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Abstract 
 

We have developed simulations of tangent, 
hard sphere H-comb polymers in both the ideal 
and excluded volume regimes. The polymer 
configurations are changed by the Pivot 
algorithm and then the mean-square radius of 
gyration and g-ratio are calculated. These 
computer results are compared to a variety of 
simulations of other polymer models, theoretical 
predictions and experimental results. It is found 
that the extrapolated g-ratio values are in good 
agreement with other simulation work, theory 
and experiments and that the results in the 
excluded volume regime are nearly the same as 
for the ideal regime. This type of project 
provides an interesting area of study in a 
modeling and simulation course. 
 

Introduction 
 

Engineering, mathematics and science 
students need to develop the ability to make 
ideal models which can be programmed for a 
computer. Modeling of polymeric materials 
provides an important arena in which chemistry, 
computer programming, statistics, algorithms, 
and graphics come together. Such models have 
been examined in an independent study 
simulation and modeling course given at 
Manhattan College. 

 
 In two previous articles in this journal, Gorry 

and Bishop [1] and Dunn, Monteith and Bishop 
[2] have investigated a variety of polymer 
models. Gorry and Bishop studied two 
dimensional H-comb polymers and Dunn, 
Monteith and Bishop examined three 
dimensional star polymers. In these models all 
the atoms making up the monomeric polymer 
building blocks are grouped into circular or 
spherical “beads”, respectively. Polymers were 
constructed by linking individual beads 

appropriately. In this paper we examine some 
structural properties of three dimensional H-
combs. These polymers have a central branch 
connecting two junctions together. Each of these 
junctions also has two other branches attached 
to them. Thus, H-comb polymers contain one 
internal branch and four external branches. If m 
is the number of monomers in a branch there are 
a total of N = 5m + 1 units in a uniform H-
comb.  Figure 1 illustrates an H-comb with m = 
3.  The graphics capabilities of the Maple 
software package have been employed to draw 
this figure. 

 
Figure 1: An H-comb with 16 beads. 

 
 An overall polymer size can be measured by 

the mean-square radius of gyration, <S2>.  Here 
<> denotes an average over the polymer 
configurations.  It is well-known that for large 
polymers, <S2> follows the scaling law [3] 

 
<S2>= C (N - 1) 2ν                                       (1) 

 
in which the coefficient, C, is a model 
dependent amplitude but the exponent,  2ν, is 
universal for a given spatial dimension, d, and 
universality class; 2ν  has the value of about 
1.20 in three dimensions for excluded volume 
(EV) chains and the value of 1.0 in all 
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dimensions for random walk, nonexcluded 
volume (NEV) chains. NEV polymer models 
allow polymer beads to overlap but this is 
prohibited with EV models. The same exponent 
values are expected for both large linear and 
branched polymers. 
 

 A useful parameter for comparing the 
compactness of linear and branched polymers is 
called the g-ratio and it is defined as the ratio of 
the radii of gyration: 
g = < S2 >branched  / < S2 > linear                  (2) 
 

An equation for the g-ratio of general uniform 
NEV comb polymers with a regular spacing of 
branch points has been obtained by a number of 
researchers. Here we will employ the functional 
form derived by Casassa and Berry [4]: 

 
 g = λ - λ2(1 – λ) / (f +1) + 2λ (1 - λ)2 / f  
          + (3f - 2)(1 - λ)3 / f 2                          (3) 
 
in which λ is the ratio of the number of units in 
the backbone to the total number of units. The 
g-ratio value of an H-comb polymer is obtained 
when f = 2 and λ = 3/5. 
 

The goal of this article is to compute <S2> 
and the g-ratio from accurate Monte Carlo 
computer simulations for three dimensional 
NEV and EV H-comb polymers. Our results are 
compared to theoretical predictions, other 
simulation models and experiments. 

 
Pivot  Monte  Carlo 

 
Tangent hard sphere polymer models have 

been simulated using a Monte Carlo Pivot [5] 
algorithm. Our polymer models are essential the 
same as those previously employed by Gorry 
and Bishop [1] for H-combs and Dunn, 
Monteith, and Bishop [2] for star polymers.  The 
distance between two connected units is 
assumed to be a constant of magnitude one; e.g. 
adjacent beads are tangent. 

