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Abstract 
 

A computer model of the isentropic 
compression of a gas with temperature-
dependent specific heat capacities is presented.  
Both tabulated data and curve-fits are used to 
describe the temperature variation of the 
thermodynamic properties, and a bracketing–
bisection algorithm is used to determine the 
temperature of the air after compression. 
Students are provided with an example 
computer code from which to begin.  Thus, the 
approach as described in this study reinforces 
programming concepts from previous computer 
courses, without requiring too much effort by 
the students.  Three exercises are presented that 
make use of this computer model at different 
levels in the curriculum.  

 
Introduction 

 
The compression of gas in a steady-state, 

steady-flow (SSSF) compressor is an important 
topic that is addressed in virtually all 
engineering thermodynamics courses. A typical 
situation encountered is when the gas inlet 
conditions, temperature and pressure, are known 
and the compressor discharge pressure is 
specified. The traditional instructional approach 
is to make certain assumptions about the 
compression process and about the gas itself. 
For example, a special case often considered is 
that the compression process is reversible and 
adiabatic, i.e. isentropic. The gas is usually 
considered to be ideal, i.e. RTPv =  applies, 
with either constant or temperature-dependent 
specific heat capacities. The constant specific 
heat capacity assumption allows for direct 
computation of the discharge temperature, while 
the temperature-dependent specific heat 
assumption does not.  

In this paper, a MATLAB computer model of 
the compression process is presented. The 
substance being compressed is air which is 
considered to be an ideal gas with temperature-
dependent specific heat capacities. Two 
approaches are presented to describe the 
temperature-dependent properties of air. The 
first approach is to use the ideal gas table data 
from Ref. [1] with a look-up interpolation 
scheme. The second approach is to use a curve 
fit with the NASA Lewis coefficients [2,3]. The 
computer model developed makes use of a 
bracketing–bisection algorithm [4] to determine 
the temperature of the air after compression. 
This computer code is supplied to the students 
and discussed after the students have performed 
a detailed hand calculation. Then, students are 
required to modify the supplied computer 
program to solve additional problems. 

  
The instructional approach outlined in this 

paper accomplishes several objectives. First, 
this computer work serves as a connection 
between first-year, computer-tools courses and 
engineering science courses. At Indiana 
University-Purdue University Fort Wayne, 
students take a two-credit hour computer tools 
course in which they learn MATLAB and then 
take a two-credit hour programming course in 
which they learn C/C++ with an engineering 
emphasis. After completion of the courses, 
students are often eager to apply their skills to 
engineering problems. Unfortunately, the 
opportunities to utilize these skills are limited 
and students often question why they are 
required to take the computer classes. More 
exercises need to be developed to utilize and 
reinforce the computer skills. Second, the 
computer implementation allows students to 
easily vary the thermodynamic parameters so 
that students can develop an appreciation of the 
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limitations associated with thermodynamic 
assumptions such as the constant specific heat 
approximation. Third, the flexibility of the 
model allows for realistic extensions to the 
original problem, such as the incorporation of 
heat loss from the compressor and compressor 
efficiency. As students modify the provided 
computer code they develop additional insight 
and familiarity with thermodynamic equations 
and concepts. Finally, in later courses, the 
computer model can be modified to investigate 
more complicated situations, such as multistage 
compression with intercooling [5] or the gas 
turbine cycle [6]. Examples of how these 
objectives are achieved are provided and 
discussed. 

  
Governing  Equations 

 
In this section, the relevant equations to 

describe the compression of an ideal gas are 
summarized. A similar presentation can be 
found in most undergraduate thermodynamics 
texts, e.g. Refs. [1,7,8]. The equation 
development is included here for completeness. 

  
Work of Compression 

  
For steady-state, steady-flow through an 

adiabatic compressor with one inlet and one 
outlet, the compression work per unit mass is 
given by the First Law of Thermodynamics as 

  
                            ,                           (1) 12 hhwcomp −=
 

where the subscripts 1 and 2 denote the inlet and 
outlet and changes in kinetic and potential 
energy have been neglected. Note that the work 
of compression in Eq. (1) is defined to be 
positive. 

