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Abstract 
 

Monte Carlo computer simulation is a useful 
tool for exploring the properties of ideal two 
dimensional linear polymers. Monte Carlo 
simulations provide an opportunity for students 
to develop their computer skills while deepening 
their knowledge of the behavior of polymers.  
The current simulations are in excellent 
agreement with theoretical predictions.  
 

Introduction 
 

In a previous publication in this journal, 
Zajac and Bishop [1] employed a Monte Carlo 
growth method to simulate three dimensional 
ideal linear polymers. They computed many 
different polymer properties such as the mean-
square radius of gyration, <S2> and the mean 
asphericity, <A>, and found excellent agreement 
with theoretical values. In this work, their 
Monte Carlo growth method is used to examine 
ideal linear polymers in two dimensions. A wide 
variety of properties are computed and        
compared to theoretical predictions. 

 
Method 

 
     Two dimensional polymers are constructed 
on an integer coordinate system. Given the 
numbers N and M, the simulation is performed 
by creating M independent samples each 
containing N units (beads). Two kinds of lattices 
were studied: a square lattice and a triangular 
lattice.  In both lattices polymer samples are 
constructed by starting the first bead at the 
origin (0, 0). In the case of the square lattice 
subsequent beads are placed by randomly 
selecting one of four possible directions: North, 
South, East, or West, whereas in the case of the 
triangular lattice one of the following six 
possible directions is chosen: Northeast, East, 

Southeast, Southwest, West and Northwest. 
Each bead is placed one unit apart from the 
previously placed bead. In this study of ideal 
polymers, a location that has already been used 
by another bead is allowed to be chosen so that 
beads can overlap. After each polymer is 
completely constructed, a number of properties 
are calculated for that configuration.  
     

One important property of polymers is their 
shape, which can be determined from the matrix                                                  
representation of the radius of gyration tensor, 

↔ 
 T.  This is a 2 by 2 symmetric tensor with four 
components but only three are unique. It can be 
written as 
 
                          N                                                                                                                          
 Tab(k)  = (1/N) ∑(Qa

i(k) − QaCMi(k))  * 
                          i=1   
   
        (Qb

i(k) − QbCMi(k)) ;  a, b = X or Y      (1)                                                                                                                                         
 
Here, Qi(k) represents the X or Y components of 
the location of the i-th bead in the k-th sample 
and QCMi(k) represents the corresponding 
coordinates of the center of mass: 
 

                              N                                                   
QCMi(k)  =  (1/N) ∑ Qi(k) .               (2)                                                                                                                          

                                                i=1                                                                                            
                           ↔ 
The eigenvalues of T, λ1 and λ2, are the 
components of the radius of gyration along the 
principal orthogonal axes [2]. They are 
determined for a given polymer sample by using 
the standard solution to the quadratic 
characteristic equation. The λ values of each 
configuration can be ordered by magnitude. One 
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can envision [3] the polymer as enclosed in an 
elliptical envelope with semi-major axis λ1 and 
semi-minor axis λ2.  Rudnick and Gaspari [2] 
defined the asphericity of the k-th sample of a 
configuration, A(k), in two dimensions as 
 

A(k)  =   (λ1 − λ2) 2  /  ( λ1 +  λ2) 2 .  (3)                                                                                                                           
 
The asphericity ranges from a value of 0 when 
λ1 = λ2 and the polymer has the shape of a 
perfect circle, to 1 when λ2 = 0 and the polymer 
has the shape of a straight rod. 
 
  The overall size of a polymer is characterized 
by its radius of gyration and, in the special case 
of a linear chain, by its end-to-end distance. The 
squared radius of gyration of the k-th sample, 
S2(k), is equal to the sum of the diagonal 
elements of the radius of gyration tensor, 
 
                 S2(k) =  λ1 +  λ2 .                           (4)                                                                                                                                   
 
and the squared end-to-end distance of the k-th 
sample of linear chains, R2(k), is 
 
      R2(k)  =   (XN − X1) 2  +  (YN − Y1) 2 .   (5)                                                               
 
Here N and 1 refer to the last and first bead, 
respectively.   
 