 
In the H-comb polymer, the center of the first 

junction bead is assigned as the origin of the 

XYZ coordinate system.  The polymer is 
initially started with each of its five arms either 
horizontally or vertically directed from the 
junction beads. The first three arms extend 
vertically in the positive direction, vertically in 
the negative direction, and horizontally in the 
positive direction from the first junction bead, 
respectively. The third arm connects the two 
junctions.  The last two arms extend vertically 
in the positive and negative direction from the 
second junction bead. 

 
The polymers are started in the X-Y plane. 

The beads are moved in continuous space by the 
Pivot algorithm [5]. First, a random number is 
used to select one of the beads as a "pivot". If 
the first junction bead is chosen as the pivot, 
then one of the first three arms is randomly 
selected to be moved. Likewise, if the second 
junction bead is selected, then either the third, 
fourth, or fifth arm will be moved.  In the case 
in which the third arm is chosen, depending 
upon which junction was selected, either the 
first and second arms, or the fourth and fifth 
arms are also moved as a unit with the third 
arm. 
 

Once a set of beads has been selected to be 
moved, we generate three randomly chosen 
Euler angles: α, β and γ. Then all selected beads 
are moved in accordance with the rotation 
equations given in Dunn, Monteith, and Bishop 
[2]. If the pivot selected is an arm bead, then all 
the higher indexed beads on that arm are rotated 
about the pivot bead. In the EV case the new 
trial configuration is accepted or rejected 
depending upon whether or not any beads 
overlap each other; no such testing is performed 
in the NEV case. In a linear chain the beads are 
linked so that each is connected to two others, 
except of course for the end beads. Then the 
movement rules change the configuration of 
only one part of the chain. 

 
These bead movement procedures generate 

one configuration. The process is continued for 
5 X 10 6 moves but the first 1 X 10 6 moves are 
discarded before the averaging process begins. 
These discarded moves represent the 
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equilibration of the initial arbitrary 
configuration. Data is collected at a spacing of 
500 pivot moves and the resulting random 
snapshots of polymer configurations are used 
for data analysis. In the NEV case the 
acceptance ratio is one; i.e. all configurations 
are accepted. In the EV case the acceptance 
ratio ranged from 10-36%, depending upon the 
polymer architecture and N. In order to obtain 
additional independent configurations and thus 
enhance the statistical quality of the data, 
sixteen parallel runs employing different 
random number seeds were performed.  

 
If Xα

j denotes the α component of the three 
dimensional position vector of the j-th bead, 
then the center of mass coordinates, Xα

CM of a 
given configuration are given by 

 
                              N 
     Xα

CM =  (1/N) Σ Xα
j  for α =1,2,3          (4) 

                             j=1 
 
and the square radius of gyration of this 
configuration is then calculated as   
     
                           3  N  
  <S2> = (1/N)   Σ Σ (Xα

j - X
α

CM )2               (5) 
                       α =1  j=1 
 
Each saved configuration is employed in the 
calculation. The set of property values were then 
further averaged over the total number of saved 
samples to determine the values of the mean and 
the standard deviation from the mean, 
employing the usual equations [6]. 
 

Results 
 

Linear and H-comb polymers in the NEV and 
EV regimes have been simulated. We have 
repeated the recent Pivot MC star polymer 
simulations of Dunn, Monteith and Bishop [2] 
for linear chains (two arm stars) with increased 
accuracy by studying polymers with as many as 
931 beads in comparison to their maximum 
number of 301 beads. 

Table I presents the radius of gyration 
simulation results for all the systems 
investigated. The number in parenthesis denotes 
one standard deviation in the last displayed 
digits. It is clear from the radius of gyration data 
that polymers with a given number of units N 
become more compact as the number of 
branches increases. As expected, NEV polymers 
are much more compact than their EV 
counterpart because excluded volume effects 
cause the polymer units to avoid each other and 
thus expand the polymer.  

 
Table I     Simulation Data for <S2>. 