  
For an ideal gas, the change in enthalpy for a 

process is related to the change in temperature 
by the constant pressure specific heat, i.e. 

 
                                .                              (2) dTcdh p=
 
 

In general, the specific heat capacities of gases 
are functions of temperature. Curve-fits of the 
specific heat for many gases as a function of 
temperature have been developed [2,3]; thus, the 
change in enthalpy needed to calculate the work 
in Eq. (1) can be found via integration, i.e. 

  
                            .                      (3) ∫=−
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1
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For the case in which the specific heat 

capacities are constant, the change in enthalpy 
in Eq. (3) is simply related to the temperature 
difference, i.e. 

  
                             ( 1212 TTchh p −= )− .                (4) 
 
When the heat capacities depend on 

temperature, the relationship between the 
temperature and enthalpy is more complicated. 
With the use of properties of integration, Eq. (3) 
can be rewritten in a more convenient form, i.e. 

 

                 ,             (5) ∫∫ −=−
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where  is a suitably chosen reference 
temperature. Equation (5) is more convenient 
than Eq. (3) because the integrals are now 
functions of a single temperature (and the 
reference temperature), and thus the integral 
terms can be expressed as 

0T

 
                                                    (6) ( ) ∫≡

T

T pdTcTh
0

0

 
and tabulated as a function of 
temperature [1,7,8].  If the temperatures at the 
inlet and outlet are known, Eqs. (4) and (5) 
indicate that the work of compression can be 
calculated.  

 
However, an important thermodynamic 

process is the compression of gas from a known 
inlet temperature  and pressure  to a 
specified outlet pressure , i.e. the outlet 
temperature is not known. (See Fig. 1 for a 
schematic of the  compressor and the process on  

1T 1P

2P
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a T -  diagram.) To proceed with the analysis 
of this process, another thermodynamic property 
is required to fix the outlet temperature. For an 
ideal (i.e. reversible), adiabatic compressor the 
process is isentropic, which implies that 

s

21 ss = . 
Thus, two properties,  and , are available to 
fix the outlet temperature, .  For the 
isentropic compression of a gas with constant 
specific heats,  can be calculated directly, 
while for a gas with temperature-dependent 
specific heats a numerical solution is required.  

2P 2s
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Figure 1. Schematic of the single-stage 
compressor and T -  diagram. s

 
Change in Entropy 

  
As a starting point to derive an expression for 

the change in entropy, recall the second Gibb’s 
relationship, viz.  

 
                                                      (7) vdPdhTds −=
 

that is valid for all compressible substances 
undergoing an infinitesimal process. 
Equation (7) can be used to find the change in 
entropy for an ideal gas with division by T , 
substitution of , and application of 
the ideal gas equation, i.e. , which 
yields  

dTcdh p=

PRTv // =

 

                          
P

dPR
T
dTcds p −=  .                    (8) 

 
Integration of Eq. (8) from state 1 to state 2 

yields  
 

               ∫∫ −=−
2
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which following an approach similar to that 
described above, can be rewritten in a more 
convenient form, viz.  
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where  is a suitably chosen reference 
temperature.  Equation (10) is more convenient 
than Eq. (9) because the integrals, denoted as  

0T

 

                            ( ) ∫≡
T

T p T
dTcTs

0

0  ,                   (11) 

 
are now functions of a single temperature (and 
the reference temperature and pressure) and, for 
cases in which the variation of  is known, can 
be evaluated and tabulated. 

pc

  
In the case when the specific heat capacities 

are constant, the integration in Eq. (10) can be 
performed to yield 

  
( 121212 /lnlnln PPRTcTcss pp − )−=−  ,        (12) 

 
where the reference temperature has been 
cancelled.  For an isentropic process, the change 
in entropy is zero which implies that 21 ss = . 
The ideal adiabatic compression process is 
isentropic. Moreover, the first step in the 
analysis of a non-ideal compression process is 
often the isentropic analysis. Therefore, 
isentropic compression is an important process 
to be modeled.   For an isentropic process, 
Eq. (12) becomes 

