
COMPUTERS IN EDUCATION JOURNAL 101

PROGRAMMING FOR PRE-COLLEGE EDUCATION
 USING SQUEAK SMALLTALK

Kathryn N. Rodhouse

Missouri University of Science & Technology

Benjamin Cooper
Savant, LLC

Steve E. Watkins

Missouri University of Science & Technology

Abstract

Competence in a programming language can
provide a strong basis for logical thinking and
an exposure to technology; however, many
languages are perceived to be too complicated
to learn at a young age. Opportunities for pre-
college students to learn programming concepts
can help develop critical thinking and problem
solving skills that will enhance their educational
experiences. Also, conceptual understanding of
programming techniques in one language can
aid in learning other languages. This project
developed an integrated series of programming
tutorials for using Squeak Smalltalk. Squeak
Smalltalk is an open-sourced, object-oriented
programming language that is being used for
educational software and through the One-
Laptop-per-Child initiative as well as for
database and multi-media applications. The
intent of the tutorials is to allow anyone, no
matter their current programming proficiency, to
learn applied programming techniques and to
avoid simple manipulation of code without
understanding the underlying concepts. These
tutorials cover object-oriented commands,
conditional coding, programming methods,
variables, and classes in the context of Squeak
Smalltalk, but these concepts are applicable to
many languages. The object-oriented nature of
Squeak Smalltalk facilitated the development of
basic programming literacy. The tutorials, an
implementation with pre-college students and
teachers, and an associated assessment are
described. Completion of the tutorial series
enabled the young programmers to adapt the

Squeak software package for their own original
programs.

Introduction

Programming literacy is an important

component in educating a modern workforce
and has particular relevance for those pursuing
science, technology, engineering and
mathematics (STEM) careers. Programming
promotes the development of logical thinking
and problem solving, both of which are skills
necessary for success is many technical fields.
The National Science Foundation projected that
there would be a shortfall of natural science and
engineering bachelor degrees in the year
2006.[1] The United States needs to remain
technologically advanced in order to compete in
world markets.[2] In April of 2004, the U.S.
Education Department's National Center for
Education Statistics reported that fewer than
half of seniors in high school were taking a
science course, which emphasizes the fact that
there is a decline of interests in scientific fields
within the United States.[3] Students need to be
exposed to technical topics at earlier ages before
they decide that STEM-related subjects are
uninteresting or too hard. Many educational
programs are currently seeking new methods to
improve STEM curriculum.[4] Additionally,
many new extracurricular programs such as Best
Robotics are developing with the sole purpose
of attracting students to technical fields.[5]
Programming literacy efforts are included in
these efforts.

102 COMPUTERS IN EDUCATION JOURNAL

In most college engineering programs, an
introductory software programming course is
required. Programming skills and an
understanding of software are important in
many engineering professions.[6] Programming
tasks require that a problem be explicitly
defined, that a possible solution be formulated,
that the solution be implemented, and that the
solution be tested. This problem-solving
process is relevant to most engineering work.
Early programming skill development enables
students to develop these critical skills, and it
helps them gain computer experience that can
directly apply to a technical field.[7] By
exposing students to programming in an
interesting way, students may be encouraged to
join programs and competitions such as those
hosted by the American Computer Science
League,[8] which are also aimed to further
interest in mathematics, science, and technical
fields.

This project demonstrates the development of

programming tutorials based on Squeak
Smalltalk for pre-college audiences. These
tutorials cover object-oriented commands,
conditional coding, programming methods,
variables, and classes in the context of Squeak
Smalltalk, but these concepts are applicable to
many languages. The intent of the tutorials is to
allow students with little or no programming
experience to learn and apply programming
techniques. The approach exploits the graphical
nature of Squeak Smalltalk and avoids simple
manipulation of code without understanding the
underlying concepts. The need for pre-college
programming experience is described as well as
the Squeak Smalltalk environment, an overview
of the tutorials is given, and a preliminary
assessment with middle-school-age and high-
school-age students is given. The results
indicate that these young students are capable of
learning and enjoying programming.

