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Abstract 

 
Computer modeling is an important skill for 

engineering and science students to acquire. 
Monte Carlo simulations of ideal three 
dimensional polymers provide an opportunity 
for students to develop their computer skills 
while deepening their knowledge of the 
behavior of such materials.  

  
Introduction 

 
In a previous publication in this journal, 

Varriale II and Bishop [1] used a Monte Carlo 
growth method to simulate two dimensional 
ideal linear and star polymers. They computed 
polymer properties such as the mean-square 
radius of gyration, <S2>, and the mean 
asphericity, <A>, of both linear and star 
polymers and found excellent agreement with 
theoretical values.  Perrelli and Bishop [2] 
extended this simulation method to investigate 
ideal two dimensional H-comb polymers and 
found similar good agreement with theoretical 
predictions.  In this work, the Monte Carlo 
growth method is used to examine ideal linear 
polymers in three dimensions.  A wide variety of 
properties are computed and compared to 
theoretical predictions. 

 
Method 

 
  The program has been written using a 
procedural approach. Three dimensional 
polymers are constructed on an integer 
coordinate system. Given the numbers N and M, 
the simulation is performed by creating M 
independent samples each containing N units 
(beads). Samples are constructed by starting the 
first bead at the origin (0, 0, 0). Subsequent 
beads are placed by randomly selecting one of 
six possible directions: North, South, East, 

West, Up, or Down. Each bead is placed one 
unit apart from the previously placed bead. In 
this study of ideal polymers, a location that has 
already been used by another bead is allowed to 
be chosen so that beads can overlap. After each 
polymer is completely constructed, a number of 
properties are computed for that configuration.  
     

One important property of polymers is their 
shape, which can be determined from the matrix                                                  
representation  of  the  radius of  gyration tensor, 

↔ 
 T.  This is a 3 by 3 symmetric tensor with nine 
components but only six are unique. It can be 
written as 
 
                         N                                                                                                                          
Tab(k)  = (1/N) ∑[Qa

i(k) − QaCMi(k)]  * 
                         i=1   
   
[Qb

i(k) − QbCMi(k)]  ;  a, b = X, Y, or Z        (1)                                             
                                                                                                 
Here, Qi(k) represents the X, Y, or Z 
components of the location of the i-th bead in 
the k-th sample and QCMi(k) represents the 
corresponding center of mass: 
 

                               N                                                   
QCMi(k)  =  (1/N) ∑ Qi(k) .                                                                                                                           

                                                i=1                        (2)                                                                    
                         ↔ 
The eigenvalues of T, λ1, λ2, and λ3, are the 
components of the radius of gyration along the 
principal orthogonal axes [3]. They are 
determined for a given sample by using the 
Cardano-Vieta solution to the cubic 
characteristic equation. The λ values of each 
configuration can be ordered by magnitude. One 
can envision [4] the polymer as enclosed in an 
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ellipsoidal envelope with semi-major axis λ1 
and semi-minor axes λ2 and λ3.  Rudnick and 
Gaspari [3] defined the asphericity of the k-th 
sample of a configuration, A(k), in three 
dimensions as 
 
 A(k) = [(λ1 − λ2) 2 + (λ1 − λ3) 2 + (λ2 – λ3) 2] /               
  [ 2 ( λ1 +  λ2 + λ 3) 2 ]                       (3)                                                      
 
The asphericity ranges from a value of 0 when 
λ1 = λ2 = λ3 and the polymer has the shape of a 
perfect sphere, to 1 when λ2 = λ3 = 0 and the 
polymer has the shape of a straight rod. 
 
  The overall size of a polymer is characterized 
by its radius of gyration and, in the special case 
of a linear chain, by its end-to-end distance. The 
squared radius of gyration of the k-th sample, 
S2(k), is equal to the sum of the diagonal 
elements of the radius of gyration tensor, 
 
               S2(k) =  λ1 +  λ2  +  λ3   ,                 (4)                                                                                                                                   
 
and the squared end-to-end distance of the k-th 
sample of linear chains, R2(k), is 
 
R2(k)  =  (XN − X1) 2  +  (YN − Y1) 2   + 

                 (ZN − Z1) 2   .                                  (5)                                                                                 
 
Here N and 1 refer to the last and first bead, 
respectively.   
 

