
A Simple Project Paradigm for Teaching Computer Architecture

Yul Chu
Electrical and Computer Engineering Department

Mississippi State University
chu@ece.msstate.edu

Abstract

This paper presents a teaching method for a

possible computer architect by using a simple
DCT project for an undergraduate-level
computer architecture course. The goal of the
project is to let students (two or three students
per team) understand the concept of computer
hardware and how to design a simple RISC-type
32-bit Instruction Set Architecture (ISA). The
project consists of three different tasks: 1) D
(Design) - Designing a processor at the abstract
level; 2) C (Code) - Writing a simulation
program for the ISA; and 3) T (Test) - Running
a test program to verify each function of
computer hardware. For the first task, students
are required to design their own instruction sets,
datapath, and control unit. For the second task,
they write a simulation program by using a
high-level language such as C/C++ or
VHDL/Verilog based on the directions
provided, and then they run a test program with
the simulator to produce the results.

The project has worked well for students since

they responded favorably to the project and
indicated that they learned the concepts of
computer hardware and how to design computer
architecture as a professional engineer.

Introduction

The main job of a computer architect includes

the logical design of computer hardware based
on current technology and applications.[1] The
logical design, in general, deals with designing
the datapath, control unit, memory, and
input/output at the abstract level instead of the
circuit level.[2][3] Therefore, it is necessary to
simulate the design with test programs (or
benchmark programs) before chip fabrication to

verify whether or not the designed architecture
works properly. This design procedure is called
DCT (Design, Code, and Test) in this paper. In
addition, a computer architect should consider
the performance and cost as major factors in
determining the specifications for computer
hardware.[1-3]

Traditionally, simulation tools have been used

for computer engineering courses such as
computer architecture to let students understand
basic operations easily.[4][5] However, some
detailed simulators used to discourage students
with many options for selection and lengthy
lines of code.[6] For a computer architecture
class, even if you have a simple simulator for
easy understanding, you can just implement the
fixed/limited operations repetitively without any
trials to design new function logic. Thus,
students might be discouraged from designing
computer hardware because of this limitation in
traditional simulators.

To implement a special function for any

purpose, you need to define an instruction,
design the datapath & control unit, write a
simulation code for the instructions, and test it
to check whether or not it works properly. We
believe this works well for students to
understand more easily and interactively. So
don’t just try to use a simulator, but try to write
a simple simulator for your clear understanding!

This paper presents the DCT procedures (as in

handling a short-term project instead of
laboratory exercises [7]) in detail, as a computer
architect would use in designing computer
hardware such as a processor. This paper is set
out as follows: Section 2 introduces the DCT
procedures of a simple project for an
undergraduate-level computer architecture

106 COMPUTERS IN EDUCATION JOURNAL

class; section 3 discusses how to grade the
project and provide for students’ evaluation; and
section 4 gives the conclusions.

DCT Procedures

v0 = 0;
v1 = 0;
v2 = 0;
a1 = 10;
While (a1 > 0) do

{
a1 = a1 –1;
t0 = Mem[a0]
a0 = a0 + 2
if (t0 > 0) then {

v0 = v0 * t0;
Mem[a0-2] = v0; }

Else {
v1 = v1 + t0;
v2 = v1 || t0; }

}
Return

Mem[a0] 1
Mem[a0 + 2] -1
Mem[a0 + 4] 2
Mem[a0 + 6] -2
Mem[a0 + 8] 3
Mem[a0 + 10] -3
Mem[a0 + 12] 4
Mem[a0 + 14] -4
Mem[a0 + 16] 5
Mem[a0 + 18] -5

b) Initial Memory data (a0)a) Pseudo code (test)

 Figure 1. Sample pseudo code for the test
program and initial memory data

As we discussed in the first section, DCT

stands for Design, Code, and Test. This section
shows each DCT procedure in detail by using a
simple computer architecture project as an
example. The project is to design a 32-bit RISC
Instruction Set Architecture (ISA) through
MultiCycle Implementation (MCI). MCI means
that it takes multi cycles, which are different
from instruction to instruction, to execute an
instruction [1]. Figure 1 shows a sample pseudo
code for the test program, which has Arithmetic
and Logic, Data Transfer, and Control
functions.

To run the test program, students should

complete D (Design) and C (Code) procedures
and convert the test program to their own
instructions for T (Test) procedure.

