
COMPUTERS IN EDUCATION JOURNAL 95

AN INSTRUCTIONAL PROCESSOR DESIGN USING
VHDL AND AN FPGA

Ronald J. Hayne

Department of Electrical and Computer Engineering
The Citadel

Abstract

Most modern processors are too complex to be
used as an introductory design example. Many
digital design courses and texts use hardware
description language models of processors, but
they are often ad hoc. What is needed is a basic
processor with sufficient complexity, that can be
modified, programmed, and tested.

An instructional processor has been developed
for use as a design example in an Advanced
Digital Systems course. The architecture is
separated into teachable subsets. The data path
contains the registers and interconnecting busses,
while the controller implements the fetch, decode,
and execute sequences. The VHDL model of the
system can be simulated to demonstrate operation
of the processor.

The instructional processor is now in its second

iteration with an updated controller design and a
new microcontroller extension. Results from
student homework assignments indicate that they
are able to successfully design modifications to
the processor and demonstrate their function via
simulation. The project continues to achieve its
goal as a valuable instructional tool.

Introduction

Teaching Advanced Digital Systems involves
use of many design examples including counters,
registers, arithmetic logic units, and memory. The
design of a computer processor combines these
components into an integrated digital system.
Most modern commercial microprocessors are too
complex to be used as an introductory example
of processor design. Hardware description
language models of these processors exist, but are
often ad hoc and don't divide the architecture into
teachable subsets [1,2]. Other microprocessor
designs are part of a larger or follow-on course in
computer architecture [3,4]. What is needed is a

basic processor with sufficient complexity to
illustrate major design elements, that can be
modified, programmed, and tested.

An instructional processor has been developed
for use as an integrated design example in an
Advanced Digital Systems course at The Citadel.
The architecture is separated into the data path and
a sequential controller. The data path contains the
memory, registers, arithmetic logic unit (ALU),
and interconnecting busses, based on models
developed throughout the course. The controller
implements the fetch, decode, and execute
sequences, using basic state machine design
techniques. The entire system is modeled in
VHDL and can be simulated to demonstrate
operation of the processor. A field programmable
gate array (FPGA) implementation also provides a
functional hardware version of the processor.

Instruction Set Architecture

The instruction set architecture of the example
processor has been designed to illustrate multiple
operations and basic addressing modes. It is
based on a three bus organization of a 16-bit data
path with a four word register file (REGS). Key
registers include: program counter (PC),
instruction register (IR), memory data register
(MDR), and memory address register (MAR).
The basic processor has a 256 word by 16-bit
memory (MEM) for storing both programs and
data. The complete data path is shown in Figure 1
[5].

The initial implementation of the instructional

processor includes opcodes for move (MOVE),
add (ADD), and conditional branch (BGTZ), with
the capability to modify or supplement these
instructions. Access to operands from registers
and memory includes provisions for direct
(absolute), indirect, and immediate addressing
modes. The resulting instruction format contains
fields for the opcode (OP), operand source (SRC),

96 COMPUTERS IN EDUCATION JOURNAL

Figure 1: Data Path for Instructional Processor.

and operand destination (DST), as shown in
Figure 2 [5].

The instruction set and addressing modes have
been chosen to provide a basis to illustrate
fundamental programming concepts. These
include data transfer, counting, indexing, and
looping. A simple assembly language program,
shown in Figure 3, calculates the sum of an array
of numbers to demonstrate these concepts. The
example programs are translated into machine
code and loaded into memory for testing.

Design of the instructional processor is taught in
sections covering the instruction set architecture,
followed by implementation of the data path, and
finally the fetch, decode and execute sequences
for the control unit. Each component is modeled
in VHDL and functionally verified using
ModelSim [6]. Student homework assignments
then involve modification of the VHDL model to
implement additional instructions. The upgraded
processor is verified by the students via execution
of their own test programs.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP SRC DST VALUE IR

 Mode REG # Name Syntax Effective Address

SRC

00 00-11 Register Direct Rn EA = Rn
01 00-11 Register Indirect (Rn) EA = [Rn]
10 vv Immediate #Value Operand = Value
11 vv Absolute Value EA = Value

 Mode REG # Name Syntax Effective Address

DST 0 00-11 Register Direct Rn EA = Rn
1 vv Absolute Value EA = Value

 vv = Upper 2 bits of Value
OP Fn Assembly Language Register Transfer Notation
000 MOVE MOVE SRC,DST DST ← SRC
001 ADD ADD SRC,DST DST ← SRC + DST
...