Programming Literacy

Traditionally collegiate engineering courses

are taught using FORTRAN, Basic, or C++;
however, recently some collegiate programs

have been experimenting with different type of
development languages. One such program at
the Citadel has been implementing Mathcad to
teach students the basics of programming.[7]
This experimentation was prompted by the
search for a programming language that could
enable students to learn the basics of
programming syntax while also learning how to
use programming to solve a problem.
Oftentimes engineering courses are largely
focused on language specific syntax that does
not enable cross language feasibility and does
not teach the process to solving a programming
problem.

In addition to experimenting with languages,

many colleges are searching for better methods
of teaching students to program. Because many
engineering students lack experience with
programming, oftentimes these students also
lack the ability to finish programming
assignments in a timely manner. Finding ways
to help students outside of the classroom have
been a recent goal for many engineering
programs. One method used by the University
of Cincinnati requires that a Programming
Learning Center be implemented.[9] This
Learning Center allowed students to observe
seminars about the assignments and to ask
questions as needed. This particular Learning
Center allowed 50% of the programming
students to complete their assignments on time
whereas without the Learning Center only 2.4%
of students completed the programs on time.
This statistic shows that any additional guidance
can largely benefit students in understanding the
processes of programming.

At Pennsylvania State University, educators

have found that interactive and hands-on
lecturing styles are also aiding students in the
classroom.[10] By creating lecture notes that
can be viewed and adapted individually during
and after the class, students were capable of
viewing and working through the notes at their
own speed, allowing them to learn more from
lectures.

COMPUTERS IN EDUCATION JOURNAL 103

Because there is such a strong need for the
development of good programming skills in
engineers, educational systems are constantly
looking for methods of course improvement.
By learning from past methods, courses are
being changed and adapted to better aid students
in learning the process of programming.

Squeak Smalltalk Environment

Squeak Smalltalk is the language used for this

project. Squeak Smalltalk is an open-sourced
language that is currently being utilized for
many applications including multimedia
applications targeted to the pre-college
classroom.[11] This programming environment
is based on the original Smalltalk programming
language that was developed as Xerox PARC in
the 1970s. The environment has been used for
the One-Laptop-per-Child initiative as well as
other education and recreational applications,
but it is fully function with other commercial
applications such as database and multimedia
tools. A key characteristic for the pre-college
audience in this project is the object-oriented
nature of Squeak Smalltalk.

The intent of the project is to provide a first-

experience in programming for pre-college
students. Additionally, the experience should
provide an organized approach to programming
and develop an understanding of key
programming concept. The Squeak Smalltalk
environment is well suited for younger
audiences due to its visual nature. It can
illustrate the processes of programming without
having to concentrate heavily on syntax
understanding. It is an excellent vehicle for
learning the basic terminology and theory of
programming.

Squeak Smalltalk Tutorials

A series of tutorials were developed to

familiarize users with the Squeak Smalltalk
interface and basic programming syntax. This
series consists of five tutorials. Each tutorial
allows users to create a visible change to their
user interface. These tutorials were written in a

manner to allow anyone, no matter their current
programming proficiency or experience, to learn
applied programming techniques. Completion
of these tutorials will allow the programmer to
adapt the Squeak classes and objects to do what
they intend them to do. Furthermore, the
tutorials introduce an organized approach to
programming and key programming concepts
that are used in any programming environment.
Manipulation of code without understanding the
underlying concepts is discouraged. In
particular, the tutorials are intended for
audiences as young as middle school and high
school students. The visible, hands-on aspects
enhance the Squeak programming experience
for young users, who are able to see the objects
they are programming.

