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Abstract 

This paper evaluates undergraduate students’ 
performance during a problem-based 
computational science course in a materials 
science and engineering program. The course 
guides students to apply computational tools and 
methods to solve problems in materials science 
and engineering. The study assesses the 
relationship between phases of the problem-
solving process and computational literacy skills 
in the context of MATLAB® computational 
challenges. Students complete five projects that 
require combined problem-solving skills and 
computational skills. Results suggest that 
aligning computational challenges with problem 
solving phases can support student learning and 
computational literacy skills development. The 
findings also suggest that different 
computational challenges require different 
forms of support for the learners to successfully 
complete the problem solving process. 

Introduction 

Computational Science and Engineering (CSE) 
has emerged as an important tool to solve 
complex engineering problems [1]. Engineers 
need an ability to use computational tools, 
integrated with strong problem-solving skills, to 
tackle complex problems [2-4]. For example, in 
Materials Science and Engineering, a sub 
discipline called Computational Materials 
Science [5] has been established. This trend is 
reflected in educational settings too --- there has 
been a call to integrate computational tools and 
methods into different disciplinary engineering 
curricula sooner and often [6]. Aligned with this 
idea, the department of Materials Science and 

Engineering at Johns Hopkins University started 
a novel computational course for its 
undergraduate students, titled Computer 
Programming for Materials Science and 
Engineers (CPMSE). 

In this study, we investigate how students in 
the CPMSE course applied computational tools 
and methods to solve materials science and 
engineering problems.  We seek to answer the 
following questions in connection to CPMSE: 

What are students’ performances on 
disciplinary computational challenges when 
configured as problem solving phases? 
 
How does students’ performance on specific 
phases of the problem-solving process on 
different projects relate to the other phases, and 
to student overall performance? 
 
How do students’ problem-solving approaches 
relate to their computational literacy skills? 
 

Literature Review 

Many current engineering curricula are 
designed to introduce computation in an isolated 
way from the disciplinary core courses. Students 
enrolled in such programs acquire the 
disciplinary knowledge and the computational 
knowledge separately. It is not clear whether 
they would know how to apply these together 
[6]. Educators proposed several approaches to 
better integrate the two [1]. Some of these 
include creating individual courses as part of 
computational concentrations, creating 
interdisciplinary collaborative project courses, 
using small add-on courses to supplement 
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existing math or science courses, and 
introducing computational concepts through 
tools such as computer graphics. 

These curricular practices rely on different 
pedagogical strategies. Some of the most 
effective techniques in the context of 
programming and CSE courses include the 
inverted classroom approach [7, 8, 9], pair 
programming [10], worked-out examples for 
introducing complex learning contexts to novice 
learners [11], project-based and problem-based 
learning in collaborative settings [7], and so on. 
Research studies investigating these pedagogical 
strategies sought to measure student 
performance or student perceptions. However, it 
is not clear how these pedagogies work, and the 
relevant aspects that support the development of 
student computational skills in the context of 
disciplinary problems. 

This study will explore the relationship of the 
use of computational tools and methods as part 
of specific steps in the problem-solving process.  
We will also investigate how this practice 
relates to student achievement of the learning 
outcomes. 

Theoretical  Framework 

In this study we explore the importance of 
computational literacy that enables the students 
to solve materials science problems. The 
theoretical frameworks underpinning this study 
are computational literacy [12] and problem 
solving [2]. Computational literacy refers to an 
understanding that goes beyond just using a 
computer and its components. The problem-
solving process requires the conceptual and the 
procedural knowledge along with the problem 
states [2] to be intimately connected. These 
connections are made by creating different 
representations of the problem --- verbal, 
mathematical, computational and visual 
representations of a phenomenon in the present 
context. A mastery of computational literacy 
would enable students to create and manipulate 
computational representations to learn scientific 
phenomena [12]. Students’ strategic knowledge 
[13] dictates their choice and understanding of 

representations, and the quality of these 
representations will, in turn, determine their 
ability to solve a problem. Students build or use 
these representations while they are solving a 
disciplinary problem using computational tools. 

