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Abstract 

 
This paper presents a teaching method for a 

possible computer architect by using a simple 
DCT project for an undergraduate-level 
computer architecture course. The goal of the 
project is to let students (two or three students 
per team) understand the concept of computer 
hardware and how to design a simple RISC-type 
32-bit Instruction Set Architecture (ISA). The 
project consists of three different tasks: 1) D 
(Design) - Designing a processor at the abstract 
level; 2) C (Code) - Writing a simulation 
program for the ISA; and 3) T (Test) - Running 
a test program to verify each function of 
computer hardware. For the first task, students 
are required to design their own instruction sets, 
datapath, and control unit. For the second task, 
they write a simulation program by using a 
high-level language such as C/C++ or 
VHDL/Verilog based on the directions 
provided, and then they run a test program with 
the simulator to produce the results.  

 
The project has worked well for students since 

they responded favorably to the project and 
indicated that they learned the concepts of 
computer hardware and how to design computer 
architecture as a professional engineer.  

 
Introduction 

 
The main job of a computer architect includes 

the logical design of computer hardware based 
on current technology and applications.[1] The 
logical design, in general, deals with designing 
the datapath, control unit, memory, and 
input/output at the abstract level instead of the 
circuit level.[2][3] Therefore, it is necessary to 
simulate the design with test programs (or 
benchmark programs) before chip fabrication to 

verify whether or not the designed architecture 
works properly. This design procedure is called 
DCT (Design, Code, and Test) in this paper. In 
addition, a computer architect should consider 
the performance and cost as major factors in 
determining the specifications for computer 
hardware.[1-3] 

 
Traditionally, simulation tools have been used 

for computer engineering courses such as 
computer architecture to let students understand 
basic operations easily.[4][5] However, some 
detailed simulators used to discourage students 
with many options for selection and lengthy 
lines of code.[6] For a computer architecture 
class, even if you have a simple simulator for 
easy understanding, you can just implement the 
fixed/limited operations repetitively without any 
trials to design new function logic. Thus, 
students might be discouraged from designing 
computer hardware because of this limitation in 
traditional simulators. 

 
To implement a special function for any 

purpose, you need to define an instruction, 
design the datapath & control unit, write a 
simulation code for the instructions, and test it 
to check whether or not it works properly. We 
believe this works well for students to 
understand more easily and interactively. So 
don’t just try to use a simulator, but try to write 
a simple simulator for your clear understanding! 

 
This paper presents the DCT procedures (as in 

handling a short-term project instead of 
laboratory exercises [7]) in detail, as a computer 
architect would use in designing computer 
hardware such as a processor. This paper is set 
out as follows: Section 2 introduces the DCT 
procedures of a simple project for an 
undergraduate-level computer architecture 
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class; section 3 discusses how to grade the 
project and provide for students’ evaluation; and 
section 4 gives the conclusions.  

 
DCT  Procedures 

v0 = 0;
v1 = 0;
v2 = 0;
a1 = 10;
While (a1 > 0) do

{
a1 = a1 –1;
t0 = Mem[a0]
a0 = a0 + 2
if (t0 > 0) then {

v0 = v0 * t0;
Mem[a0-2] = v0; }

Else {
v1 = v1 + t0;
v2 = v1 || t0; }

}
Return

Mem[a0] 1
Mem[a0 + 2] -1
Mem[a0 + 4] 2
Mem[a0 + 6] -2
Mem[a0 + 8] 3
Mem[a0 + 10] -3
Mem[a0 + 12] 4
Mem[a0 + 14] -4
Mem[a0 + 16] 5
Mem[a0 + 18] -5

b) Initial Memory data (a0)a) Pseudo code (test)

 Figure 1. Sample pseudo code for the test 
program and initial memory data 

 
As we discussed in the first section, DCT 

stands for Design, Code, and Test. This section 
shows each DCT procedure in detail by using a 
simple computer architecture project as an 
example. The project is to design a 32-bit RISC 
Instruction Set Architecture (ISA) through 
MultiCycle Implementation (MCI). MCI means 
that it takes multi cycles, which are different 
from instruction to instruction, to execute an 
instruction [1]. Figure 1 shows a sample pseudo 
code for the test program, which has Arithmetic 
and Logic, Data Transfer, and Control 
functions. 