  
                                ,           (13) ( ) kkPPTT /1

1212 // −=
 

where vp cck /=  and the relationship 
( ) kkcR p /1/ −=  was used. For the problem 

under consideration in this paper, , , and  
are assumed to be known. Thus, the outlet 
temperature  can be calculated directly for a 

1T 1P 2P

2T
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gas with constant specific heats.  For the case of 
temperature-dependent  specific  heats,  Eq. (10) 
becomes  

 
( ) ( ) ( ) ( )121

0
2

0
2 /ln0 PPRTsTsTF −−==  .      (14) 

 
Equation (14) can be used to determine the 

unknown outlet temperature . The appropriate 
value of the temperature is the value of  that 
makes . Thus, the determination of the 
outlet temperature can be accomplished by 
finding the root of a nonlinear equation.  

2T

2T
( ) 02 =TF

 
Temperature-Dependent  Specific  

 Heat  Capacities 
 
In this work two approaches are discussed to 

calculate the enthaply  and entropy  for an 
ideal gas. The first approach is to simply use 
tabulated data found in standard 
thermodynamics texts such as Ref. [1,7,8]. The 
enthalpy and entropy of a gas with temperature-
dependent specific heats from Ref. [1] are 
shown in Fig. 2. Because only differences in the 
properties are important, the data is plotted with 
a reference temperature of 298.15 K, 
i.e.  and . 
Also shown in Fig. 2 are the enthalpy and 
entropy of a gas with constant specific heats, i.e.  

h s

( ) ( )15.29800 hTh − ( ) ( )15.29800 sTs −
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Figure 2. Effect of the temperature on ( ) ( )15.29800 T − hh  and ( ) ( 15.29800 sTs − ) . 

 

( ) ( ) ( 15.29815.298 0
15.298

000 −=−=− TchhhTh p )  (15) 
 
and  
 
( ) ( ) ( ) ( )[ ]15.298lnln15.298 0

15.298
000 −=−=− TcsssTs p  ,  

                                                                                     (16) 
 

where  004.1=pc  kJ/kg-K. Agreement between 
the temperature-dependent specific heat 
properties and the constant specific heat 
properties is best at lower temperatures. As 
expected all properties in Fig. 2 are zero at 

15.298=T  K. 
 
The second approach to describe the 

temperature variation of the specific heats 
discussed in this paper makes use of the curve 
fits given in Ref. [3]. The forms of the fits are 

  
4

7
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                                                                                     (17) 
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and  
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where the coefficients are given in Ref. [3] (and 
in the subroutine in Appendix B). One set of 
coefficients is valid for  K, and one 
set is valid for  K. There is no 
noticeable difference when Eqs. (18) and (19) 
are plotted in the same form as in Fig. 2. In fact, 
the percent error between the tabulated values 
and the curve fit is less than 0.1% over the range 

 K.  

10000 << T
60001000 << T

30000 << T
 

Bracketing/Bisection  Routine 
 
In this section, a modified version of the 

bracketing–bisection routine of Ref. [4] is 
discussed. This routine is dependent on the 
physical situation of the problem considered, 
i.e. compression of a gas and the form of the 
function considered is shown in Fig. 3. If the 
physical situation differs, say the gas is 
expanding, the form of the function will change 
and the code must be modified accordingly.  

 
 

Tlow

Thigh

F(T)

T

 
 

Figure 3. Graph of the type of  
functions considered. 

 
Bracketing  

 
The first step to find the solution to the 

equation  is to bracket the root with 
two temperatures  and . This 
accomplished by starting at the initial 
temperature  and incrementing the high 
temperature by 100 K until the product 

( ) 0=TF

lowT highT

1TTlow =

( ) ( ) 0<× highlow TFTF . This subroutine returns 
two bracketing temperatures.  