  It is well-known [4] that for large polymers, 
both <R2> and <S2> follow scaling laws:  
 
                <R2>  =  C1 (N − 1) 2ν   ,            (6a) 
 and               
                <S2>  =  C2 (N − 1) 2ν   .            (6b) 
 
The coefficients, C1 and C2, are model 
dependent amplitudes but the exponent, 2ν, is 
universal and equal to 1.0 for ideal polymers. It 
is also well-known [4] that <S2> / <R2> = 1/6 
for infinitely long ideal linear chains. These 
universal quantities are independent of 
dimension for ideal chains. 

Results 
   

The simulations have been programmed using 
the gcc C compiler on a Linux machine. All the 
runs for N = 1001, 1501, 2001 and 2501 
employed M = 160,000 polymer samples. The 
program averages the data over all the samples. 
Since the polymer growth generation process 
provides independent samples, the mean and 
standard deviation of the mean of general 
properties can be computed from the usual 
simple equations [5] but more care is needed in 
computing the errors of the ratios. In all the 
tables the number in parenthesis denotes one 
standard deviation in the last displayed digit; for 
example, <λ1> = 138.96(26) means that <λ1> = 
138.96 ± 0.26. 

 
   The <S2> and <R2> data in Tables IA and IIA 
were fit by a weighted nonlinear least-squares 
program [5] to determine the exponent in the 
scaling laws, Eqs.6a and 6b. It was found that 
2ν had the value of 1.00 ± 0.01 for <S2> and 
1.01 ± 0.01 for <R2> on a square lattice and 
1.00 ± 0.01 for <S2> and 1.00 ± 0.01 for <R2> 
on a triangular lattice. These results are in 
excellent agreement with the theoretical value of 
1.00. 
 

The computer results in the tables are for 
finite N whereas the theoretical results are for 
infinite N. Another scaling law for any property 
P is 
 
                     P   =   P∞ (1 − K / NΔ)    .            (7)                                 
 
Here P∞ is the value of P for infinite N, K is a 
constant, and Δ is the finite scaling exponent. In 
the ideal polymer regime Δ has a value of 1.0. 
The P∞ value can thus be found by fitting a 
weighted least-squares line [5] in 1/N to each set 
of data in the tables. 
 

The error in ratio calculations involving the 
division of separately averaged quantities which 
might be correlated has been determined by 
employing the equations derived by Bishop and 
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Clarke [6]. They related the error in a ratio, to 
the separate errors in   the   numerator and   in 
the   denominator. See Zajac and Bishop [1] for 
the detailed equations. 
 
    The ratio results appear in Tables IB and IIB. 
Then the best linear fit was extrapolated in 1/N 
to 0 (e.g. N → ∞). The final extrapolated values 
are presented in Table III along with known 

theoretical results. All of the simulation values 
reported in Table III are well within two 
standard deviations of the mean, or in the 95% 
confidence interval. The error bars for the end-
to-end distance moments grow larger as the 
exponent of the moment increases because of 
the large numerical values present in the 
quotient.

 
 

 

Table IA: General Properties as a function of N: Square Lattice. 
 

Property 1001 1501 2001 2501 
<λ1> 138.96(26) 207.69(38)   278.05(51)   347.45(63) 
<λ2>  27.75(4) 41.70(6)     55.670(8)     69.50(10) 
<S2>    166.71(27) 249.39(40)   333.72(53)   416.95(66) 
<R2> 997.33(251) 1491.43(374) 2001.24(501) 2502.84(626) 
<A> 0.397(1) 0.396(1)       0.397(1)       0.397(1) 

 
 

Table IB: Ratio Properties as a function of N: Square Lattice. 
 

  
      

 
 
 
 
 
 
 
 
 
 

 
 

Table IIA: General Properties as a function of N: Triangular Lattice. 
 