 
To run the test program, students should 

complete D (Design) and C (Code) procedures 
and convert the test program to their own 
instructions for T (Test) procedure. 

 
D (Design) Procedure 

 
There are three steps to design an ISA, which 

is an interface between high-level (system 
software such as operating system or compiler) 
and low-level (gate or circuit-level). Those are: 
1) Design instruction sets; 2) Design datapath 
components with clock methodology and 

datapath; and 3) Design control signals and 
control unit. Since there are many factors to 
determine in designing ISA, it would be 
recommended for students as a team (2 to 3 
students per team) to discuss the three steps in 
detail. Through the discussion, we expect 
students could build strong and clear concepts 
for ISA operations. 

 
Design instruction sets. For the first step, each 
team needs to design instructions to execute a 
program in an efficient way. For example, MIPS 
architecture (32-bit) has 3 different types of 
instruction formats: 1) R (Register) Format for 
most arithmetic and logical operations; and 2) I 
(Immediate) Format for immediate addressing 
modes and memory access operations (data 
transfer such as load and store); and 3) J (Jump) 
Format for jump instruction. Figure 2 shows the 
three instruction formats for MIPS 
architecture.[1] 

Opcode
(6)

Rs
(5)

Rt
(5)

Shamt
(5)

Rd
(5)

Funct
(6)

R (Register) Format: 

Most arithmetic and logic instructions (except ‘immediate’)

Opcode
(6)

Rs
(5)

Rt
(5)

16-bit lue
(16)

I (Immediate) Format: 

Data Transfer, Immediate, and Cond. Branch instructions

 Immediate va

Opcode
(6)

26-bit word address
(26)

J (Jump) Format: 

Unconditional Jump instructions

Figure 2. Instruction formats for MIPS architecture [1]

 
In Figure 2, for the 32-bit instruction format, 

the high-order 6 bits are used for defining 
operations, which is called ‘opcode’. The 
opcode will be transferred to the control unit 
after fetching an instruction from memory. 
Three types of register are defined in Figure 2 
such as ‘Rs, Rt, and Rd’. For R-Format, Rs and 
Rt are used for source registers to compute and 
Rd is for destination register to store in the 
Register File (one for datapath component, refer 
to section 2.2.2). For I-Format, Rs and 
Immediate field (low-order 16 bits) are used for 
two inputs of ALU (Arithmetic Logic Unit, 
refer to section 2.2.2) and Rt would be used for 
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the destination register to save the output (data) 
from ALU or memory unit. For J-Format, a 26-
bit word address is used to compute an 
unconditional target address for jump 
instruction. After reviewing the MIPS 
architecture, each team could design any kind of 
instructions to execute the test program for its 
own purpose. 

 
Design Datapath. After designing instructions, 
students need to design the datapath component 
to implement its instructions.  
 

Figure 3. Assemble the datapath [1].

 
For example, an ‘add’ instruction (R Format in 

Figure 2) of MIPS architecture is required to 
have several datapath components to execute: 1) 
PC (Program Counter) to access Memory to 
fetch an instruction; and 2) Memory to fetch an 
‘add’ instruction; 3) Register File to read data 
from source registers according to the fetched 
instruction and to store the data into the 
destination register; and 4) ALU (Arithmetic 
and Logic Unit) to add two register contents (Rs 
and Rt in Figure 2). In addition, datapath 
components could include MUX (multiplexer), 
Adder (kind of ALU), and Sign-Extension Unit 
for immediate value, etc. to implement 
instructions for any purpose. In this way, 
students could design all the datapath 
components for various instructions such as data 
transfer (load and store) instructions, control 
(branch) instructions, etc. 

 
The next step is to assemble the datapath 

components for various instructions. Figure 3 

shows an example of how to assemble the 
datapath for 32-bit MIPS architecture.[1] In 
MIPS, there are a maximum of 5 stages to 
execute an instruction: Fetch, Decode, Execute, 
Memory Access, and Write Back. The datapath 
can be assembled according to those stages and 
instruction types. There are 4 types of datapath: 
1) Instruction Fetch – common for all 
instructions; 2) Arithmetic and Logical 
Computation – add, subtract, etc.; 3) Memory 
Reference – load and store; 4) Control – branch 
and jump. 