In this study we understand the problem-
solving process using the Integrated Problem-
Solving (IPS) [2] model, and adapt this model to 
include the concept of computational literacy. 
The first of three phases is the problem 
recognition. Here, the student will understand 
the problem and create a plan to solve it. The 
student will use verbal and mathematical 
representations for that purpose. On a second 
phase called problem framing, the students 
execute the plan creating computational 
representations of the phenomenon (i.e., the 
implementation of the model). Finally, on the 
problem synthesis phase, the students will 
complete the plan by evaluating the solution. 
They will use computational, visual, 
mathematical, and verbal representations to 
ensure the solution is correct. The Methods 
section contains a detailed description of how 
we implement IPS. We argue in this work that 
computational literacy can be acquired more 
effectively when we introduce computational 
tools and methods in the context of solving 
disciplinary engineering challenges. 

Methods 

The Course 

The CPMSE course was designed using the 
How People Learn framework [14]. It is 
knowledge centered, learner centered, and 
community centered. It uses MATLAB as the 
programming environment and the learning 
objectives are [7]: 

(1) Write MATLAB programs to execute 
well-defined algorithms. 

(2)  Design algorithms to solve engineering 
problems by breaking these into small 
tractable parts. 

(3)  Model physical and biological systems 
by applying linear systems and ordinary 
and partial differential equations. 
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In this course we employed an inverted 
classroom approach where students are required 
to watch recorded lectures before coming to 
class. During the class time they focused on 
practice exercises. The students were required to 
complete five computational projects related to 
their core courses, which counted for about 
52.5% of the final grade in CPMSE. The 
disciplinary and computational learning 
outcomes for each of the projects are described 

in Table 1. A brief description of the 
assignments is included as Appendix A. 

Project evaluations were organized based on 
IPS [2] --- which divides the problem-solving 
process into three distinct phases, as described 
in the previous section. 

Other activities that contributed to the final 
student course score included: (1) 17 quizzes, 
(2) two exams, and (3) a final project. 

 

Table 1: Computational and disciplinary learning outcomes per project. 

 Computational Learning  
Outcomes 

Disciplinary Learning  
Outcomes 

Project 1 The student demonstrates the ability to apply the 
techniques of modeling and simulation to a range of 
problem areas. 
The student uses MATLAB to create visual displays 
of data, including graphs, charts, tables, and 
histograms.  

The student graphically represents and 
calculates the phases present in a binary 
phase diagram. 

Project 2 The student implements algorithms for solving 
differential equations. 
The student models biological systems by applying 
linear systems and ordinary and partial differential 
equations 

The student models the progress of HIV 
infection in a patient that is being treated 
with a drug of a given effectiveness. 

Project 3 The student demonstrates the ability to apply the 
techniques of modeling and simulation to a range of 
problem areas. 
The student uses MATLAB to create visual displays 
of data, including graphs, charts, tables, and 
histograms. 

The student models crystal structures 
cleaved along a plane and generates a 
three-dimensional representation of them. 

Project 4 The student models biological systems by applying 
linear systems and ordinary and partial differential 
equations.  
The student demonstrates the ability to apply the 
techniques of modeling and simulation to a range of 
problem areas. 

The student simulates the cardiac tissue 
and the ventricular fibrillation process.  

Project 5 The student demonstrates the ability to apply the 
techniques of modeling and simulation to a range of 
problem areas. 

 

The student creates and interprets a 
molecular dynamics simulation in terms of 
kinetic energies. 

 
Participants 

Twenty-three freshmen and sophomore 
material science and engineering students 
completed the CPMSE course in spring 2014, 

and participated in the study. The five 
computational projects the students solved were 
analyzed on a rubric (Table 2) designed to 
explore the relationships of computational 
literacy with the three phases of IPS [12]. 
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Data  Collection  and  Data  Analysis 

According to IPS, the three phases of problem 
solving are: (1) problem recognition; (2) 
problem framing; and (3) problem synthesis. 
Note that the IPS framework [2] is originally 
presented for solving physics problems using 
free-body diagrams and mathematical equations. 
In that context, solving the mathematical 
equations would determine the completion of 
the process. Projects in CPMSE are more 
involved in comparison, and the use of 
mathematical representations is part of the 
problem recognition; in fact, most of the 
projects provided the mathematical 
representation as part of the problem statement. 