110 BGTZ BGTZ #Value PC ← PC + Value (> 0)
111 HALT HALT Stop ← 1

Figure 2: Processor Instruction Format.

COMPUTERS IN EDUCATION JOURNAL 97

 MOVE N,R1
 MOVE #NUM1,R2
 MOVE #0,R0
LOOP ADD (R2),R0
 ADD #1,R2
 ADD #-1,R1
 BGTZ LOOP
 MOVE R0,SUM
 HALT

Figure 3: Assembly Language Program.

Control Unit Design

The control unit for the instructional processor

is a hardwired controller which generates control
signals using a control step counter and the
various fields from the instruction register. The
organization of the control unit is shown in Figure
4 [5]. The unit is designed as a finite state
machine which implements the fetch, decode, and
execute sequences for the instruction set
architecture.

The first phase of the controller design includes
the instruction fetch from memory into the
instruction register. The sequence of steps is
determined by the control step counter, T0
through T2. The required operations are written
in register transfer notation (RTN) and translated
into the appropriate control signals, as shown in
Figure 5. The instruction is then decoded and an
execute sequence is determined for each
combination of opcode and addressing mode. A
sample instruction, MOVE Rs,Rd, uses register
direct addressing for the source (S0), and register
direct addressing for the destination (D0). The
RTN and control signals for this instruction are
shown in Figure 6.

VHDL Model

The VHDL model for the instructional processor

is developed in phases, with new capabilities
added in each phase. Phase 1 includes the
components of the data path, which have been
developed throughout the course. These include

Figure 4: Control Unit Organization.

Control Step
Counter

T0 T7. . .

STATUS
N

Instruction
DCD

I0

I7

. . .

. . .

. . .

S0

S3

D0

D1

. . .

SRC_MODE
DCD

DST_MODE
DCD

Encoder

Control
Signals

Stop Clear

CLK

Step DCD

IR C

98 COMPUTERS IN EDUCATION JOURNAL

Step RTN Control Signals
T0 MAR ← PC, PC ← PC + 1 BUS_B <= PC

ALU_OP <= Pass_B
Load_MAR <= ‘1’
Inc_PC <= ‘1’

T1 MDR ← MEM(MAR) MEM_Read <= ‘1’
Load_MDR <= ‘1’

T2 IR ← MDR BUS_B <= MDR
ALU_OP <= Pass_B
Load_IR <= ‘1’

Figure 5: Instruction Fetch Sequence.

Step RTN Control Signals
T3 R(D) ← R(S) REGS_Read1 <= ‘1’

ALU_OP <= Pass_A
Load_STATUS <= ‘1’
REGS_Write <= ‘1’
Clear <= ‘1’

Figure 6. Instruction Execute for MOVE Rs,Rd.

-- Data Path
REGS: REG4 port map (CLK, REGS_Read1, REGS_Read2, REGS_Write,

 SRC_REG, DST_REG, BUS_C, BUS_A, BUS_B);
ALU: ALU16 port map (ALU_OP, ALU_A, BUS_B, BUS_C, N, Z, V, C);
MEM: MEM256 port map (CLK, MEM_Read, MEM_Write, MAR, MDR, MEM_Out);

Figure 7. VHDL Model for Data path.

the registers, ALU, and memory shown in Figure
1. A portion of the VHDL data path is shown in
Figure 7.

Implementation of the controller follows the
state machine design techniques used in many
previous examples in the course. The VHDL
model follows directly from the control signals
derived in the previous section. A portion of the
control unit implementing the instruction fetch
sequence from Figure 5 is shown in Figure 8. The
execute sequence for the MOVE instruction in
Figure 6 is also shown in Figure 9.