Each tutorial contains basic information to

complete selected visible tasks. The tutorials
are designed to allow students to learn
independently. During the preliminary
implementations, a teacher was present to
answer questions, but no formal presentation
was made of the material. Additionally, the
tutorials give background information about the
theory of programming and how typical
programming languages work. Sidebars and
“Did You Know” Sections are included with an
assortment of shortcuts and interesting facts to
make them both more informative and more
interesting. The summary page from the second
tutorial is shown in Figure 1. Note the sidebar
on getting more information on Squeak. Special
consideration is needed for the intended young
audience.

• The guided tasks must be divided into

segments with a single concept.
• The tasks allow students to do something

with each concept before continuing.
• The terminology must be clearly defined

and consistent throughout the tutorials.
• Students are encouraged to try variations

while working at their own pace.
• Connecting concepts and key information

are repeated.
• Sidebar and “Did You Know” information

highlights selected facts, resources, etc.

104 COMPUTERS IN EDUCATION JOURNAL

Figure 1: Example Summary
Page from Tutorial 2.

The logo and the color scheme are designed to
appeal to the young audience. The organization
of the five tutorials with the selected tasks and
the associated programming concepts are shown
in Table 1.

The purpose of the initial tutorial is to

familiarize students with the built-in structure of
Squeak Smalltalk and to spark an interest for
completion of future tutorials. These tutorials
guide students to create a project and to use
objects built into the Squeak software to
manipulate the user interface. By the end of this
tutorial, students create a drawing tool with their
program similar to an “Etch A Sketch”. An
example of the task results is shown in Figure 2.
Both reference information about Squeak
Smalltalk and basic programming rules are
included.

The second tutorial teaches students about

conditional programming statements. Students
draw on their user interface using Squeak
commands and repeat the commands with
conditional statements, which then create a
“spinning pen” type tool. In addition to learning

Table 1: Organization of the Tutorials.

Tutorial Tutorial Tasks Concepts Taught
1. Getting Started in

Squeak
Use Built-in Squeak Objects

Create an Etch-A-Sketch” type
Tool

Basic Programming Rules
Basic Squeak Historical Information

2. Introduction to
Conditionals and the

Random Function

Create a “Spinning Pan” Tool Conditional Programming Statements
Computer Graphic Display Information

History of RPG Displays
3. Making

Commands in Squeak
Develop and Store Original

Programs
Manipulate Squeak Versions

Embedded Code
Absolute Commanding
Relative Commanding

4. Making Advanced
Commands in Squeak

Develop Complex Programs and
Commands

Use a Pen to Draw Intricate
Designs

Embedded Code
Conditional Statements
Debugging Concepts

5. Making Objects in
Squeak

Develop and Store a Class Inheritance
More Squeak Historical Information

COMPUTERS IN EDUCATION JOURNAL 105

Figure 2: Screen from Drawing Task (Student have Choices of Color, Shape, etc).

about conditionals, students gain background
information on how computers display colors
through completion of this tutorial. In the third
tutorial, students learn how to develop their own
programs and store them into the Squeak
software. Students are able to manipulate their
version of Squeak to store their own built-in
commands. Through this tutorial, students learn
the difference between absolute and relative
commanding and the meaning of embedded
code. The fourth tutorial develops student skills
with more complex commands and saved
programs. Students explore conditionals and
embedded code further in this tutorial. Visually,
students make programs to command a “Pen” to
“draw” designs (a star design is demonstrated
within the tutorial). Debugging concepts are
also taught in this tutorial. The final tutorial in
this series allows students to program and define

a class. Students learn the concept of
inheritance and how to utilize it in order to
“reuse” built in programs and functions of the
Squeak software. More historical information
concerning Smalltalk is given within this
tutorial.

This series of five tutorials cover basic
programming concepts. After modification that
is based on the assessments, a second series of
tutorials are planned, i.e. Tutorials 6-10, that
will provide more complex instructions with a
focus on further programming process and
theory development. In particular, an
individualized screen saver task using the
Squeak Smalltalk environment will allow
students to explore proper conditional handling
and proper Smalltalk syntax in addition to using
skills learned from the original series of
tutorials.