 

Property 1001 1501 2001 2501 
<λ1> 138.94(25) 208.27(38)   278.55(51)   348.69(64) 

<λ2>  27.87(4) 41.86(6)     55.74(8)     69.76(10) 

<S2>    166.81(26) 250.13(40)   334.29(53)   418.45(66) 

<R2> 1001.12(251) 1497.19(376) 2005.49(501) 2506.91(630) 

<A> 0.396(1) 0.396(1)       0.397(1)       0.397(1) 

Property 1001 1501 2001 2501 
<λ1>/<S2>      0.834(1)    0.833(1)     0.833(1)  0.833(1) 
<λ2>/<S2>      0.166(1)    0.167(1)     0.167(1)  0.167(1) 
<S2>/<R2>      0.167(1)    0.167(1)     0.167(1)  0.167(1) 
<R2>/<R>2      1.275(1)    1.274(1)     1.273(1)  1.273(1) 
<R4>/<R2>2      2.010(5)      2.006(5)     2.003(5)  2.002(5) 
<R6>/<R3>2      3.429(21)      3.411(21)     3.419(25)  3.419(25) 
<R6>/<R2>3        6.083(48)      6.043(47)     6.047(53)  6.043(54) 
<R8>/<R4>2   6.087(139) 6.026(138)   6.132(173) 6.138(181) 
<R8>/<R2>4   24.588(419) 24.243(422)    24.604(581) 24.606(619) 
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Table IIB: Ratio Properties as a function of N: Triangular Lattice. 
  

    Property 1001 1501 2001 2501 
<λ1>/<S2>      0.833(1)    0.833(1)     0.833(1)  0.833(1) 
<λ2>/<S2>      0.167(1)    0.167(1)     0.167(1)  0.167(1) 
<S2>/<R2>      0.167(1)    0.167(1)     0.167(1)  0.167(1) 
<R2>/<R>2      1.272(1)    1.274(1)     1.274(1)  1.275(1) 
<R4>/<R2>2      2.003(5)    2.008(5)     1.999(5)  2.012(5) 
<R6>/<R3>2      3.423(21)    3.437(24)     3.391(24)  3.443(21) 
<R6>/<R2>3        6.051(47)    6.092(53)     5.992(52)  6.111(48) 
<R8>/<R4>2   6.095(139) 6.179(163)   6.037(162) 6.139(140) 
<R8>/<R2>4   24.452(418) 24.922(532)   24.124(533) 24.850(422) 

  
 

Table III: Comparison of Simulation and Literature Results.  
 

Property  Square Lattice   
Extrapolated 

Triangular Lattice 
Extrapolated 

Literature 

<λ1>/<S2> 0.832(2) 0.833(2)       0.832938[a] 

<λ2>/<S2> 0.168(2) 0.167(2)       0.167062[a] 

<A> 0.397(2) 0.398(2)   0.3964[b] 

<S2>/<R2> 0.167(2) 0.167(2)   0.1667[c] 

<R2>/<R>2 1.272(2) 1.277(2) 1.273[d] 

<R4>/<R2>2              2.004(8) 2.010(8) 2.000[d] 

<R6>/<R3>2    3.416(48)   3.429(32) 3.395[d] 

<R6>/<R2>3     6.010(78)   6.084(73) 6.000[d] 

<R8>/<R4>2       6.138(245)     6.124(216) 6.000[d] 

<R8>/<R2>4     24.433(798)         24.820(661)          24.000[d] 

 
[a] reference 7  [b] reference  8 [c] reference 4 [d] reference 6.   

 
Conclusion 

 
  We have investigated two dimensional ideal 
linear polymers using a Monte Carlo growth 
method on both a square and a triangular lattice. 
Many different properties have been computed. 
There is excellent agreement with theoretical 
results. Modeling projects such as the one 
described here provide a clear demonstration of 
some aspects of polymers and thus strongly 
enhance student understanding and intuition. 

 

 
Appendix: The Manhattan College  
Undergraduate Research Program 

 
  Manhattan College has a long tradition of 
involving undergraduates in research and was 
one of the original members of the Oberlin 50. 
This is a group of undergraduate institutions 
whose students have produced many PhDs in 
engineering and science.  At Manhattan College, 
students can elect to take an independent study 
course for three credits during the academic 
year.  In addition, the College provides grant 
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support to the students for ten weeks of work 
during the summer. I have personally recruited 
the students from my junior level course in 
Systems Programming. Previously published 
articles in this journal by Manhattan College 
student co-authors are a very effective 
recruitment tool.  The students have also 
presented their results at a variety of 
undergraduate research conferences including 
the Hudson River Undergraduate Mathematics 
Conference and the Spuyten Duyvil 
Undergraduate Mathematics Conference. 
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