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Abstract 
 

Most modern processors are too complex to be 
used as an introductory design example.  Many 
digital design courses and texts use hardware 
description language models of processors, but 
they are often ad hoc.  What is needed is a basic 
processor with sufficient complexity, that can be 
modified, programmed, and tested. 
 

An instructional processor has been developed 
for use as a design example in an Advanced 
Digital Systems course.  The architecture is 
separated into teachable subsets.  The data path 
contains the registers and interconnecting busses, 
while the controller implements the fetch, decode, 
and execute sequences.  The VHDL model of the 
system can be simulated to demonstrate operation 
of the processor. 

 
The instructional processor is now in its second 

iteration with an updated controller design and a 
new microcontroller extension.  Results from 
student homework assignments indicate that they 
are able to successfully design modifications to 
the processor and demonstrate their function via 
simulation.  The project continues to achieve its 
goal as a valuable instructional tool. 
 

Introduction 
 

Teaching Advanced Digital Systems involves 
use of many design examples including counters, 
registers, arithmetic logic units, and memory.  The 
design of a computer processor combines these 
components into an integrated digital system.  
Most modern commercial microprocessors are too 
complex to be used as an  introductory  example  
of  processor  design.  Hardware description 
language models of these processors exist, but are 
often ad hoc and don't divide the architecture into 
teachable subsets [1,2].  Other microprocessor 
designs are part of a larger or follow-on course in 
computer architecture [3,4].  What is needed is a 

basic processor with sufficient complexity to 
illustrate major design elements, that can be 
modified, programmed, and tested. 
 

An instructional processor has been developed 
for use as an integrated design example in an 
Advanced Digital Systems course at The Citadel.  
The architecture is separated into the data path and 
a sequential controller.  The data path contains the 
memory, registers, arithmetic logic unit (ALU), 
and interconnecting busses, based on models 
developed throughout the course.  The controller 
implements the fetch, decode, and execute 
sequences, using basic state machine design 
techniques.  The entire system is modeled in 
VHDL and can be simulated to demonstrate 
operation of the processor.  A field programmable 
gate array (FPGA) implementation also provides a 
functional hardware version of the processor. 
 

Instruction  Set  Architecture 
 

The instruction set architecture of the example 
processor has been designed to illustrate multiple 
operations and basic addressing modes.  It is 
based on a three bus organization of a 16-bit data 
path with a four word register file (REGS).  Key 
registers include:  program counter (PC), 
instruction register (IR), memory data register 
(MDR), and memory address register (MAR).  
The basic processor has a 256 word by 16-bit 
memory (MEM) for storing both programs and 
data.  The complete data path is shown in Figure 1 
[5]. 

 
The initial implementation of the instructional 

processor includes opcodes for move (MOVE),  
add (ADD), and conditional branch (BGTZ), with 
the capability to modify or supplement these 
instructions.  Access to operands from registers 
and memory includes provisions for direct 
(absolute), indirect, and immediate addressing 
modes.  The resulting instruction format contains 
fields for the opcode (OP), operand source (SRC), 
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Figure 1:  Data Path for Instructional Processor. 

and operand destination (DST), as shown in 
Figure 2 [5]. 
 

The instruction set and addressing modes have 
been chosen to provide a basis to illustrate 
fundamental programming concepts.  These 
include data transfer, counting, indexing, and 
looping.  A simple assembly language program, 
shown in Figure 3, calculates the sum of an array 
of numbers to demonstrate these concepts.  The 
example programs are translated into machine 
code and loaded into memory for testing. 
 

Design of the instructional processor is taught in 
sections covering the instruction set architecture, 
followed by implementation of the data path, and 
finally the fetch, decode and execute sequences 
for the control unit.  Each component is modeled 
in VHDL and functionally verified using 
ModelSim [6].  Student homework assignments 
then involve modification of the VHDL model to 
implement additional instructions.  The upgraded 
processor is verified by the students via execution 
of their own test programs. 

 
15 14 13 12 11 10  9 8  7  6 5  4  3  2  1  0  

OP SRC DST VALUE IR 
 

 Mode REG # Name Syntax Effective Address 

SRC 

00 00-11  Register Direct  Rn  EA = Rn 
01 00-11  Register Indirect  (Rn)  EA = [Rn] 
10 vv  Immediate  #Value  Operand = Value 
11 vv  Absolute  Value  EA = Value 

     
 Mode REG # Name Syntax Effective Address 

DST 0 00-11  Register Direct  Rn  EA = Rn 
1 vv  Absolute  Value  EA = Value 

    vv  = Upper 2 bits of Value 
OP Fn Assembly Language Register Transfer Notation 
000 MOVE  MOVE SRC,DST  DST ← SRC 
001 ADD  ADD  SRC,DST  DST ← SRC + DST 
...    

110 BGTZ  BGTZ #Value  PC ← PC + Value  (> 0) 
111 HALT  HALT  Stop ← 1 

 
Figure 2:  Processor Instruction Format. 
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     MOVE N,R1 
     MOVE #NUM1,R2 
     MOVE #0,R0 
LOOP ADD  (R2),R0 
     ADD  #1,R2 
     ADD  #-1,R1 
     BGTZ LOOP 
     MOVE R0,SUM 
     HALT 

 
Figure 3:  Assembly Language Program. 