Bisection 
  
The next step to find the root is to successively 

halve the overall interval  and select 
the half that contains the root. It can be shown 
[4] that to achieve an accuracy of less than 

lowhigh TT −

ε±  
in the temperature  the maximum number of 
interval halving steps required is given by 

2T

( ) 2ln//ln εT∆ , where .  lowhigh TTT −=∆
 

Discussion  of  Exercises 
 
In this section, three typical exercises that 

involve the above material are presented. In the 
first exercise, students simply use the supplied 
code to solve a test problem and then make 
minor parameter adjustments and solve a similar 
problem. In the next two exercises, students 
modify the computer code provided in the first 
exercise. These three exercises were designed to 
be given in successive thermal science courses, 
but they can be used in one course if time 
permits. 

  
Exercise 1: Consider the isentropic 

compression of air at 300 K, 
100 kPa to a pressure of 
1600 kPa in a SSSF device. 
Calculate the outlet temperature 
and the specific work required. 

   
This first exercise is a typical problem 

encountered in an introductory thermodynamics 
course taken by sophomore students. First, this 
problem is solved in detail on the board with the 
constant specific heat assumption and tabulated 
data. Next, students are provided a copy of the 
computer code in Appendix A and the computer 
output as shown in Fig. 4. The computer code is 
carefully explained. The code in Appendix A 
uses table look-up and interpolation for the 
thermodynamic properties and bracketing–
bisection to solve for the temperature after 
compression. The table look-up interpolation 
scheme is easily implemented in MATLAB 
using the function interp1. The table look-up 
routine can be replaced by the NASA curve-fit 
routines provided in Appendix B. Students are 
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required to type in the code, reproduce the 
results in Fig. 4, and then solve a similar 
problem with different inlet conditions as a 
homework assignment. 

 
 

 
Figure 4. Computer output from isentropic_ 

compression.m (see Appendix A) demonstrating 
the bracketing–bisection procedure. 
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Figure 5. Effect of the pressure ratio on outlet temperature  for air with an inlet temperature of 

300 K (left) and 1000 K (right). 
2T

 
 

Exercise 2:  Consider the isentropic 
compression of air in a SSSF 
device. Calculate the final 
temperature for pressure ratios 
from 2 to 25 using both the 
constant and variable specific 
heat model. Consider inlet 
temperatures of 300 K and 
1000 K. 

   
This next exercise is suitable for junior/senior 

students in a second thermodynamics course. In 
this exercise, students are provided a copy of 
Exercise 1 which is discussed briefly, and then 
they are assigned the second exercise as a 
homework problem/computer project.  

 
The solution to this problem requires several 

modifications to the code in Appendix A. First, 
students are instructed to remove the bracketing 
demonstration loop and the print statements in 
the subroutines. Then, the students are briefly 
reminded of how to use loops and plot functions 
using MATLAB. Sample results from this 
exercise are provided in Fig. 5. The constant 
specific heat approximation shows better 
agreement with the temperature-dependent 
specific heat results at lower pressure ratios and 
at lower inlet temperatures. 
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Exercise 3: Consider the compression of air 
at pressure of 100 kPa to a 
pressure of 1600 kPa, in two-
stage SSSF compressor with 
intercooling, as shown in Fig. 6. 
Determine the intermediate 
pressure  to minimize the 
compressor work.   Consider 
inlet temperatures of 300 K and 
1000 K. 

xP

  
This final exercise has been given as a project 

to students in a thermal science elective course 
entitled Design and Optimization of Thermal 
Systems. Students were first given a copy of the 
computer code in Appendix A, and the solution 
to Exercise 1 was presented in class.  