106 COMPUTERS IN EDUCATION JOURNAL

Implementation and
Preliminary Assessment

A two-page tutorial evaluation was developed

to assess the effectiveness of the tutorial design
and to assess the usefulness of the tutorials for a
pre-college audience. The background of the
users is addressed in the initial section as shown
in Figure 3. The effectiveness of selected
aspects of the tutorial is addressed in the next
section as shown in Figure 4. General
assessment with Disagree/Agree items is
provided as shown in Figure 5. The final
section allows for open-ended responses to the
following questions:

• How could these tutorials be improved to

make them more interesting?
• How do you see yourself using the skills

and ideas from these tutorials?
• Do you have any other suggestions for

these tutorials?

A preliminary implementation of the tutorials
was done at the Dent-Phelps R3 Public School,
a rural K-8 school district in Missouri. The
gifted class for fifth grade through seventh
grade was given the tutorials in the school
computer laboratory during a single two-hour
period. Six students participated with ages from
10 years to 13 years old including four boys and
two girls. All had received prior computer
instruction, e.g. E-mail and word processing,
through the school and most had computers
available at home for E-mail and gaming. Only
one had done limited programming before and
none had used Squeak Smalltalk before. All
completed Tutorial 1 and some started Tutorial
2 during the period. All participants felt that the
first tutorial was beneficial and most (four) felt
that it was “somewhat beneficial and give
[them] a partial understanding of programming
steps.” Five out of six participants liked the
tutorial sidebars. Most participants felt that the
tutorial figures were helpful, but two
participants did not like the current figures. The
rating assessment results are summarized in
Table 2.

SQUEAK SMALLTALK TUTORIAL EVALUATION PART 0

How old are you? Highest grade completed? What is your gender?
__________ __________ Male Female (circle answer)
Have you ever used Squeak before? Do you have a computer at home?
Yes No (circle answer) Yes No (circle answer)
How proficient were you at programming, prior to using these tutorials? (Pick one.)
_____ very proficient, have programmed extensively in Squeak or other environments.
_____ somewhat proficient, have programmed before in Squeak or other environments.
_____ somewhat not proficient, have been introduced to programming topics.
_____ not proficient, have never been introduced to programming topics.
What is your general computer experience? (Select all that apply.)
_____ Browsing the internet and sending E-mail.
_____ Using word processing programs such as MS Word.
_____ Using spreadsheet programs such as MS Excel.
_____ Using graphics/drawing programs or photo processing programs.
_____ Playing computer games.
Which Squeak tutorials have you completed? (Circle all that apply.) 1 2 3 4 5

Figure 3: Background Section of the Tutorial Evaluation.

COMPUTERS IN EDUCATION JOURNAL 107

SQUEAK SMALLTALK TUTORIAL EVALUATION PART 1

Pick the best choice for each statement.
The tutorials were …
_____ beneficial and greatly helped me in understanding programming concepts.
_____ somewhat beneficial and gave me a partial understanding of programming steps.
_____ somewhat beneficial, but did not give enough detail.
_____ not helpful in understanding programming concepts.
The tutorial sidebars (“Did you know,” “Tidbits,” “How to,”) ...
_____ had good information and advice that I read often.
_____ had some interesting information, but I did not always read them.
_____ provided some good tips for the tutorials.
_____ were uninteresting and did not benefit my tutorial experience.
_____ were uninteresting and I never read them.
The tutorial figures (showing computer screen examples for the Squeak projects) ...
_____ were helpful in understanding the tutorial steps.
_____ were somewhat helpful, but the tutorials had too many figures.
_____ were somewhat helpful, but the tutorials had too few figures.
_____ were not helpful in understanding the tutorial steps.
If you have used other programming languages, does Squeak programming seem …
 _____ easier _____ harder _____ same difficulty _____ not applicable

Figure 4: Second Section (Selected Items) of the Tutorial Evaluation.