  It is well-known [5] that for large polymers,  
both <R2> and <S2> follow scaling laws:  
 
               <R2>  =  C1 (N − 1) 2ν   ,             (6a) 
 
 and               
               <S2>  =  C2 (N − 1) 2ν    .            (6b) 
 
The coefficients, C1 and C2, are model 
dependent amplitudes but the exponent, 2ν, is 
universal and equal to 1.0 for ideal polymers. It 
is also well-known [5] that <S2> / <R2> = 1/6 
for long ideal linear chains. 
 

Results 
   

The simulation has been developed using the 
Visual Studio C++ compiler on a PC. All the 
runs for  N = 100, 150, 200, 250 and 300 in 
Tables IA and IB employed 10,000 samples. The 
program averages the data over all the samples. 
Since the polymer generation process provides 
independent samples, the mean and standard 
deviation of the mean of general properties can 
be computed from the usual simple equations 
[6], but more care is needed in computing the 
errors of the ratios. In these tables the number in 
parenthesis denotes one standard deviation in 
the last displayed digit; for example, <λ1> = 
12.86(8) means that <λ1> = 12.86 ± 0.08. 

 
 

 
 

Table IA: General Properties. 
 

Property 100 150 200 250 300 
<λ1> 12.86(8) 19.12(12) 25.71(16) 31.84(20) 38.45(24) 

<λ2>  2.88(1) 4.32(2) 5.74(3) 7.19(4) 8.61(4) 

<λ3>  1.07(1) 1.60(1) 2.14(1) 2.66(1) 3.20(1) 

<S2>      16.81(9) 25.03(13) 33.60(17) 41.69(21) 50.26(26) 

<R2> 99.75(81) 149.19(122) 200.79(162) 250.98(204) 302.45(250) 

<A> 0.395(2) 0.394(2) 0.395(2) 0.393(2) 0.395(2) 
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Table IB: Ratio Properties. 
  

    Property 100 150 200 250 300 
<λ1>/<S2>      0.765(1)    0.764(1)     0.765(1)  0.764(1)    0.765(1) 
<λ2>/<S2>      0.171(1)    0.172(1)     0.171(1)  0.173(1)    0.171(1) 
<λ3>/<S2>     0.064(1)    0.064(1)     0.064(1)  0.064(1)    0.064(1) 
<S2>/<R2>      0.169(1)    0.168(1)     0.167(1)  0.166(1)    0.166(1) 
<R2>/<R>2      1.175(2)    1.180(3)     1.177(2)  1.180(3)    1.181(3) 
<R4>/<R2>2      1.657(12)    1.667(12)     1.653(11)  1.662(11)    1.682(12) 
<R6>/<R3>2      2.555(51)    2.550(42)     2.505(38)  2.530(41)    2.616(41) 
<R6>/<R2>3        3.838(95)    3.853(81)     3.761(74)  3.818(79)    3.977(82) 
<R8>/<R4>2   4.184(327) 4.064(265)     3.938(239) 4.010(256) 4.235(265) 
<R8>/<R2>4   11.494(700) 11.291(512)   10.762(433) 11.082(490) 11.988(484) 

 
   The <S2> and <R2> data in Table IA were fit 
by a weighted nonlinear least-squares program 
[6] to determine the exponent in the scaling 
laws, Eqs.6a and 6b. It was found that 2ν had 
the value of 0.99 ± 0.01 for <S2> and 1.00 ± 
0.01 for <R2>. These results are consistent with 
the theoretical value  of 1.00. 
      

The computer results in the Tables are for 
finite N whereas the theoretical results are for 
infinite N. Another scaling law for any property 
Pr is 
 
                  Pr   =   Pr∞ (1 − K / NΔ)    .            (7)                                 
 
Here Pr∞ is the value of Pr for infinite N, K is a 
constant, and Δ is the finite scaling exponent. In 
the ideal polymer regime Δ has a value of 1.0. 
The Pr∞ value can thus be found by fitting a 
weighted least-squares line [6] in 1/N to each set 
of data in the Tables. 
 