 
A schematic of a two-stage compressor with 

intercooling is shown in Fig. 6.  The T -  
diagram for this process is also shown.  The 
solution to Exercise 3 requires significant 
modification to the supplied computer code.  
Students must model two compressors and 
insert loops for the pressure ratio.  One 
approach to solve this problem is to vary the 
intermediate or intercooler pressure  between 
the minimum and maximum pressures and 
calculate the compressor work required for each 
pressure. 

s

xP

 
For  constant   specific   heat    capacities,   the 

optimum  pressure  to  minimize the compressor 
 
 
 

P
2

P
x

P
1

T

stage 1 stage 2

x

2
s

T

T1

2

intercooler

q

1

x
out

 
 

Figure 6. Schematic of the two-stage compressor and T -   diagram. s
 

work   is   21PPPx =  [1,7,8].     Lewins[5]  
has shown using Lagrange multipliers that the 
same pressure minimizes the work for the 
temperature-dependent specific heat case also. 
Sample results are shown in Fig. 7. For the 
lower inlet temperature  K, the 
constant and temperature dependent specific 
heat results are very similar and appear as one 
curve. For an inlet temperature of 1000 K, the 
constant specific heat results are higher than the 
temperature-dependent specific heat results.  
This problem presents many interesting topics 
for future investigation, such as the effect of 
compressor efficiency, intercooler effectiveness, 
and intercooler pressure-drop. 

3001 =T

 
Concluding  Remarks 

 
In this study, a computer model of the 

isentropic compression of a gas with 
temperature-dependent specific heat capacities 
has been presented. The approach as described 
in this study reinforces programming concepts 
from previous computer courses, without 
requiring too much effort by the students. The 
students benefit from an example computer code 
from which to begin. Finally, the computer 
program developed is a useful tool to strengthen 
students’ understanding of thermodynamic 
concepts and to use in the modeling of more 
complicated problems.  
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Figure 7. Effect of the pressure ratio on the work required to compress air at 300 K (left) and 
1000 K (right) in a two stages. 
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APPENDIX A 
 
function isentropic_compression 
% 
% read in property vectors and declare global 
% 
global T_vec h_vec s0_vec; 
[T_vec,h_vec,s0_vec] = textread('air_thermo_props.dat','%f %f %f'); 
% 
% inlet conditions and pressure ratio 
% 
T1 = 300; P1 = 100; P2 = 1600; Pr = P2/P1; 
fprintf('inlet conditions:  T1 = %5.1f K  Pr = %6.2f\n',T1,Pr) 
% 
% constant specific heat case 
% 
fprintf('\n \n'); 
k = 1.4; cp = 1.004;  km1dk = (k-1)/k;  
T2 = T1*(Pr)^km1dk; w = cp*(T2-T1); 
fprintf('constant c_p (k = %4.2f):  T2 = %5.1f K   w = %5.1f kJ/kg 
\n',k,T2,w) 
fprintf('\n \n'); 
% 
% temperature-dependent specific heat case 
% 
fprintf('loop to demonstrate bracketing process \n \n'); 
fprintf('      T        delta_s \n'); 
fprintf('    -----      ------- \n'); 
for i = 3:10 
 T2 = i*100; 
 ds = delta_s(T1,T2,Pr); 
 fprintf('%10.2f  %10.4f \n',T2,ds); 
end 
T_bracket = bracket(T1,Pr); 
fprintf('\n'); 
fprintf('bracket: T_low = %5.1f  T_high = %5.1f 
\n',T_bracket(1),T_bracket(2)); 
fprintf('\n \n'); 
 
fprintf('bisection routine \n \n'); 
T2 = bisect(T1,T_bracket,Pr,0.1); w = delta_h(T1,T2); 
 
fprintf('\n'); 
fprintf('temperature-dependent c_p:  T2 = %5.1f K   w = %5.1f kJ/kg 
\n',T2,w); 
% 
%  subroutines 
% 
function T_bracket = bracket(T1,Pr) 
step = 100; Tl = T1; Th = Tl + step; 
dsl = delta_s(Tl,Tl,Pr); dsh = delta_s(Tl,Th,Pr); 
while dsl*dsh > 0 
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    Th = Th + step; 
    dsh = delta_s(Tl,Th,Pr); 
end 
T_bracket = [Tl,Th]; 
 