SQUEAK SMALLTALK TUTORIAL EVALUATION PART 2

Please use the following scale to respond to each of the statements in Part 2:
 Strongly Disagree 1 ... 2 ... 3 ... 4 ... 5 ... 6 ... 7 ... 8 ... 9 ... 10 Strongly Agree

_____ 1. The figures were helpful by showing what the screen should look like.
_____ 2. The length of the tutorials was sufficient to understand the concepts.
_____ 3. The instructions for typing the code were easy to understand.
_____ 4. I had to read the tutorials several times to understand the steps.

_____ 5. I tried changing the given code to see what would happen.
_____ 6. I had difficulty completing the tutorials.
_____ 7. I gained a better understanding of programming terminology.
_____ 8. The tutorial layout was well designed.

_____ 9. I gained a better understanding of programming from these tutorials.
_____ 10. I feel comfortable creating my own code in the Squeak environment.
_____ 11. I want to continue my programming studies in the Squeak environment.
_____ 12. I would recommend these tutorials for others to learn about programming.

Figure 5: Third Section (Ratings) of the Tutorial Evaluation.

108 COMPUTERS IN EDUCATION JOURNAL

Table 2: Average Ratings from the Tutorial Evaluation.

Part 2 Question
(Disagree 1 … 5 … 10 Agree)

Dent-
Phelps R3

School

Home
School
Group

Park Hill
South
School

1. The figures were helpful … 7.50 8.50 8.35
2. The length … was sufficient to understand … 5.67 9.25 7.82
3. The instructions … easy to understand 5.50 8.50 8.29
4. I had to read … several times … 5.00 2.25 4.41
5. I tried changing the code (experimenting) … 8.67 8.00 6.59
6. I had difficulty completing the tutorials 4.50 1.50 2.59
7. I gained a better understanding … terminology … 6.17 8.50 6.06
8. The tutorial layout was well designed 6.83 8.25 8.00
9. I gained a better understanding of programming… 6.00 7.75 6.29
10. I feel comfortable creating my own code … 3.50 5.75 6.00
11. I want to continue (with) Squeak … 5.33 6.50 5.76
12. I would recommend these tutorials … 4.50 8.75 6.94

A second implementation of the tutorials was
done for a home school group of students in
California ranging in age 14 years to 18 years
old. These participants completed all five
tutorials during weekly two-hour sessions over
five weeks. This group consisted of four
students of which three were boys and one was
a girl. All were frequent users of home
computers and all had done some programming
before. The group liked the tutorials with half
selecting “beneficial” and half selecting
“somewhat beneficial.” They generally liked
the sidebars and they all liked the figures.
Those that had used other programming
languages preferred Squeak. The rating
assessment results are summarized in Table 2.

A third implementation of the tutorials was

done at the Park Hill South School, a public
school in Riverside, Missouri. The participants
were sophomores, juniors, and seniors in a
programming class (Java and Visual Basic) and
they ranged in age from 15 years to 19 years
old. The students completed at least the first
two tutorials during a single 100-minute period.
The group consisted of 19 boys. The group
liked the tutorials with ten selecting “beneficial”
and seven selecting “somewhat beneficial.”
They generally liked the sidebar information,
but most (nine) “did not always read them.”

Thirteen felt that the figures were helpful and
not too few or too many. Most (eight) felt that
Squeak was easier than other programming
languages, four felt that it was harder, and four
felt that it had the same difficulty. Table 2
summarizes the rating results.

The rating responses to the Part 2 Questions

are favorable. For the middle-school group, the
averages indicate that the student understood the
tasks and could complete them. The most
favorable response was to question 5. Here all
but one of the students agreed with a 9 or 10
rating and tried changing the code beyond the
given instructions before completing the
tutorial. The least favorable responses were to
questions 10 and 12. Given the limited time
available (2 hours) for just Tutorial 1, the
students would hardly be ready to do much
independent coding. The low response to
question 2 may indicate that the tutorials need
more adjustment to the age group. Although,
the youngest student gave this question a 10.