 
NEV 

 N    linear   H-comb 
241   40.19(6)   28.75(3) 
301   50.15(8)   35.83(3) 
541   90.03(16)   64.26(11)
751 125.17(21)      89.07(13)
931 155.32(17)    110.67(15)  

 
EV 

N    linear     H-comb 
241 166.45(16)   116.18(8)    
301 217.60(27)   152.28(14)  
541 440.91(65)   310.49(23)  
751 653.50(82)   459.97(50)  
931 844.62(90)   595.33(58)  

 
Weighted nonlinear least-squares fits [6] to 

Eq. 1 using the <S2> data in Table I gave the 
values reported in Table II for the exponent, 2ν. 
The number in parenthesis denotes one standard 
deviation in the last displayed digit. As 
expected, our simulation data exponents agree 
well with the predicted values [3] of 1.0 (NEV) 
and approximately 1.20 (EV). 

 
Table II The Scaling Exponent, 2ν, for <S2>. 

 
N   NEV      EV 
linear 0.998(1)   1.200(1)     
H-comb 0.995(1)   1.207(1)   
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The g-ratios have been calculated from the 
radius of gyration data in Table I and the error 
in these quantities have been computed from the 
standard equation relating the error in a ratio to 
the error in the numerator and the error in the 
denominator. The simulation g-ratios are listed 
in Table III. The number in parenthesis denotes 
one standard deviation in the last displayed 
digit. 

 
Table III Simulation g-ratios for H-combs. 

 
 N    NEV     EV 
241 0.715(1)    0.698(1)   
301 0.714(1)    0.700(1)   
541 0.714(2)    0.704(1)   
751 0.712(2)    0.704(1)   
931 0.713(1)    0.705(1)   

 
However, these computer results are for finite 

N whereas the theories are for infinite N. The 
scaling law is given by 

 
              g   = g∞ (1 – K / NΔ)                       (6) 
 
where g∞ is the value of the g-ratio for infinite 
N, K is a constant and Δ is the finite scaling 
exponent.  In the NEV regime Δ has a value of 
1.0 and it is believed that for three dimensional 
EV polymers [7] it has the value of 0.47. To 
determine the value of g as N approaches 
infinity, one plots g vs. 1/N Δ so that when N 
→∞, 1/N →0. The g value for infinite N can 
thus be found by determining the intercept of 
this graph after fitting a weighted least-squares 
linear line in 1/ N Δ  to each set of data in the 
tables. We find that for NEV and EV H-combs 
the extrapolated g-ratio values are 0.712 ±0.001 
and 0.713 ±0.002, respectively. The NEV value 
compares excellently with the theoretical 
prediction of  Eq. 3  (0.712). The g-ratio of EV 
H-combs has been calculated with simulation 
methods by Lipson et al [8] for different lattices 
(fcc 0.71±0.02, bcc 0.72±0.02, sc 0.71±0.02, 
and tetrahedral 0.70±0.03), by Bishop and 
Saltiel [9] (0.71±0.03) and by Shida, Ohno and 
Kawazoe [10] (0.72). Roovers and Toporowski 

[11] and Rahnman et al [12] have also reported 
g-ratio values from their experiments with 
polystyrenes (0.69±0.02) and with 
polybutadienes (0.72±0.02), respectively. 
Renormalization group theory [13] predicts a g-
value of 0.720. 
 

Conclusions 
 

The Monte Carlo Pivot algorithm has been 
used to simulate continuum, tangent hard sphere 
linear and H-comb polymers in the ideal and 
excluded volume regime. The radius of gyration 
and the g-ratio and their respective error bars 
have been determined for a wide range of N. 
The values obtained by researchers using very 
different computer models agree very well, 
providing additional strong evidence for 
universal properties of polymers. It is found that 
the extrapolated g-ratio computer values are in 
fine agreement with other simulation work and 
theory in the NEV regime. The experiments and 
the renormalization group g-ratio values are also 
in good agreement with the simulation studies in 
the EV regime. There is only a slight difference 
between the NEV and EV results, indicating that 
H-comb polymers behave essentially as ideal 
systems. These types of simulations provide 
interesting application examples for a 
simulation and modeling course. 
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