 
The execution procedures are: 1) Fetch 

instruction from Memory (datapath 
components: PC, Memory, Adder, and Mux); 2) 
Decode instructions and read operands (Register 
File, Sign-extension unit, and Mux); 3) Execute 
arithmetic and logical computation for output 
data, condition check, or memory address 
(ALU, Adder, and Mux); 4) Memory access to 
read/store data from/into memory (Memory and 
Mux); and 5) Write back data into Register File 
to update (Register File, Mux). In this way, 
students could assemble the datapath for their 
instructions to work properly.  
 
Design Control Unit. After completing the 
datapath for all instructions, it is necessary to 
define control signals to execute each 
instruction independently since most datapath 
components are shared for all instructions. In 
Figure 3, for load instructions, the ALU can 
compute the memory address with two inputs 
according to the ALUOp control signal, which 
defines the ‘add’ operation. After computing the 
memory address, the data in Memory is read 
according to the MemRead control signal to 
fetch data from the memory. The fetched data 
from Memory should be written to Register File 
according to the RegWrite control signal. 
Therefore, there should be at least three control 
signals to implement load instructions. In this 
way, students could define control signals for 
each instruction. 
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Control
Unit

OPCode (6 bits): Intruction [31-26]
(From Instruction Register to Control Unit)

To PC (Program
Counter)

To Memory
To ALU

To Register FileTo Instruction 
Register

To Mux

Figure 4. A sample MCI Control Unit

  
Control signals are issued from the Control 

Unit during the ‘Decode stage’ according to the 
opcode transferred from a fetched instruction. 
After defining control signals for all 
instructions, students need to assemble control 
signals by designing a Control Unit with input 
(opcode) and outputs (control signals). Figure 4 
shows the MIPS MCI Control Unit, which has 
13 control signals as an example in [1]. Once 
this is done by building the data path with 
control signals, the next step is to build the 
Finite State Machine (FSM) to implement 
instructions through MultiCycle 
Implementation. The sample FSM is shown in 
Figure 5. 

 
Fetch

MemRead
ALUSrc = 0
IorD = 0
IRWrite
ALUSrcB = 01
PCWrite
PCSource = 00

Start

Decode

ALUSrcA = 0
ALUSrcB=11
ALUOp = 00

Op = Jump

Execute

Op = load & sto
re

Execute
Memory Access
Write Back

O
p 

= 
R-

Fo
rm

at

Execute
Memory Access
Write Back

O
p = Branch

Execute
Control signals for

Figure 5. A sample FSM for MCI Implementation

 
 
 
 
 
 

C (Code) Procedure 
 
entity cpu_datapath is
port(clk,reset,zflag,stop : in std_logic;

drdata,daluout: in std_logic_vector(15 downto 0);
dr1addr,dr2addr,dwaddr: out std_logic_vector(2 downto 0);
dmem_address : out std_logic_vector(7 downto 0);
dwdata,alua,alub,pc_in: out std_logic_vector(15 downto 0);
dr1data,dr2data,pc_out: in std_logic_vector(15 downto 0);
fun : out std_logic_vector(2 downto 0);

pcwritecond,pcwrite,iord    : in std_logic;
memtoreg: in std_logic;
irwrite,alusrca,regdst : in std_logic;
pcsource,alusrcb            : in std_logic_vector(1 downto 0);
addr : in std_logic_vector(7 downto 0);
tdata : in std_logic_vector(15 downto 0);
dtdata : out std_logic_vector(15 downto 0);
pc_load : out std_logic);

end cpu_datapath;
architecture ab of cpu_datapath is
-- pc
signal PCLoad : std_logic;
signal pcout : std_logic_vector (15 downto 0);
signal pcin  : std_logic_vector (15 downto 0);
-- imem
signal mem_address:     std_logic_vector(7 downto 0);
signal      instruction_reg: std_logic_vector(15 downto 0);
signal      addr1:     std_logic_vector(7 downto 0);
. . . . . . .