The problem framing phase comprises the 
implementation of the code. It is important to 
highlight that these projects are not simple 
programming projects. Hence, the problem is 
not solved once the program is built. In addition 
to writing codes, the students need to be able to 
run their codes and check the output against test 
cases --- to evaluate how appropriate their 
programs are to answer questions based on 
disciplinary problems. This last requirement --- 
their ability to demonstrate disciplinary 
understanding --- forms the problem synthesis 
step. 

A priori, we expect computational literacy to 
overlap with all of the three phases of problem 
solving as defined here. We hypothesize that a 
correlation of computational literacy to different 
phases will be found. In order to explore the 
interdependence, we designed a rubric with two 
distinct components: (1) problem solving 
phases; and (2) computational literacy (see 
Table 2). The five student projects were 
evaluated using this rubric. The student projects 
were graded on the rubric criteria on a scale of 
0-10, and then each criterion was converted to a 
score of 100. We present the resulting 

descriptive statistics in Table 3. We then 
calculated Pearson correlation between each two 
criteria of the rubric, along with the project 
scores and the final course grades, for all five 
projects separately. We interpret a weak Pearson 
correlation coefficient to be 0.1 or lower; a 
moderate correlation to be between 0.25 and 
0.45; and, a strong correlation coefficient is 
taken to be 0.5 or higher [15]. 

Results 

Table 3 depicts average scores for all projects 
grouped by the four different criteria. A positive 
performance for each criterion was set as 70% 
or above. Students obtained the highest scores 
for projects two and four, and the lowest score 
was recorded for Project 1. The students 
obtained high scores in the implementation 
phase for all the projects except project one. The 
problem synthesis phase of project 1 was found 
to be low-scoring as well. This result suggests 
that students may have taken some time to 
acquire these skills, but later on, they were able 
to use their skillsets in different disciplinary 
contexts. An alternative explanation is that, after 
the first project, students better understood what 
was expected of them. Results also suggest that 
students had difficulties in the recognition of the 
last two problems. 

Note that some of the scores do not have a 
standard deviation, and therefore it was not 
possible to identify a correlation for those items 
in the individual projects. Hence, these cells are 
marked with ‘N/A’ in the correlation tables. 

In the correlational analysis of individual 
projects (Appendix B), there are similar patterns 
of correlations for projects 1, 3, and 5, while 
project 2 and 4 behave more like each other. 
The main difference between these two groups 
of projects is the strong correlation found 
between problem framing and problem 
synthesis for the first group of projects (r > 0.6).
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Table 2: Rubric for Project and Application CPMSE –  
All scoring descriptions are not shared due to space limitations. 

 
Criterion Description  Poor (0-2) … Excellent (9-10) 

Problem 
Recognition 

(10%) 
 

Evaluates the student’s plan for 
completing the project. 
Student instructions: 
Summarize the nature of the 
algorithm briefly, identifying the 
most relevant information from 
the project description. 
Articulate a well thought-out 
strategy for designing, coding, 
testing and debugging your work. 

- No strategy is 
articulated for the 
design, coding, 
testing or 
debugging. … 

- All four areas (designing, 
coding, testing, debugging) are 
addressed clearly in the context of 
the project.  
- The summary references the 
project description and identifies 
relevant aspects of the project. 
- The strategy is articulated 
clearly and is logical and well 
thought-out. 

Problem 
Framing / 

Implementation 
(40%) 

Coding style (10%) 
Measures the extent to which the 
code is presented in a manner that 
is clearly readable by others.  
Is the code indented, commented 
and are variable and function 
names chosen to enhance 
readability?  
Does the code appropriately 
deploy language capabilities to 
avoid redundant structures, global 
variables and unnecessarily 
lengthy blocks of code? 

- Code is entirely 
uncommented. 
- Global variables 
are used without 
justification due 
to exceptional 
circumstances. 
-  Code is not 
differentiated into 
functions or m-
files; i.e. 
spaghetti code. 

… 

- Code is well commented. 
- Code is properly indented and 
variable and function names are 
well chosen. 
- Code is well structured. 

Program execution (30%) 
Evaluates the extent to which the 
program functions in a way that 
conforms to specifications.  
Does the program execute?  
Is the input and output of the 
expected form? 