D (Design) Procedure

There are three steps to design an ISA, which

is an interface between high-level (system
software such as operating system or compiler)
and low-level (gate or circuit-level). Those are:
1) Design instruction sets; 2) Design datapath
components with clock methodology and

datapath; and 3) Design control signals and
control unit. Since there are many factors to
determine in designing ISA, it would be
recommended for students as a team (2 to 3
students per team) to discuss the three steps in
detail. Through the discussion, we expect
students could build strong and clear concepts
for ISA operations.

Design instruction sets. For the first step, each
team needs to design instructions to execute a
program in an efficient way. For example, MIPS
architecture (32-bit) has 3 different types of
instruction formats: 1) R (Register) Format for
most arithmetic and logical operations; and 2) I
(Immediate) Format for immediate addressing
modes and memory access operations (data
transfer such as load and store); and 3) J (Jump)
Format for jump instruction. Figure 2 shows the
three instruction formats for MIPS
architecture.[1]

Opcode
(6)

Rs
(5)

Rt
(5)

Shamt
(5)

Rd
(5)

Funct
(6)

R (Register) Format:

Most arithmetic and logic instructions (except ‘immediate’)

Opcode
(6)

Rs
(5)

Rt
(5)

16-bit lue
(16)

I (Immediate) Format:

Data Transfer, Immediate, and Cond. Branch instructions

 Immediate va

Opcode
(6)

26-bit word address
(26)

J (Jump) Format:

Unconditional Jump instructions

Figure 2. Instruction formats for MIPS architecture [1]

In Figure 2, for the 32-bit instruction format,

the high-order 6 bits are used for defining
operations, which is called ‘opcode’. The
opcode will be transferred to the control unit
after fetching an instruction from memory.
Three types of register are defined in Figure 2
such as ‘Rs, Rt, and Rd’. For R-Format, Rs and
Rt are used for source registers to compute and
Rd is for destination register to store in the
Register File (one for datapath component, refer
to section 2.2.2). For I-Format, Rs and
Immediate field (low-order 16 bits) are used for
two inputs of ALU (Arithmetic Logic Unit,
refer to section 2.2.2) and Rt would be used for

COMPUTERS IN EDUCATION JOURNAL 107

the destination register to save the output (data)
from ALU or memory unit. For J-Format, a 26-
bit word address is used to compute an
unconditional target address for jump
instruction. After reviewing the MIPS
architecture, each team could design any kind of
instructions to execute the test program for its
own purpose.

Design Datapath. After designing instructions,
students need to design the datapath component
to implement its instructions.

Figure 3. Assemble the datapath [1].

For example, an ‘add’ instruction (R Format in

Figure 2) of MIPS architecture is required to
have several datapath components to execute: 1)
PC (Program Counter) to access Memory to
fetch an instruction; and 2) Memory to fetch an
‘add’ instruction; 3) Register File to read data
from source registers according to the fetched
instruction and to store the data into the
destination register; and 4) ALU (Arithmetic
and Logic Unit) to add two register contents (Rs
and Rt in Figure 2). In addition, datapath
components could include MUX (multiplexer),
Adder (kind of ALU), and Sign-Extension Unit
for immediate value, etc. to implement
instructions for any purpose. In this way,
students could design all the datapath
components for various instructions such as data
transfer (load and store) instructions, control
(branch) instructions, etc.

The next step is to assemble the datapath

components for various instructions. Figure 3

shows an example of how to assemble the
datapath for 32-bit MIPS architecture.[1] In
MIPS, there are a maximum of 5 stages to
execute an instruction: Fetch, Decode, Execute,
Memory Access, and Write Back. The datapath
can be assembled according to those stages and
instruction types. There are 4 types of datapath:
1) Instruction Fetch – common for all
instructions; 2) Arithmetic and Logical
Computation – add, subtract, etc.; 3) Memory
Reference – load and store; 4) Control – branch
and jump.

The execution procedures are: 1) Fetch

instruction from Memory (datapath
components: PC, Memory, Adder, and Mux); 2)
Decode instructions and read operands (Register
File, Sign-extension unit, and Mux); 3) Execute
arithmetic and logical computation for output
data, condition check, or memory address
(ALU, Adder, and Mux); 4) Memory access to
read/store data from/into memory (Memory and
Mux); and 5) Write back data into Register File
to update (Register File, Mux). In this way,
students could assemble the datapath for their
instructions to work properly.

