networks.  Having the MAC sub-layer examine 
the PHY status before broadcasting reduces the 
number of broadcast collisions that occur 
between stations.  Other than a CRC which 
checks for bit errors, no actual method is 
currently used to detect collisions.  To reduce 
the probability of a collision, the LNK can be 
responsible for establishing a protocol between 
stations, such as a token passing protocol. 

 
The MAC frame in Figure 11 is produced by 

encapsulating a frame provided by the LNK 
sub-layer, with additional information that has 
meaning to the MAC sub-layer.  In this case 
addressing is achieved by pre-pending a header 
to the LNK sub-frame and CRC checksums are 
used to check for transmission errors.  The use 
of CRC codes is truly a classic computer data 
networking technique.  Besides the myriad of 
reference material available on the Internet, 
Tang and Chien[6] as well as Williams[7] 
provide tutorial introductions to CRC codes.  
The wireless network toolbox uses the X.25 
standard CRC generator polynomial as 
described by Williams.   
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LNK Frame

Src Dst Ck1 Ck2LnkLnk  
 

Figure 11: MAC message frame. 
 
 
The MAC message frame header contains 8 bit 

message source (SRC) and destination (DST) 
address values.  A first checksum (Ck1) in the 
header checks for errors in the source and 
destination addresses.  A second checksum 
(Ck2) checks for errors in the LNK frame.  In 
detecting a checksum error in the header the 
MAC layer only instructs the PHY layer to 
actively ignore the remainder of the message.  
In detecting a checksum error in the LNK frame 
however, the MAC layer also alerts the LNK 
that a damaged message was received from the 
indicated station.  Address zero is reserved as a 
destination address for broadcast messages sent 
to all listening stations.  The source address zero 
could represent a master station.   

 
Use  in  the  Undergraduate  Curriculum. 

 
The toolkit was developed with three uses in 

mind.  First, provide tools that students can use 
in their own projects.  Second, serve as a 
demonstration tool in an undergraduate 
laboratory setting.  Third, serve as an example 
for study in a classroom setting.  The project 
website[8] provides more technical information 
and useful information available to educators.  
In the following we elaborate on such uses of 
the wireless network toolkit. 

 
The first student project using the toolkit is in 

cooperation with the neonatal intensive care unit 
(NICU) at Hartford Hospital.  In this  project the 
toolkit is used to construct a wireless 
electrocardiogram (ECG) that itself is a first 
step in the development of a wireless central 
apnea  response  system.    The  ECG  system  is 
wireless in the sense that it eliminates the use of 
long wires.  Rather than using a simplex point to 
point wireless link, a personal area network 

oriented approach allows for a more robust 
system.  In particular, bidirectional data 
transmission allows status information to be 
shared, to better monitor the reliability of the 
system. 

 
The toolkit provides many opportunities to 

demonstrate wireless network principles in a 
laboratory setting.  This aspect is being 
developed in preparation for a new computer 
networks course for our technology students.  
Access to the entire ERD sub-layer is through 
memory mapped registers.  There is a 
transmit/receive data register, a configuration 
register, and a status register.  The top-most 
PHY sub-layer is actually software that provides 
higher software with a function oriented 
interface to the hardware.  The wxlib library 
provides a simple means for students to write 
programs that directly investigate the hardware.  
In the following, the receive-wait function is 
based on the simple idea of a spin-lock.   

 
• WxSignal – start to continuously code a 32 

bit message 
• WxStop – stop continuously coding a 32 bit 

message 
• WxRecWait – wait to receive a message 
• WxSendStr – transmit an ASCII string 

message 
 
Figure 12 has an exchange with a 

demonstration program written using the above 
functions.  Choices 1 and 2 provide a means to 
start and stop producing a Manchester coded bit 
stream that students observe using an 
oscilloscope.  Choice 3 is used to broadcast a 
message.  A storage oscilloscope is used to 
examine the preamble and message body.  Here 
the board receives a simple message from a 
remote station.  This first demonstration 
program works the physical layer directly, so 
that all stations within range receive the 
message. 
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Figure 12: Screenshot demonstrating physical layer. 
 
 
In a classroom setting the toolkit helps to 

crystallize together numerous wireless network 
topics that are in common use.  In scanning this 
paper you will find references to such topics as 
Manchester encoding, retiming, CRC error 
detection, encapsulation, network layers, and 
more.  In time a collection of classroom 
materials will be developed.  Please visit the 
online website[8] for the project. 

 
Summary 

 
This paper outlines a wireless toolkit 

developed to provide students with an 
inexpensive means to study and experiment with 
general wireless network principles.  In the 
current state students can use the toolkit in their 
own projects.  One group is using the toolkit for 
a wireless electrocardiogram.  Two graduate 
students completed their master’s degree 
research by contributing to the development of 
the wireless toolkit.  We are developing 
applications that can be used to demonstrate 
wireless network principles in an undergraduate 
laboratory setting and are planning on using the 
toolkit in a networking course being developed 
for our technology students.  The toolkit also 
serves as an example worthy of classroom 
study.  In closing, as a summer faculty research 
fellow, I send thank to my colleagues at the 
NASA Johnson Space Center for their 
discussion and interest in this project. 
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