     The error in ratio calculations involving the 
division of separately averaged quantities which 
might be correlated has been determined by 
employing the equation derived by Bishop and 
Clarke [7]. They related the error in a ratio to 
the  separate  errors  in   the   numerator  and   in 
the   denominator.   If   the   ratio   is    given   as  
Z = <X>/<Y>P, where   P   is   any   power,   the  
 

 
standard deviation of the mean of Z, σ<Z> , is 
determined by the standard deviations of the 
mean of <X> and the mean of <Y>, σ<X>  and 
σ<Y>,  respectively.  
 
 σ<Z> = Z [(σ<X> /<X>)

2
  + P2 (σ<Y> /<Y>)2 

      - 2P covar(<X>,<Y>) / (<X><Y>)] 
½

  .    (8) 
 
Here, covar(<X>,<Y>) is the covariance of <X> 
and <Y>. It is defined by 
 
covar(<X>,<Y>) = (<XY> – <X><Y>)  / 
                                     (M – 1)  .                     (9)                        
 
The various ratio values and their errors were 
determined from Eqs. 8 and 9. Note that the 
ratios involve the quotient of averaged 
quantities rather than the average of the 
quotient. The results appear in Table IB. Then 
the best linear fit was extrapolated in 1/N to 0 
(e.g. N → ∞). The final extrapolated values are 
presented in Table II along with known results. 
Most of the simulation values reported in Table 
II are well within two standard deviations of the 
mean or in the 95% confidence interval. The 
error bars for the end-to-end distance moments 
grow larger as the exponent of the moment 
increases because of the large numerical values 
present in the quotient. 
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Table II: Comparison of Simulation and Literature Results.  
 

Property Extrapolated Literature 
<λ1>/<S2>           0.764(1)       0.7646(5)[a] 

<λ2>/<S2>           0.172(1)       0.1721(1)[a] 

<λ3>/<S2>           0.064(1)         0.06333(5)[a] 

<A>           0.394(2) 0.394[b] 

<S2>/<R2>           0.164(1) 0.167[c] 

<R2>/<R>2           1.182(3) 1.178[d] 

<R4>/<R2>2 1.675(14) 1.667[d] 

<R6>/<R3>2 2.568(52) 2.577[d] 

<R6>/<R2>3   3.892(100) 3.889[d] 

<R8>/<R4>2   4.034(330) 4.200[d] 

<R8>/<R2>4  11.409(644)          11.667[d] 

 
[a] reference 8  [b] reference  9 [c] reference 5 [d] reference 7   

 
   Solc [10] also simulated ideal linear polymers 
in three dimensions.  He found that <λ1>, <λ2> 
and <λ3> were in the ratio of 11.8:2.69:1.00. 
Our ratio of 11.9:2.69:1.00 is in fine agreement 
with his results.  
 

Conclusion 
 

  We have investigated three dimensional ideal 
linear polymers using a Monte Carlo growth 
method. Many different properties have been 
computed. There is fine agreement with 
theoretical results and other simulations. 
Modeling projects such as the one described 
here provide a clear demonstration of some 
aspects of polymers and thus strongly enhance 
student understanding and intuition. 

 
Appendix: The Manhattan College  
Undergraduate Research Program 

 
  Manhattan College has a long tradition of 
involving undergraduates in research and was 
one of the original members of the Oberlin 50. 
This is a group of undergraduate institutions 
whose students have produced many PhDs in 
engineering and science.  At Manhattan College, 

students can elect to take an independent study 
course for three credits during the academic 
year.  In addition, the College provides grant 
support to the students for ten weeks of work 
during the summer. I have personally recruited 
the students from my junior level course in 
Systems Programming. Previously published 
articles in this journal by Manhattan College 
student co-authors are a very effective 
recruitment tool.  The students have also 
presented their results at a variety of 
undergraduate research conferences including 
the Hudson River Undergraduate Mathematics 
Conference and the Spuyten Duyvil 
Undergraduate Mathematics Conference. 
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