Functional verification of the VHDL model is

accomplished via simulation using sample
assembly language programs translated into
machine code. The program is loaded into
memory as part of the VHDL model as shown in
Figure 10. Simulation with ModelSim produces

the waveform shown in Figure 11. This
waveform demonstrates the correct fetch and
execute sequence for the Phase 1 data transfer
instructions.

Phase 2 of the design process includes

development of execution sequences for the
remaining instructions and addressing modes
necessary to implement the sample assembly
language program from Figure 3. This example
program is sufficient to demonstrate fundamental
programming concepts such as counting,
indexing, and looping. The resulting processor is
again verified via functional simulation using
ModelSim. While the instructional processor is
now capable of executing the sample program, a
number of instructions and addressing modes are
still incomplete and can serve as student
homework exercises.

COMPUTERS IN EDUCATION JOURNAL 99

 Control : process(STEP, IR,
 STATUS)
 begin
 case STEP is -- Fetch
 when T0 =>
 BUS_B <= X"00" & PC;
 ALU_OP <= Pass_B;
 Load_MAR <= '1';
 Inc_PC <= '1';
 when T1 =>
 MEM_Read <= '1';
 Load_MDR <= '1';
 when T2 =>
 BUS_B <= MDR;
 ALU_OP <= Pass_B;
 Load_IR <= '1';

Figure 8: VHDL Model for Control Unit Fetch.

 case OP is -- Execute
 when MOVE =>
 case SRC_MODE is
 when S0 =>
 case DST_MODE is
 when D0 => -- MOVE Rs,Rd
 case STEP is
 when T3 =>
 REGS_Read1 <= '1';
 ALU_OP <= Pass_A;
 Load_STATUS <= '1';
 REGS_Write <= '1';
 Clear <= '1';

Figure 9: VHDL Model for Control Unit Execute.

architecture Behave of MEM256 is
 type RAM256 is array (0 to 255) of unsigned(15 downto 0);
 signal MEM256: RAM256 := (X"1043", -- 00 MOVE #3,R1
 X"0280", -- 01 MOVE R1,R2
 X"E000", -- 02 HALT
 others => X"0000"); -- 03-FF;

Figure 10: VHDL Model for Memory.

Figure 11: VHDL Simulation Waveform.

100 COMPUTERS IN EDUCATION JOURNAL

Student Homework Assignments

Student homework assignments involve

expansion of the instructional processor by adding
new addressing mode and opcode combinations.
For example the assembly language instruction
MOVE (Rs),Rd uses register indirect
addressing for the source (S1) and register direct
addressing for the destination (D0). Students must
first determine the correct RTN sequence
necessary to execute the instruction. Then, they
translate the RTN sequence into the appropriate
control signals for the data path.

The VHDL model for the execute sequence for

the added instructions follows directly from the
RTN and control signals developed by the
students. By adding their VHDL sequence to the
instructional processor model provided by the
professor, the students then have a functional
model of the processor which can be tested via
simulation. Students encode their assembly
language instructions into machine code and load
them into the VHDL memory model. The entire
model is then simulated with ModelSim to verify
correct functioning of the students new
instructions.

Students can also add new branch instructions to

the processor. The HALT instruction from the
Phase 1 model can be readily replaced by a branch
always (BRA #Value) command. This provides
an alternate method for stopping a program by
creating an infinite loop. Unlike the data
manipulation instructions, these relative branch
instructions modify the program counter to alter
the execution sequence of the program.
Development of the RTN and control signals leads
directly to a new execute sequence for the VHDL
model.

Microcontroller Extension

Phase 3 of the processor design involves

creation of a basic microcontroller by adding
simple memory-mapped input and output to the
processor. An 8-bit parallel input port (PORTA)
and an 8-bit parallel output port (PORTB) are
mapped to fixed locations in the memory address
space. The VHDL model for the memory is easily
modified to accommodate the new ports. Users

can then interface with external devices using the
existing data transfer instructions.