PC

Instruction 
Memory

Figure 6. A sample VHDL coding for datapath, 
control unit. 

 
Since the computer architecture class is an 

intermediate undergraduate course in most 
computer engineering schools, programming 
languages such as C/C++ or VHDL/Verilog 
would be prerequisites for computer architecture 
in general.[4] 

 
In section 2.1, students could design 

instructions, datapath, and the control unit for 
their own purposes. The next step is to write the 
code for the datapath components and control 
unit. For example, students would write a code 
for Register File (consisting of 32 registers) and 
control signals to update it. Figure 6 shows a 
sample VHDL datapath coding for 
cpu_datapath, PC, and instruction memory 
(imem). 

 
After coding the datapath and control unit, 

students could write a code to implement each 
instruction as a Finite State Machine (FSM). 
Figure 7 shows a code for control signals, 
Instruction Fetch (IF) stage, and Instruction 
Decode (ID) stage for the FSM in Figure 5. 
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main: process (pstate'transaction,inst,clk_count)
variable ll : line;
variable ic : integer := 0;
variable cpi : real := 0.0;
begin
pcwritecond <= '0'; pcwrite <= '0'; iord <= '0';com <= 'Z';
memread <= '0'; memwrite <= '0'; memtoreg <= '0';
irwrite <= '0'; alusrca <= '0'; regdst <= '0'; …….

case pstate is
when zero =>
if(reset = '0') then nstate <= one;
else memwrite <= '0'; nstate <= zero;
end if;
when one =>    
if(pstate'active) then

iord <= '0'; memread <= '1'; irwrite <= '0';
alusrca <= '0'; alusrcb <= "01"; aluop <= "0000";
pcsource <= "00"; pcwrite <= '1'; ic := ic+1
nstate <= two;

end if;                  
when two =>
alusrca <= '0'; alusrcb <= "11"; irwrite <= '1'; 
aluop <= "0000"; nstate <= three; 
. . . . . . . . . . . 

Initialize all 
control signals

IF Stage

ID Stage

Figure 7. A sample VHDL coding for FSM in 
Figure 5. 

 
T (Test) Procedure 

 
After students complete the Design and Code 

procedure, they need to test their architecture 
with the test program. The input for the 
simulator would be a sequence of designed 
instructions converted from the test program. 
After the instructions (machine code) are placed 
into Memory, all instructions would be fetched 
from Memory according to PC and be executed 
in the simulator. The output of the simulator 
would be placed in the Register file or Memory 
for the test program. So, students need to print 
the contents of the Register file and Memory to 
verify whether the simulator works properly or 
not. The steps for T procedure are: 1) Input 
operations − Clear contents of Memory and 
Register File, and place the instructions 
(machine code) into Memory and initialize PC; 
2) Execution of instructions − Print initial 
contents of Memory and Register File, and 
Execute the instruction by feeding it into the 
FSM; and 3) Output operation − Print final 
contents of Memory & Register File after 
executing the instructions.  

 
After completing the DST procedures, students 

are required to prepare and submit a final 
project report. The final report would include 
the following: 

- An explanation of the architecture (datapath 
and control unit); 

- A discussion of how to test the architecture; 
- A discussion of errors in the architecture; 
- A discussion of how to optimize the errors; 
- Simulation results. 
 

Grading  Projects  and  student’s  Evaluation 
 

The grading for the DCT project is mainly 
based on the work for the three procedures 
(DCT). For D (Design) procedure, we need to 
check the efficiency of the designed ISA and the 
usage of clocking methodology (rising edge 
trigger or falling edge trigger). For C (Code) 
procedure, the major point is to check whether 
each instruction works properly or not. For T 
(Test) procedure, the whole test procedure 
would be checked with the results. In addition to 
the DCT grading, we need to check the 
discussion among team members since the goal 
of the project is to share ideas and get a clear 
concept through discussion.   
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Figure 8. Grading for DCT project (Fall semester, 2004)

    As a case study, Figure 8 shows the project 
grading for a DCT project (Fall semester, 2004 
at Mississippi State University). There were 14 
teams (2 to 3 students per team). Their final 
reports for the DCT project were graded based 
on efficiency (20%), clocking methodology 
(10%), correctness (30%), testing (15%), results 
(15%), and discussion (10%). 