Design Control Unit. After completing the
datapath for all instructions, it is necessary to
define control signals to execute each
instruction independently since most datapath
components are shared for all instructions. In
Figure 3, for load instructions, the ALU can
compute the memory address with two inputs
according to the ALUOp control signal, which
defines the ‘add’ operation. After computing the
memory address, the data in Memory is read
according to the MemRead control signal to
fetch data from the memory. The fetched data
from Memory should be written to Register File
according to the RegWrite control signal.
Therefore, there should be at least three control
signals to implement load instructions. In this
way, students could define control signals for
each instruction.

108 COMPUTERS IN EDUCATION JOURNAL

Control
Unit

OPCode (6 bits): Intruction [31-26]
(From Instruction Register to Control Unit)

To PC (Program
Counter)

To Memory
To ALU

To Register FileTo Instruction
Register

To Mux

Figure 4. A sample MCI Control Unit

Control signals are issued from the Control

Unit during the ‘Decode stage’ according to the
opcode transferred from a fetched instruction.
After defining control signals for all
instructions, students need to assemble control
signals by designing a Control Unit with input
(opcode) and outputs (control signals). Figure 4
shows the MIPS MCI Control Unit, which has
13 control signals as an example in [1]. Once
this is done by building the data path with
control signals, the next step is to build the
Finite State Machine (FSM) to implement
instructions through MultiCycle
Implementation. The sample FSM is shown in
Figure 5.

Fetch

MemRead
ALUSrc = 0
IorD = 0
IRWrite
ALUSrcB = 01
PCWrite
PCSource = 00

Start

Decode

ALUSrcA = 0
ALUSrcB=11
ALUOp = 00

Op = Jump

Execute

Op = load & sto
re

Execute
Memory Access
Write Back

O
p

=
R-

Fo
rm

at

Execute
Memory Access
Write Back

O
p = Branch

Execute
Control signals for

Figure 5. A sample FSM for MCI Implementation

C (Code) Procedure

entity cpu_datapath is
port(clk,reset,zflag,stop : in std_logic;

drdata,daluout: in std_logic_vector(15 downto 0);
dr1addr,dr2addr,dwaddr: out std_logic_vector(2 downto 0);
dmem_address : out std_logic_vector(7 downto 0);
dwdata,alua,alub,pc_in: out std_logic_vector(15 downto 0);
dr1data,dr2data,pc_out: in std_logic_vector(15 downto 0);
fun : out std_logic_vector(2 downto 0);

pcwritecond,pcwrite,iord : in std_logic;
memtoreg: in std_logic;
irwrite,alusrca,regdst : in std_logic;
pcsource,alusrcb : in std_logic_vector(1 downto 0);
addr : in std_logic_vector(7 downto 0);
tdata : in std_logic_vector(15 downto 0);
dtdata : out std_logic_vector(15 downto 0);
pc_load : out std_logic);

end cpu_datapath;
architecture ab of cpu_datapath is
-- pc
signal PCLoad : std_logic;
signal pcout : std_logic_vector (15 downto 0);
signal pcin : std_logic_vector (15 downto 0);
-- imem
signal mem_address: std_logic_vector(7 downto 0);
signal instruction_reg: std_logic_vector(15 downto 0);
signal addr1: std_logic_vector(7 downto 0);
.

PC

Instruction
Memory

Figure 6. A sample VHDL coding for datapath,
control unit.

Since the computer architecture class is an

intermediate undergraduate course in most
computer engineering schools, programming
languages such as C/C++ or VHDL/Verilog
would be prerequisites for computer architecture
in general.[4]

In section 2.1, students could design

instructions, datapath, and the control unit for
their own purposes. The next step is to write the
code for the datapath components and control
unit. For example, students would write a code
for Register File (consisting of 32 registers) and
control signals to update it. Figure 6 shows a
sample VHDL datapath coding for
cpu_datapath, PC, and instruction memory
(imem).

After coding the datapath and control unit,

students could write a code to implement each
instruction as a Finite State Machine (FSM).
Figure 7 shows a code for control signals,
Instruction Fetch (IF) stage, and Instruction
Decode (ID) stage for the FSM in Figure 5.