- Program does 
not run at all. 

… 

- Program is free of syntax errors 
that impede execution. 
- Program takes the expected 
input parameters and returns the 
expected output as required in the 
specification in all respects. 

Problem 
Synthesis (30%) 

Evaluates the degree to which the 
solution satisfies the 
specification.  
Is the solution accurate and 
robust?  
Does it conform to the problem 
specifications regarding format, 
order and presentation?  

- The solution 
produces wholly 
incorrect output 
under all of the 
tests run. … 

- The solution produces correct 
output in all cases with only 
minor exceptions. 
- All output meets specifications 
regarding format, order and 
presentation. 

Computational 
Literacy (20%) 

Evaluates whether the student can 
use the solution to approach a 
disciplinary problem. 
Can the student use their code to 
address the disciplinary issue or 
to solve a related problem? 

- No solution 
provided. 

… 

- A solution is provided that is 
correct, clear and well 
documented. 
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Table 3: Descriptive Statistics of student overall scores for each computational project. 

 Problem Solving Phases    

Total 
 Problem 

Recognition 
Problem Framing / 

Implementation 
Problem 
Synthesis  Computational 

Literacy  

  Coding 
Style Execution     

Project 1 (N=21)         

Mean 87.81 84.05 66.81 59.20  100  74.99 

Std. Dev. 22.49 20.36 31.21 30.47  0  19.11 

Project 2 (N=21)         

Mean 100 100 96.10 98.43  96.62  97.68 

Std. Dev. 0 0 9.05 3.84  4.79  3.14 

Project 3 (N=21)         

Mean 72.24 86.29 91.57 76.05  100  86.14 

Std. Dev. 30.36 21.18 22.76 25.41  0  14.14 

Project 4 (N=21)         

Mean 68.95 98.24 98.29 97.57  89.90  93.46 

Std. Dev. 44.38 2.82 5.71 5.76  22.10  8.21 

Project 5 (N=20)         

Mean 69.5 94 91.25 77.40  75.95  81.72 

Std. Dev. 45.55 6.05 17.63 16.44  33.75  17.84 

 

For the latter group of projects (i.e., projects 2 
and 4), this coefficient depicts a weak 
correlation (r < 0.2). Note that the problem 
framing phase includes programming skills --- 
suggesting that, at least for certain type of 
projects, good programming skills support 
students’ ability to evaluate their work. This 
leads us to ask why the same programming 
skills did not enable them to evaluate the 
solution for projects 2 and 4. 

We hope to shed light on this in the next 
section as we discuss project characteristics in 
detail. 

The projects with available correlation 
analysis of computational literacy with the 
problem solving phases show a range of 
correlation values: from weak (r=0.153) to 
strong (r=0.529). The correlations for the 

problem recognition phase with the other two 
phases also showed a broad spectrum: strong for 
project 5 (r>0.61), a moderate one for projects 1 
and 4 (0.2<r<0.5), and weak for project 3 
(r<0.2). Finally, the course final grade had a 
positive strong correlation with the average 
project score and each project score individually 
(r>0.5). Only for project 4, students score was 
not related with their overall performance of the 
course (r=0.187). 

Discussion  and  Conclusions 

This study explored the implementation of a 
problem-based computational science course for 
materials engineering. The course employed an 
inverted classroom approach [5] and organized 
the different projects using the Integrated 
Problem-Solving (IPS) [2] model. Specifically, 
it assessed how it is possible to define student 
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performance through the relationship among 
phases of the problem-solving process, and 
computational literacy skills. 

What are students’ performances on 
disciplinary computational challenges when 
configured as problem solving phases? 

Student performance was considered to be 
positive for all the project scores and for most of 
the individual rubric criteria. This result 
suggests that organizing the projects to follow 
the problem solving phases can be effectively 
used as a form of process scaffolding for 
challenges in computational science and 
engineering. 