 
Figure 8 shows that most students (71.0%) got 

grade A (more than 90%) and other students 
(26.3%) had grade B (between 80% and 90%) 
except 1 student (2.6%). Therefore, we could 
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say the DCT project was successful to let 
students understand the concepts and design 
process for the 32-bit ISA as a computer 
architect. 

 
Figure 9 shows the evaluation from computer 

architecture (ECE4713) students in Fall 2004 at 
Mississippi State University. In Figure 9, most 
of the students (84.2%) responded that they 
learned a great deal about fundamental-level 
datapath design and concepts since the DCT 
project is easy to follow and a good experience 
for getting a grasp on a professional career. 
Especially, they mentioned that the project was 
closely related to the class work. However, there 
were 5 students (13.1%) who did not agree like 
the project since they wanted more detailed 
guidelines regarding how to write a simulator, 
and some students wanted to use a FPGA 
hardware design instead of a software 
simulation program. Therefore, we believe that 
it is feasible to expand the DCT project from 
hardware to a software simulator if students take 
the FPGA class as a prerequisite for the 
computer architecture class. 

 
Good Project to learn: Do you agree the team project is a good 
way to learn about MCI implementation and concept?

Good team member work: Do you agree the team project is a 
good method to work with other team members?

0
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15

20
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1 2 3 4 5

Good project to learn

Good team member work

1: strongly disagree; 3: Neither agree nor disagree; 5: strongly agree

 Figure 9. Student Evaluation for the project (38 
students and Fall semester, 2004). 

 
Figure 9 also shows that 30 students (78.9%) 

responded that the team project (2 to 3 students 
per team) would be a good method to work with 
other members since they could share ideas and 
re-establish the concept clearly by discussing 
the DCT procedures step by step. However, 6 

students (15.7%) responded that they did not 
agree since some team members did not attend 
team meetings at all during the project, and 
there was some difficulty in finding good team 
members in a short period of time. Therefore, it 
would be necessary for an instructor to help 
students who cannot find a team by using 
communication tools such as class email or 
bulletin board. In addition, it is required to let 
students write a contribution report for their 
work to differentiate some students who do not 
attend the project actively. 

 
The project term in Figure 9 was from Nov. 

11, 2004 to Dec. 3, 2004 and there was a 
Thanksgiving break (from Nov. 23 to Nov. 28, 
2004) for one week. Because of the break, most 
students were short of time to finish the project 
on time. Therefore, it would be better to start the 
project one week earlier than Nov. 11, 2004. 
Another valuable comment from students was 
that they wanted to have feedback regarding 
their project results. So it would be a good idea 
to open their project grading with comments 
before the final exam as well. 

 
Conclusion 

 
There have been so many software tools 

developed to teach computer engineering 
courses such as computer architecture. 
Traditionally, those tools have many options to 
choose from for proper operations and consist of 
a lengthy line of code to figure out. Therefore, it 
is possible for students to figure out the options 
first and then to learn the operations through the 
tools. In addition, since the tools used to have 
limited functions to operate, it is difficult to 
design a different type of instruction with the 
tools. Therefore, those tools can be used to let 
students understand the limited operations 
instead of creative design since they lack 
experience of the designing process.  

 
This paper introduces DCT procedures to 

accommodate students to design an ISA with 
their own ideas by: 1) Designing instructions, 
datapath, and control unit; 2) Coding the 
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simulator for the architecture from step 1); and 
3) Testing the architecture through the simulator 
with a test program. 

 
According to the grading project and student 

evaluation from Mississippi State University, 
we found that the DCT procedures worked 
successfully for the undergraduate level 
computer architecture class since most students 
(97.3%) who participated in the DCT project 
had As and Bs for their grades and 78.9% of the 
students evaluated the project as favorable 
(agree and strongly agree) since they could 
learn fundamental concepts and the design 
process clearly and gain confidence in the area 
of computer architecture.     
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