For the home school group and the public high

school group, most of the categories were quite
favorable. These older students had less
difficulty completing the tutorials and felt
comfortable with the length, instructions, layout,
etc. They were less likely to experiment with

COMPUTERS IN EDUCATION JOURNAL 109

the code during the tutorials and seemed to
follow the given instructions more closely.
After completing the tutorials, both groups then
generally experimented with the environment.
The high school group organized an impromptu
competition for who could make the “coolest”
design. These groups gave the tutorials a
relatively high overall recommendation
(question 12).

From the open-ended responses, the younger

students did not see themselves as programmers,
while the older students could think of ways to
use programming in a career or for fun. (One of
the home school students wanted to teach
programming to his mother and another wanted
to explore using Squeak for artwork.) The
groups suggested that action or movie graphics
should be used, that interactive features be
added, and that more color should be used. One
student emphasized that he understood Squeak
Smalltalk better than Java after just one session
of Squeak. The art teacher and the computer
skills teacher were present during the Dent-
Phelps R3 implementation. While they did not
perform the tutorials, they were very interested
in the program capabilities and asked that the
software and tutorials be left for their
examination. They noted that the experience
brought out active interest for some of the less
outgoing students.

Summary

The Squeak Smalltalk environment was used

for pre-college education with students as young
as ten years old. The student participants were
guided through their programming experience
with a series of five tutorials. The intent of the
tutorials is to allow independent progress
through the instructional material without the
need for formal instruction or the presence of a
teacher. Squeak Smalltalk is a fully functional
programming environment and is well suited for
young or inexperienced learners. The object-
oriented graphical nature of the programming
environment lessens the need for detailed syntax
understanding. Also, interesting tasks can be
completed with little training, such as the

drawing tool used in the first tutorial, similar to
an “Etch-A-Sketch”. These tasks allow students
to make individual variations to their programs
to reinforce learning and enjoyment.

The tutorials were developed to address basic

programming literacy issues. Programming is a
useful component in developing critical thinking
and problem solving skills and in preparing for
careers, especially STEM-related careers. The
intent of the tutorials is to teach basic
programming skills related to Squeak Smalltalk
and also to develop an understanding of general
programming concepts. To address the pre-
college audience, the tutorials were tailored with
regard to length, task size, repetition, etc.

Three preliminary implementations with

middle-school-age and high-school-age students
were done. The students are clearly capable of
understanding and completing the tutorial tasks.
Several students, especially the younger
students, showed a strong interest in developing
their own code as they “play.” The older
students tended to follow the instructions more
closely and had less difficulty using the
tutorials. The results of the assessments indicate
a need for more color and perhaps graphical aids
and have identified some points of confusion.
The results indicate that the level of the tutorials
is good for high school students, but that more
adjustment would benefit the young students. In
particular, the younger students seem to need
more aids such as graphics showing example
screen shots and programming optional paths.
Sidebars on applications and careers may be
beneficial as well. The next version of the
tutorials will incorporate related changes. Also,
additional tutorials are planned to address more
advanced concepts and to allow students to
create a screen saver.

The Squeak Smalltalk software is

available[11]for download at www.squeak.org
and the tutorials and evaluation form are
available at www.hawcenter.org/squeak.
html.[12] Any groups using the tutorials are
asked to assess the material with the evaluation
form. As shown in Figure 6, the associated

http://www.hawcenter.org/squeak

110 COMPUTERS IN EDUCATION JOURNAL

Readme.pdf file gives version information,
notes the supporting operating systems (Linux,
Windows, and Macintosh), and gives
instructions on general use of the tutorials.

Figure 6: Readme.pdf File.

Acknowledgements

Assistance from the Dent-Phelps R3 School in

Salem, Missouri, the Park Hill South School in
Kansas City, Missouri, and the Hawthorne
Center for Innovation in Inland Empire,
California is appreciated.

Bibliography

1. J. Streeter, Immigrant Scientists,

Engineers, and Technicians:1993
(National Science Foundation, 2006).