Students struggled to understand project 4 and 
project 5, as evident from the low score in the 
problem recognition phase. This could be 
attributed to the design of the course, where 
projects became progressively more challenging 
as the semester advanced. The last two projects 
consisted of modeling complex systems (heart 
tissue and atoms in a material, respectively). In 
both these projects the students programmed a 
set of rules to reflect complex system behavior. 
While they struggled to understand projects 4 
and 5, they could still implement a solution. 
They were also able to infer conclusions using 
their code, a result that suggests that students 
were able to obtain an understanding of the 
system-level behavior. 

The problem framing and problem recognition 
scores in project 1 were not high, and student 
performance for these two phases increased for 
the rest of the projects. We considered two 
hypotheses here: (1) students were not very 
comfortable solving computational challenges 
but their confidence increased as they completed 
the first project; and (2) after implementing the 
first projects they developed a better sense of 
what was expected from the projects. 

How does students’ performance on specific 
phases of the problem-solving process on 
different projects relate to the other phases, and 
to student overall performance? 

For the individual projects, different 
correlation patterns were found. For projects 1, 
3, and 5, problem framing and problem 
synthesis were strongly related. These two 
problem solving phases were also strongly 
correlated to the overall project score and final 
course grade. This result suggests that students 
who adequately followed the problem solving 
process, performed better than those who did 
not. This is a direct implication for instructional 
design, reinforcing the idea that setting up 
projects so that students are required to go 
through the problem solving process can help 
them to solve computational challenges. 

However, these relationships were not found 
for projects 2 and 4. Moreover, projects 2 and 4 
showed the highest scores among all the 
projects with the lowest standard deviation.  The 
main difference between these two groups of 
projects is that, in projects 2 and 4 students were 
provided with more information about how to 
structure the underlying algorithm. This 
additional structure was necessary since the 
subject of the modules, ordinary and partial 
differential equations were not subjects with 
which students were familiar prior to the course. 
The additional support provided in crafting the 
algorithm appears to have been sufficient for 
students to properly implement a solution. On 
the other hand, because of the higher level of 
scaffolding, students may have been less 
engaged in higher order levels of thinking, 
limiting their ability to interpret their solution. 
Another possible explanation relates to the 
nature of the scaffolding that was provided. The 
scaffolding was focused on the algorithm 
structure, but the disciplinary and mathematical 
content may have become the challenge to 
interpret the results of the simulation. 

Finally, the fact that student score for project 4 
was weakly related to the course score also 
suggests that the additional scaffolding provided 
for project 4 may not necessarily have 
contributed to the overall learning outcomes. 
Nevertheless, project 4 needs to be further 
explored in order to understand its 
particularities. 
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How do students’ problem solving approaches 
relate to their computational literacy skills? 

The relationship between computational 
literacy and the stages of the problem solving 
process and the scores is not clear. For the 
individual project scores no correlation was 
found between computational literacy and 
student performance. Scores with a zero or very 
small standard deviation make it difficult to 
identify these relationships. However, it is 
important to highlight that most of the scores for 
this particular criterion were very high (~92% in 
average), and only for the last project was less 
than 89%. This suggest that the effect on 
disciplinary learning from building and 
interpreting the solutions is helping students 
approach the solution to the posed problems. 

Overall, results from this study suggest that the 
use of computational challenges aligned with 
the problem solving phases can scaffold 
students’ learning and computational literacy. 
For the projects where the disciplinary content 
is overwhelming for students, the scaffolding 
should be focused on the specific subjects 
instead of providing too much computational 
support. Thus, further research is necessary to 
identify what are the differences between 
different types of challenges and the level of 
scaffolding in student understanding and student 
performance in transfer tasks. 
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Appendix A: Description of the projects 
 

Before the problem statement, all the projects 
included a description of the disciplinary problem 
and the mathematical model to represent it. All the 
projects described in this section included an 
additional activity in which students were required 
to interpret the programmed solution. 

Project 1: Calculating binary phase diagrams 

Your assignment is to write 4 functions that 
graphically represent and calculate the phases 
present in a binary phase diagram. You will build 
your program in 4 parts. Some functions will need to 
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use the prior functions, so make sure each works 
well before moving on to the next. All functions 
must be well documented with comments in order to 
receive full credit. You must use the function 
headers given below. 