The microcontroller extension also includes

addition of several new instructions: logic and
(AND), logic invert (INV), and rotate left (ROTL).
The expanded instruction set is now sufficient to
create timing loops with the ability to produce
various flashing and shifting patterns on output
LEDs. User inputs via switches provide the
ability to interact with the processor and select
specific output sequences and timing.

The VHDL model of the microcontroller was

synthesized using the Xilinx ISE design tools [7].
The resulting hardware model is mapped to a
Xilinx Spartan 3e FPGA on a Digilent Basys
board [8]. PORTA of the microcontroller is
mapped to eight input switches on the board,
while PORTB is mapped to eight LEDs. The final
hardware implementation, shown in Figure 12,
utilizes less than 25% of the FPGA resources,
leaving plenty of room for further expansion.

Results and Conclusions

Implementation of the instructional processor is

now in its second iteration with an updated
controller design and the new microcontroller
extension. The processor is used as a design
example to replace the existing MIPS micro-
processor in the current course text [1]. Because
the new design uses examples from throughout the
semester, it integrates directly into the flow of the
course. Development of the model in phases
allows separate coverage of the data path and the
sequential controller. Design of the control unit is
further subdivided into the fetch sequence and
execute sequences for instructions as they are
added to the processor.

Realization of only a subset of the processor

instructions provides sufficient capabilities to
demonstrate fundamental programming concepts
such as data transfer, counting, indexing, and
looping. Additional instructions are implemented
as student homework assignments allowing direct
application of the design techniques taught in
class. Student feedback is very positive that the
processor illustrates basic design concepts without
unnecessary complexity. Results from homework

COMPUTERS IN EDUCATION JOURNAL 101

Figure 12: FPGA Implementation of Microcontroller.

submissions indicate that the students are able to
successfully design modifications to the processor
and demonstrate their functionality via simulation.

Addition of the new microcontroller extension

provides the final link between the processor
model and actual hardware. Simulation exercises
are sufficient for functional demonstrations and
homework assignments, but the FPGA
implementation puts processor hardware in the
hands of the students. Inclusion of memory-
mapped input and output allows integration with
external devices like switches and LEDs providing
an interactive presentation of the microcontroller
system. The complete project, instruction set
architecture, VHDL model, software and
hardware, continues to achieve its goal as a
valuable instructional tool.

Bibliography

1. C. H. Roth, and L. K. John, Digital Systems

Design Using VHDL, 2nd ed., Thompson,
Toronto, Canada, 2008.

2. S. Lee, Advanced Digital Logic Design: Using

VHDL, State Machines, and Synthesis for
FPGAs, Thompson, Toronto, Canada, 2007.

3. D. M. Harris and S. L. Harris, Digital Design

and Computer Architecture, Morgan
Kaufmann, San Francisco, CA, 2007.

4. E. O. Hwang, Digital Logic and Microproces-
sor Design with VHDL, Thompson, Toronto,
Canada, 2006.

5. R. J. Hayne, "VHDL Projects to Reinforce

Computer Architecture Classroom Instruc-
tion," Computers in Education Journal, Vol.
XVIII No. 2, April - June 2008.

6. ModelSim PE Student Edition, Mentor

Graphics Corp., 2010.

7. Xilinx ISE 10.1i Software Manuals, Xilinx,

Inc., 2008.

8. Digilent Basys Board Reference Manual,

Digilent Inc., 2007.

Biographical Information

Ronald J. Hayne is an Assistant Professor in the
Department of Electrical and Computer
Engineering at The Citadel. He received his B.S.
in Computer Science from the United States
Military Academy in 1980, his M.S. in Electrical
Engineering from the University of Arizona in
1987, and his Ph.D. in Electrical Engineering from
the University of Virginia in 1999. Dr. Hayne's
professional areas of interest include digital
systems design and hardware description
languages. He is a retired Army Colonel with
experience in academics and Defense Laboratories.

Processor

PORTB

PORTA

Reset

Clock