2. National Science Board, “America's

Pressing Challenge – Building A Stronger

Foundation. A Companion to Science and
Engineering Indicators – 2006,” National
Science Foundation (Jan. 2006).

3. Student Disdain for Science and

Technology Threatens American
Preeminence, Report Says,” The Whitaker
Foundation, 18 May 2004.

4. T. M. Swift and S.E. Watkins, “An

Engineering Primer for Outreach to K-4
Education,” Journal of STEM Education,
Vol. V, Issue 3 and 4, 67-76, July-Dec.
2004.

5. BEST Robotics Inc. - Boosting

Engineering Science and Technology.
Available WWW: http://best.eng.auburn.
edu.

6. S. Schneider, “Developing an Introductory

Software Programming Course for
Engineering Students,” Proceedings of the
2005 American Society for Engineering
Education Annual Conference and
Exposition, American Society for
Engineering Education, 2005.

7. K.P. Brannan and J.A. Murden, “From

C++ to MathCad: Teaching an
Introductory Programming Course with a
Non-Traditional Programming Language,”
Proceedings of the 1998 American Society
for Engineering Education Annual
Conference and Exposition, American
Society for Engineering Education, 1998.

8. American Computer Science League.

ACSL. Available WWW: http://www.acsl.
org/.

9. H. Said, “The Effect of Programming

Learning Center on Students in First Year
Programming Sequence,” Proceedings of
the 2004 American Society for
Engineering Education Annual Conference
and Exposition, American Society for
Engineering Education, 2004.

COMPUTERS IN EDUCATION JOURNAL 111

10. A. Azemi, “Teaching Computer
Programming Courses (Using the Internet)
in a Computer Laboratory Environment,”
Proceedings of the 2002 American Society
for Engineering Education Annual
Conference and Exposition, American
Society for Engineering Education, 2002.

11. Squeak Smalltalk. Squeak Oversight

Board. Available WWW: www.squeak.
org.

12. Squeak Smalltalk Tutorials. Hawthorne

Center for Innovation. Available WWW:
www.hawcenter.org/squeak.html.

Biographical Information

Kathryn N. Rodhouse will receive a B.S. in

Computer Engineering degree with minors in
Mathematics and Computer Science from
Missouri University of Science and Technology
in 2011. She plans to begin a M.S. program in
computer engineering. She received a 2010 IEC
William L. Everitt Student Award of Excellence
at Missouri S&T and is a member of IEEE and
Eta Kappa Nu. Her research interests include
programming, image processing, and
computational intelligence.

Benjamin Cooper is CTO/Managing Partner of

Savant, LLC. He is an entrepreneur with
experience in several companies. He attended
Emory University and the University of
California, San Diego.

Steve E. Watkins received his PhD from the

University of Texas – Austin in Electrical
Engineering in 1989. He holds M.S.E.E. and
B.S.E.E. degrees from the University of
Missouri-Rolla. He is currently a Professor at
Missouri University of Science and Technology
(formerly the University of Missouri-Rolla) and
Director of the Applied Optics Laboratory. He is
a member of IEEE (senior member), SPIE
(senior member), ASEE, and Eta Kappa Nu. His
research interests include optical sensing, smart
system applications, and engineering education.

ASEE MEMBERS

How To Join Computers in
Education Division (CoED)

1) Check ASEE annual dues statement
 for CoED Membership and add $7.00
 to ASEE dues payment.

2) Complete this form and send to
 American Society for Engineering
 Education, 1818 N. Street, N.W.,
 Suite 600, Washington, DC 20036.

I wish to join CoED. Enclosed is my check for
$7.00 for annual membership (make check
payable to ASEE).

 PLEASE PRINT

NAME: _____________________________________

MAILING
ADDRESS: _____________________________________

CITY: _____________________________________

STATE: _____________________________________

ZIP CODE: _____________________________________

	ASEE MEMBERS
	How To Join Computers in
	Education Division (CoED)
	PLEASE PRINT
	NAME: _____________________________________