1. A function to calculate the free energy of a 
pure phase at a given composition (15 points) 
 
function G = FreeEnergy(x, HA, SA, HB, SB, 

w, T) 
 

2. A function that computes the convex hull. (40 
points) 
 

function [Gmin,Phases] = 
ConvexHull(x,G1,w1,G2,w2) 

 
3. A function that shows the convex hull. (15 

points) 
 
function ShowHull(HA1, SA1, HB1, SB1, w1, 

HA2, SA2, HB2, SB2, w2, T) 
 

4. A function that plots a phase diagram (35 
points) 
 
function PhaseDiagram(HA1, SA1, HB1, SB1, 

w1, HA2, SA2, HB2, SB2, w2, Tmin, Tmax) 
 

Project 2: Modeling HIV Response to Immune 
Therapy 

Your assignment is to write a computer program 
that will model the progress of the HIV infection in a 
patient that is being treated with a drug of a given 
effectiveness, Q. The HIV infected patient is 
assumed to start with a T-cell count of T(0)=1, this 
being a healthy level, and having no infected T-cells, 
I(0)=0. We assume that infection occurs at day 0 a 
viral load of V(0)=0.01. We will assume that if a 
drug is administered, therapy starts on the day of 
infection. In the model, if the HIV infected patient’s 
T-cell count, including both infected an uninfected 
cells, falls below T+I=0.01 the patient is considered 
to have developed AIDS. Your assignment should 
follow the scheme laid out above and should be 
composed of the following primary function and 
sub-functions: 

1. A function to initialize the variables and runs 
the simulation 
 
function Project2a(V0, Q, maxtime, minT) 

2. A function to calculate the next day’s T-cell 
count based on the current viral load and T-
cell count 
 

function Tnext = NewT(T, V) 
 

3. A function to calculate the next day’s infected 
T-cell count based on the current viral load 
and T-cell count 
 

function Inext = NewI(T, I, V) 
 

4. A function to calculate the next day’s viral 
load count based on the current viral load, T-
cell count, and infected T-cell count 
 

function Vnext= NewV(T, I, V, Q)  
 

5. A function to increment the current viral load, 
T-cell count, and infected T-cell count by one 
day 
 
function [Tnext, Inext, Vnext]= Increment(T, I, 

V, Q) 
 

Project 3: Crystal Structures and Cleavage Planes 

Your assignment is to write a MATLAB function 
that will write a file that contains the positions of the 
atoms in a representative crystal that is either simple 
cubic, body centered cubic or face centered cubic. 
These crystals will have been cleaved along a plane 
specified by the user such that the files only contain 
the atoms on one side of the cleavage plane as well 
as the atoms on the cleavage surface. The atoms on 
the cleavage surface will be specially labeled. The 
file output by your code will have 4 columns. The 
columns will contain the following data about the 
atoms:  

x-position y-position z-position label 

1. A function to return the atom positions and a 
label for a specified crystal structure 

 
function cleave(xtal, unitcells, plane, filename) 

 
2. A function to read  the positions and label 

from the file and to plot spheres at the 3 
dimensional coordinates specified by the 
positions 
 

function atomplot(filename) 
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Project 4: Modeling Heart Tissue and Diffusion of 
the Electrical Potential 

Write a program that will simulate the diffusion of 
the electrical potential in the heart tissue. It should 
contain the following procedures: 

 
1. A function to take an NxN array and stimulate 

a circular region with radiohs N/8 centered at 
row r and column c by setting the values of U 
in that region to 0.8 
 

function U = StimTissue(U, r, c) 
 

2. A function to create an initial condition where 
U and V are NxN arrays that are zero 
everywhere except for a circle of radius/8 
centered at row (N+1)/2 and col (N+1)/2 
which should have U=0.8.  
 

function [U, V] = InitTissue(N) 
 

3. A function to advance the clock on U and V 
by one time step 
 
function [newU, newV] = StepTissue(U, V, D, 

dt) 
 

4. A function to simulate a tissue that is 
represented by two NxN arrays. The 
simulation lasts T time steps. Every stime 

steps a randomly located region of radius N/8 
is electrically simulated 
 
function SimTissue(N, T, stime, ptime, D, dt) 

 
5. A function to simulate a tissue that is 

represented by two NxN arrays. The 
simulation lasts T time steps. Once, after stime 
steps a region centered on row r and column c 
of radius N/9 is stimulated. 
 