COMPUTERS IN EDUCATION JOURNAL 109

main: process (pstate'transaction,inst,clk_count)
variable ll : line;
variable ic : integer := 0;
variable cpi : real := 0.0;
begin
pcwritecond <= '0'; pcwrite <= '0'; iord <= '0';com <= 'Z';
memread <= '0'; memwrite <= '0'; memtoreg <= '0';
irwrite <= '0'; alusrca <= '0'; regdst <= '0'; …….

case pstate is
when zero =>
if(reset = '0') then nstate <= one;
else memwrite <= '0'; nstate <= zero;
end if;
when one =>
if(pstate'active) then

iord <= '0'; memread <= '1'; irwrite <= '0';
alusrca <= '0'; alusrcb <= "01"; aluop <= "0000";
pcsource <= "00"; pcwrite <= '1'; ic := ic+1
nstate <= two;

end if;
when two =>
alusrca <= '0'; alusrcb <= "11"; irwrite <= '1';
aluop <= "0000"; nstate <= three;
.

Initialize all
control signals

IF Stage

ID Stage

Figure 7. A sample VHDL coding for FSM in
Figure 5.

T (Test) Procedure

After students complete the Design and Code

procedure, they need to test their architecture
with the test program. The input for the
simulator would be a sequence of designed
instructions converted from the test program.
After the instructions (machine code) are placed
into Memory, all instructions would be fetched
from Memory according to PC and be executed
in the simulator. The output of the simulator
would be placed in the Register file or Memory
for the test program. So, students need to print
the contents of the Register file and Memory to
verify whether the simulator works properly or
not. The steps for T procedure are: 1) Input
operations − Clear contents of Memory and
Register File, and place the instructions
(machine code) into Memory and initialize PC;
2) Execution of instructions − Print initial
contents of Memory and Register File, and
Execute the instruction by feeding it into the
FSM; and 3) Output operation − Print final
contents of Memory & Register File after
executing the instructions.

After completing the DST procedures, students

are required to prepare and submit a final
project report. The final report would include
the following:

- An explanation of the architecture (datapath
and control unit);

- A discussion of how to test the architecture;
- A discussion of errors in the architecture;
- A discussion of how to optimize the errors;
- Simulation results.

Grading Projects and student’s Evaluation

The grading for the DCT project is mainly
based on the work for the three procedures
(DCT). For D (Design) procedure, we need to
check the efficiency of the designed ISA and the
usage of clocking methodology (rising edge
trigger or falling edge trigger). For C (Code)
procedure, the major point is to check whether
each instruction works properly or not. For T
(Test) procedure, the whole test procedure
would be checked with the results. In addition to
the DCT grading, we need to check the
discussion among team members since the goal
of the project is to share ideas and get a clear
concept through discussion.

0
2
4
6
8

10
12
14
16
18
20

bad good very good execellent

N
um

be
r

of
 st

ud
en

ts

bad: less than 80%; good: 80% to 90%;
very good: 90% to 95%; excellent: 95% to 100%

Figure 8. Grading for DCT project (Fall semester, 2004)

 As a case study, Figure 8 shows the project
grading for a DCT project (Fall semester, 2004
at Mississippi State University). There were 14
teams (2 to 3 students per team). Their final
reports for the DCT project were graded based
on efficiency (20%), clocking methodology
(10%), correctness (30%), testing (15%), results
(15%), and discussion (10%).

Figure 8 shows that most students (71.0%) got

grade A (more than 90%) and other students
(26.3%) had grade B (between 80% and 90%)
except 1 student (2.6%). Therefore, we could

110 COMPUTERS IN EDUCATION JOURNAL

say the DCT project was successful to let
students understand the concepts and design
process for the 32-bit ISA as a computer
architect.

Figure 9 shows the evaluation from computer

architecture (ECE4713) students in Fall 2004 at
Mississippi State University. In Figure 9, most
of the students (84.2%) responded that they
learned a great deal about fundamental-level
datapath design and concepts since the DCT
project is easy to follow and a good experience
for getting a grasp on a professional career.
Especially, they mentioned that the project was
closely related to the class work. However, there
were 5 students (13.1%) who did not agree like
the project since they wanted more detailed
guidelines regarding how to write a simulator,
and some students wanted to use a FPGA
hardware design instead of a software
simulation program. Therefore, we believe that
it is feasible to expand the DCT project from
hardware to a software simulator if students take
the FPGA class as a prerequisite for the
computer architecture class.

Good Project to learn: Do you agree the team project is a good
way to learn about MCI implementation and concept?

Good team member work: Do you agree the team project is a
good method to work with other team members?

0

5

10

15

20

25

1 2 3 4 5

Good project to learn

Good team member work

1: strongly disagree; 3: Neither agree nor disagree; 5: strongly agree

 Figure 9. Student Evaluation for the project (38
students and Fall semester, 2004).