function T = bisect(T1,T_bracket,Pr,error) 
Tl = T_bracket(1); Th = T_bracket(2); 
delta_T = Th - Tl; j_max = ceil(log(delta_T/error)/log(2)); 
dsl = delta_s(T1,Tl,Pr); dsh = delta_s(T1,Th,Pr); 
T = (Tl + Th)/2; ds = delta_s(T1,T,Pr); 
fprintf('    T_low       T_high      T_mid        delta_s \n'); 
fprintf('    -----       ------      -----        ------- \n'); 
fprintf('%10.2f  %10.2f %12.4f %12.4f\n',Tl,Th,T,ds); 
for j = 2:j_max 
if dsl*ds > 0 
    Tl = T; dsl = delta_s(T1,Tl,Pr); 
else  
    Th = T; dsh = delta_s(T1,Th,Pr); 
end 
T = (Tl + Th)/2; ds = delta_s(T1,T,Pr); 
fprintf('%10.2f  %10.2f %12.4f %12.4f\n',Tl,Th,T,ds); 
end 
 
function ds = delta_s(T_1,T_2,Pr) 
global T_vec h_vec s0_vec; 
MW = 28.96512; R = 8.31451; R_air = R/MW; 
s0_1 = interp1(T_vec,s0_vec,T_1);  
s0_2 = interp1(T_vec,s0_vec,T_2); 
ds = s0_2 - s0_1 - R_air*log(Pr); 
 
function dh = delta_h(T_1,T_2) 
global T_vec h_vec s0_vec; 
h_1 = interp1(T_vec,h_vec,T_1);  
h_2 = interp1(T_vec,h_vec,T_2); 
dh = h_2 - h_1; 
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APPENDIX B 
 
function ds = delta_s(T_1,T_2,Pr) 
MW = 28.96512; R = 8.31451; R_air = R/MW; 
[cp_1,h_1,s0_1] = air_prop(T_1); 
[cp_2,h_2,s0_2] = air_prop(T_2); 
ds = s0_2 - s0_1 - R_air*log(Pr); 
% 
% 
function [cp,h,s0] = air_prop(T) 
% 
MW = 28.96512; R = 8.31451; R_air = R/MW; 
if T < 200 
    fprintf('\n Temperature not in range \n',T) 
elseif T < 1000   
    a1 =  1.009950160e+04;  
    a2 = -1.968275610e+02; 
    a3 =  5.009155110e+00;  
    a4 = -5.761013730e-03; 
    a5 =  1.066859930e-05; 
    a6 = -7.940297970e-09; 
    a7 =  2.185231910e-12; 
    b1 = -1.767967310e+02;  
    b2 = -3.921504225e+00; 
elseif T < 6000 
    a1 =  2.415214430E+05; 
    a2 = -1.257874600E+03;  
    a3 =  5.144558670E+00; 
    a4 = -2.138541790E-04; 
    a5 =  7.065227840E-08; 
    a6 = -1.071483490E-11; 
    a7 =  6.577800150E-16; 
    b1 =  6.462263190E+03; 
    b2 = -8.147411905E+00; 
else 
    fprintf('\n Temperature not in range \n',T) 
end 
cp = R_air*(a1*T^-2 + a2*T^-1 + a3 + a4*T + ... 
                      a5*T^2 + a6*T^3 + a7*T^4); 
h0 = R_air*T*(-a1*T^-2 + a2*T^-1*log(T) + a3 + a4*T/2 + ... 
                      a5*T^2/3 + a6*T^3/4 + a7*T^4/5 + b1/T); 
s0 = R_air*(-a1*T^-2/2 - a2*T^-1 + a3*log(T) + a4*T + ... 
                      a5*T^2/2 + a6*T^3/3 + a7*T^4/4 + b2); 
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