 
Control  Unit  Design 

 
The control unit for the instructional processor 

is a hardwired controller which generates control 
signals using a control step counter and the 
various fields from the instruction register.  The 
organization of the control unit is shown in Figure 
4 [5].  The unit is designed as a finite state 
machine which implements the fetch, decode, and 
execute sequences for the instruction set 
architecture. 
 

The first phase of the controller design includes 
the instruction fetch from memory into the 
instruction register.  The sequence of steps is 
determined by the control step counter, T0 
through T2.  The required operations are written 
in register transfer notation (RTN) and translated 
into the appropriate control signals, as shown in 
Figure 5.  The instruction is then decoded and an 
execute sequence is determined for each 
combination of opcode and addressing mode.  A 
sample instruction, MOVE Rs,Rd, uses register 
direct addressing for the source (S0), and register 
direct addressing for the destination (D0).  The 
RTN and control signals for this instruction are 
shown in Figure 6. 

 
VHDL Model 

 
The VHDL model for the instructional processor 

is developed in phases, with new capabilities 
added in each phase.  Phase 1 includes the 
components of the data path, which have been 
developed throughout the course.  These include

 
 

Figure 4:  Control Unit Organization. 
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Step  RTN  Control Signals  
T0  MAR ← PC, PC ← PC + 1  BUS_B <= PC  

ALU_OP <= Pass_B  
Load_MAR <= ‘1’ 
Inc_PC <= ‘1’ 

T1  MDR ← MEM(MAR)  MEM_Read <= ‘1’ 
Load_MDR <= ‘1’ 

T2  IR ← MDR  BUS_B <= MDR 
ALU_OP <= Pass_B  
Load_IR <= ‘1’ 

 
Figure 5:  Instruction Fetch Sequence. 

 
Step  RTN  Control Signals  
T3  R(D) ← R(S) REGS_Read1 <= ‘1’  

ALU_OP <= Pass_A  
Load_STATUS <= ‘1’ 
REGS_Write <= ‘1’ 
Clear <= ‘1’ 

 
Figure 6.  Instruction Execute for MOVE Rs,Rd. 

 
-- Data Path 
REGS: REG4 port map (CLK, REGS_Read1, REGS_Read2, REGS_Write,  

                       SRC_REG, DST_REG, BUS_C, BUS_A, BUS_B); 
ALU: ALU16 port map (ALU_OP, ALU_A, BUS_B, BUS_C, N, Z, V, C); 
MEM: MEM256 port map (CLK, MEM_Read, MEM_Write, MAR, MDR, MEM_Out); 

 
Figure 7.  VHDL Model for Data path. 

 
 
the registers, ALU, and memory shown in Figure 
1.  A portion of the VHDL data path is shown in 
Figure 7. 
 

Implementation of the controller follows the 
state machine design techniques used in many 
previous examples in the course.  The VHDL 
model follows directly from the control signals 
derived in the previous section.  A portion of the 
control unit implementing the instruction fetch 
sequence from Figure 5 is shown in Figure 8.  The 
execute sequence for the MOVE instruction in 
Figure 6 is also shown in Figure 9. 

 
Functional verification of the VHDL model is 

accomplished via simulation using sample 
assembly language programs translated into 
machine code.  The program is loaded into 
memory as part of the VHDL model as shown in 
Figure 10.  Simulation with ModelSim produces  

 
the waveform shown in Figure 11.  This 
waveform demonstrates the correct fetch and 
execute sequence for the Phase 1 data transfer 
instructions. 

 
Phase 2 of the design process includes 

development of execution sequences for the 
remaining instructions and addressing modes 
necessary to implement the sample assembly 
language program from Figure 3.  This example 
program is sufficient to demonstrate fundamental 
programming concepts such as counting, 
indexing, and looping.  The resulting processor is 
again verified via functional simulation using 
ModelSim.  While the instructional processor is 
now capable of executing the sample program, a 
number of instructions and addressing modes are 
still incomplete and can serve as student 
homework exercises. 
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 Control : process(STEP, IR,   
                   STATUS) 
 begin  
  case STEP is -- Fetch 
   when T0 => 
    BUS_B <= X"00" & PC; 
    ALU_OP <= Pass_B; 
    Load_MAR <= '1'; 
    Inc_PC <= '1'; 
   when T1 => 
    MEM_Read <= '1'; 
    Load_MDR <= '1'; 
   when T2 => 
    BUS_B <= MDR; 
    ALU_OP <= Pass_B; 
    Load_IR <= '1'; 

 
Figure 8:  VHDL Model for Control Unit Fetch. 