Figure 9 also shows that 30 students (78.9%)

responded that the team project (2 to 3 students
per team) would be a good method to work with
other members since they could share ideas and
re-establish the concept clearly by discussing
the DCT procedures step by step. However, 6

students (15.7%) responded that they did not
agree since some team members did not attend
team meetings at all during the project, and
there was some difficulty in finding good team
members in a short period of time. Therefore, it
would be necessary for an instructor to help
students who cannot find a team by using
communication tools such as class email or
bulletin board. In addition, it is required to let
students write a contribution report for their
work to differentiate some students who do not
attend the project actively.

The project term in Figure 9 was from Nov.

11, 2004 to Dec. 3, 2004 and there was a
Thanksgiving break (from Nov. 23 to Nov. 28,
2004) for one week. Because of the break, most
students were short of time to finish the project
on time. Therefore, it would be better to start the
project one week earlier than Nov. 11, 2004.
Another valuable comment from students was
that they wanted to have feedback regarding
their project results. So it would be a good idea
to open their project grading with comments
before the final exam as well.

Conclusion

There have been so many software tools

developed to teach computer engineering
courses such as computer architecture.
Traditionally, those tools have many options to
choose from for proper operations and consist of
a lengthy line of code to figure out. Therefore, it
is possible for students to figure out the options
first and then to learn the operations through the
tools. In addition, since the tools used to have
limited functions to operate, it is difficult to
design a different type of instruction with the
tools. Therefore, those tools can be used to let
students understand the limited operations
instead of creative design since they lack
experience of the designing process.

This paper introduces DCT procedures to

accommodate students to design an ISA with
their own ideas by: 1) Designing instructions,
datapath, and control unit; 2) Coding the

COMPUTERS IN EDUCATION JOURNAL 111

simulator for the architecture from step 1); and
3) Testing the architecture through the simulator
with a test program.

According to the grading project and student

evaluation from Mississippi State University,
we found that the DCT procedures worked
successfully for the undergraduate level
computer architecture class since most students
(97.3%) who participated in the DCT project
had As and Bs for their grades and 78.9% of the
students evaluated the project as favorable
(agree and strongly agree) since they could
learn fundamental concepts and the design
process clearly and gain confidence in the area
of computer architecture.

References

1. David A. Patterson & John L. Hennessy,

Computer organization and design: the
hardware/software interface, second edition,
Morgan-Kaufmann, San Francisco,
California, 1998.

2. Vincent P. Heuring and Harry F. Jordan,

Computer Systems Design and Architecture,
second edition, Prentice Hall, Upper saddle
river, New Jersey, 2004.

3. John L. Hennessy & David A. Patterson,

Computer Architecture: A Quantitative
Approach, third edition, Morgan-Kaufmann,
San Francisco, California, 2003.

4. Lillian Cassel et al, Distributed Expertise for

Teaching Computer Organization &
Architecture, Working Group Reports in the
5th Annual Conference on Innovation and
Technology in Computer Science Education,
Helsinki, Finland, July 2000.

5. D. Ellard, D. Holland, N. Murphy, and M.

Seltzer, On the Design of a New CPU
Architecture for Pedagogical Purposes, in
Proc. WCAE 02 – workshop on Computer
Architecture Education, on 29th International

Symposium on Computer Architecture,
Anchorage, AK (USA), 2002, pp.28-34.

6. Christopher T. Weaver, Eric Larson, and

Todd Austin, Effective Support of
Simulation in Computer Architecture
Instruction, Workshop on Computer
Architecture Education (WCAE02) held in
conjunction with the 29th International
Symposium on Computer Architecture,
Anchorage, AK, May 2002.

7. Daniel C. Hyde, Teaching Design In a

Computer Architecture Course, IEEE Micro,
Volume 20, Number 3, May/June 2000,
pp23-28.

Biographical Information

Yul Chu received the Ph.D. degree in
Electrical and Computer Engineering from the
University of British Columbia, BC, Canada in
2001, M.S.E.E. degree in Electrical Engineering
from Washington State University in 1995, and
Bachelor in applied electronics from
KwangWoon University, Seoul, Korea in 1984.
Since 2001, he has been with the Department of
Electrical and Computer Engineering at the
Mississippi State University and currently is an
assistant professor. His current research
interests are high performance computer
architecture, low-power embedded systems,
computer networking, parallel processing,
cluster and high-available architectures,
Telematics, digital design, etc.

112 COMPUTERS IN EDUCATION JOURNAL

	Abstract