function TestTissue(N, T, stime, r, c, ptime, D, 

dt) 
 

Project 5: Molecular Dynamics Simulation 

Molecular dynamics simulates atoms as point 
particles. Each atom has a position and a velocity, 
and these quantities are updated according to 
Newton's equations of motion. The model we will 
consider will be as simple as we can make it and still 
see interesting behavior. We will consider a two-
dimensional system composed of 64 like atoms 
interacting via a very simple pair-wise interaction. 
The atoms will only interact with other atoms within 
some interaction range. The atoms will be kept in a 
defined region of space by imposing "periodic 
boundary conditions". You will provide the option 
of holding the average kinetic energy of the atoms 
fixed during the simulation. The code structure was 
at student discretion. 

 
Appendix B: Pearson correlation of individual project scores by rubric criteria. 

 
Project 1 

 Problem 
Recognition 

Problem 
Framing 

Problem 
Synthesis 

Computational 
Literacy  

Average 
Project 
Score 

Course 
Score  

Total 
Project 

1 

Problem 
Recognition 1.000       

Problem Framing 0.484 1.000      

Problem 
Synthesis 0.215 0.657 1.000     

Computational 
Literacy  NA NA NA NA    

Average Project 
Score 0.453 0.888 0.864 NA 1.000   

Course Score 0.171 0.682 0.733 NA 0.753 1.000  

Total Project 1 0.450 0.839 0.886 NA 0.933 0.689 1.000 
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Project 2 

 Problem 
Recognition 

Problem 
Framing 

Problem 
Synthesis 

Computational 
Literacy  

Average 
Project 
Score 

Course 
Score  

Total 
Project 

2 

Problem 
Recognition NA       

Problem 
Framing NA 1.000      

Problem 
Synthesis NA 0.174 1.000     

Computational 
Literacy  NA 0.261 0.280 1.000    

Average Project 
Score NA 0.735 0.459 0.362 1.000   

Course Score NA 0.644 0.483 0.158 0.741 1.000  

Total Project 2 NA 0.736 0.444 0.353 0.709 0.586 1.000 
 
 
 
 
 
 
 
 
 

Project 3 

 Problem 
Recognition 

Problem 
Framing 

Problem 
Synthesis 

Computational 
Literacy  

Average 
Project 
Score 

Course 
Score  

Total 
Project 

3 

Problem 
Recognition 1       

Problem 
Framing 0.220 1.000      

Problem 
Synthesis -0.147 0.607 1.000     

Computational 
Literacy  NA NA NA NA    

Average Project 
Score 0.270 0.735 0.644 NA 1.000   

Course Score -0.013 0.644 0.605 NA 0.741 1.000  

Total Project 3 0.166 0.703 0.885 NA 0.658 0.507 1.000 
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Project 4 

 Problem 
Recognition 

Problem 
Framing 

Problem 
Synthesis 

Computational 
Literacy  

Average 
Project 
Score 

Course 
Score  

Total 
Project 

4 

Problem 
Recognition 1       

Problem 
Framing 0.306 1.000      

Problem 
Synthesis 0.175 0.101 1.000     

Computational 
Literacy  0.444 0.228 0.230 1.000    

Average Project 
Score 0.353 0.735 0.205 0.390 1.000   

Course Score 0.258 0.644 0.022 0.096 0.741 1.000  

Total Project 4 0.808 0.353 0.427 0.812 0.437 0.187 1.000 
 
 
 
 

Project 5 

 Problem 
Recognition 

Problem 
Framing 

Problem 
Synthesis 

Computational 
Literacy  

Average 
Project 
Score 

Course 
Score  

Total 
Project 

5 

Problem 
Recognition 1.000       

Problem 
Framing 0.669 1.000      

Problem 
Synthesis 0.612 0.622 1.000     

Computational 
Literacy  0.476 0.153 0.529 1.000    

Average Project 
Score 0.851 0.729 0.649 0.607 1.000   

Course Score 0.598 0.643 0.728 0.477 0.751 1.000  

Total Project 5 0.839 0.616 0.859 0.750 0.819 0.723 1.000 

 