 

 case OP is  -- Execute 
  when MOVE => 
   case SRC_MODE is 
    when S0 => 
     case DST_MODE is 
      when D0 =>  -- MOVE Rs,Rd 
       case STEP is 
        when T3 => 
         REGS_Read1 <= '1'; 
         ALU_OP <= Pass_A; 
         Load_STATUS <= '1'; 
         REGS_Write <= '1'; 
         Clear <= '1'; 
 
Figure 9:  VHDL Model for Control Unit Execute. 
 

 
 

architecture Behave of MEM256 is 
  type RAM256 is array (0 to 255) of unsigned(15 downto 0); 
  signal MEM256: RAM256 := (X"1043",  -- 00       MOVE #3,R1 
                            X"0280",  -- 01       MOVE R1,R2 
                            X"E000",  -- 02       HALT 
                            others => X"0000");  -- 03-FF; 

 
Figure 10:  VHDL Model for Memory. 

 

 
 

Figure 11:  VHDL Simulation Waveform. 
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Student  Homework  Assignments 
 
Student homework assignments involve 

expansion of the instructional processor by adding 
new addressing mode and opcode combinations.  
For example the assembly language instruction 
MOVE (Rs),Rd uses register indirect 
addressing for the source (S1) and register direct 
addressing for the destination (D0).  Students must 
first determine the correct RTN sequence 
necessary to execute the instruction.  Then, they 
translate the RTN sequence into the appropriate 
control signals for the data path. 

 
The VHDL model for the execute sequence for 

the added instructions follows directly from the 
RTN and control signals developed by the 
students.  By adding their VHDL sequence to the 
instructional processor model provided by the 
professor, the students then have a functional 
model of the processor which can be tested via 
simulation.  Students encode their assembly 
language instructions into machine code and load 
them into the VHDL memory model.  The entire 
model is then simulated with ModelSim to verify 
correct functioning of the students new 
instructions. 

 
Students can also add new branch instructions to 

the processor.  The HALT instruction from the 
Phase 1 model can be readily replaced by a branch 
always (BRA #Value) command.  This provides 
an alternate method for stopping a program by 
creating an infinite loop.  Unlike the data 
manipulation instructions, these relative branch 
instructions modify the program counter to alter 
the execution sequence of the program.  
Development of the RTN and control signals leads 
directly to a new execute sequence for the VHDL 
model. 

 
Microcontroller  Extension 

 
Phase 3 of the processor design involves 

creation of a basic microcontroller by adding 
simple memory-mapped input and output to the 
processor.  An 8-bit parallel input port (PORTA) 
and an 8-bit parallel output port (PORTB) are 
mapped to fixed locations in the memory address 
space.  The VHDL model for the memory is easily 
modified to accommodate the new ports.  Users 

can then interface with external devices using the 
existing data transfer instructions. 

 
The microcontroller extension also includes 

addition of several new instructions:  logic and 
(AND), logic invert (INV), and rotate left (ROTL).  
The expanded instruction set is now sufficient to 
create timing loops with the ability to produce 
various flashing and shifting patterns on output 
LEDs.  User inputs via switches provide the 
ability to interact with the processor and select 
specific output sequences and timing. 

 
The VHDL model of the microcontroller was 

synthesized using the Xilinx ISE design tools [7].  
The resulting hardware model is mapped to a 
Xilinx Spartan 3e FPGA on a Digilent Basys 
board [8].  PORTA of the microcontroller is 
mapped to eight input switches on the board, 
while PORTB is mapped to eight LEDs.  The final 
hardware implementation, shown in Figure 12, 
utilizes less than 25% of the FPGA resources, 
leaving plenty of room for further expansion. 

 
Results   and  Conclusions 

 
Implementation of the instructional processor is 

now in its second iteration with an updated 
controller design and the new microcontroller 
extension.  The processor is used as a design 
example to replace the existing MIPS micro-
processor in the current course text [1].  Because 
the new design uses examples from throughout the 
semester, it integrates directly into the flow of the 
course.  Development of the model in phases 
allows separate coverage of the data path and the 
sequential controller.  Design of the control unit is 
further subdivided into the fetch sequence and 
execute sequences for instructions as they are 
added to the processor. 

 
Realization of only a subset of the processor 

instructions provides sufficient capabilities to 
demonstrate fundamental programming concepts 
such as data transfer, counting, indexing, and 
looping.  Additional instructions are implemented 
as student homework assignments allowing direct 
application of the design techniques taught in 
class.  Student feedback is very positive that the 
processor illustrates basic design concepts without 
unnecessary complexity.   Results from homework  
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Figure 12:  FPGA Implementation of Microcontroller. 

 
submissions indicate that the students are able to 
successfully design modifications to the processor 
and demonstrate their functionality via simulation. 

 
Addition of the new microcontroller extension 

provides the final link between the processor 
model and actual hardware.  Simulation exercises 
are sufficient for functional demonstrations and 
homework assignments, but the FPGA 
implementation puts processor hardware in the 
hands of the students.  Inclusion of memory-
mapped input and output allows integration with 
external devices like switches and LEDs providing 
an interactive presentation of the microcontroller 
system.  The complete project, instruction set 
architecture, VHDL model, software and 
hardware, continues to achieve its goal as a 
valuable instructional tool. 
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