
RAY TRACING FOR UNDERGRADUATES

Christiaan Paul Gribble
Department of Computer Science

Grove City College

Introduction

The computer graphics research community
has recently renewed its interest in ray tracing,
an image synthesis algorithm that simulates the
interaction of light with an environment to
generate highly realistic images (Figure 1).
Recent hardware trends and algorithmic
developments make the technique competitive
with raster-based algorithms, and some suggest
that ray tracing will begin to dominate
interactive rendering in coming years.

At Grove City College, we have mapped the
contents of common graduate-level courses in
ray tracing to an undergraduate audience.
Students design and implement a full-featured
ray tracing system in a semester-long course
that focuses on:

• the essential physics and mathematics,
• software architecture and the impact of

design decisions,
• writing efficient object-oriented code, and
• basic algorithm analysis.

The course also affords an opportunity to

introduce students to the relevant computer

science literature, both seminal works and
recent innovations, throughout the semester.

In this paper, we provide a brief overview of

the visibility problem and two competing
algorithms that are commonly used to solve the
problem, we detail the course topics and
methodology we have used, and we describe our
experience in a pilot course with a small group
of undergraduate students.

Background

Despite the current trends in computer

graphics research, a thorough study of ray
tracing remains absent from most undergraduate
computer science programs. Typical computer
graphics courses focus on raster-based
techniques and the corresponding application
programming interfaces (APIs) such as OpenGL
or DirectX. The availability of commodity
graphics hardware makes raster-based
techniques widely accessible, and these
techniques serve as the basis of many interactive
rendering applications, including computer and
console gaming. These characteristics make the
study of raster-based techniques and their APIs
popular with undergraduate students.

Figure 1: Image synthesis using ray tracing. The ray tracing algorithm supports complex visual effects
that are not easily implemented with raster-based techniques, including depth-of-field, glossy and
specular reflections, refraction, soft shadows, and diffuse interreflection.

92 COMPUTERS IN EDUCATION JOURNAL

In contrast, ray tracing is considered by many
to be an historic artifact—perhaps relevant as a
research topic in the 1980s, but largely
uninteresting today. This perception may stem
from the traditional use of ray tracing as an
offline or batch technique: until recently,
generating a single image required either several
minutes of computation on desktop systems or
extremely expensive, highly parallel systems
found only in large research laboratories.
Others believe that the physical and
mathematical underpinnings put the algorithm
beyond the reach of undergraduate students,
relegating the study of the algorithm to
graduate-level courses.

However, we believe that ray tracing is an

ideal vehicle through which to reinforce and
apply fundamental concepts in computer
science. To develop an understanding of the
algorithm, students must integrate and extend
knowledge in computer graphics, software
engineering, mathematics, physics, and even
human perception. These characteristics,
together with hardware trends and recent
research results, make ray tracing both relevant
and accessible to undergraduate students.

Ray tracing versus rasterization

A fundamental problem in computer graphics

is the visibility problem: Given a set of three-
dimensional (3D) objects and a viewing
specification, determine which lines or surfaces
are visible from that view point. Many
algorithms that solve the visibility problem are
available in the literature, but currently the most
prevalent are the z-buffer algorithm and ray
tracing.

Current graphics hardware is based on the z-

buffer algorithm[1] which consists of a loop
over the objects in a scene:

for each object N do
 for each pixel P through which N might
 be visible do
 compute color cnew and depth znew
 if znew < zpixel then
 cpixel = cnew
 zpixel = znew

The z-buffer algorithm projects an object

toward the screen and writes to any pixels
covered by that object both the distance from
the object to the view point (the depth or z
value) and the color information, but only if the
new z value is less than the current z value
associated with a given pixel (Figure 2).

z‐buffer

view point

pixels

Figure 2: The z-buffer algorithm. Scene
geometry is projected toward the screen, and the
z-buffer is used to resolve visible surfaces based
on the distance between an object and the view
point. In this case, triangle T2 becomes the
object visible through the highlighted pixels.

In contrast, the basic ray tracing algorithm[2]

consists of a loop over all of the pixels in an
image:

for each pixel P do
 find nearest object visible through P

COMPUTERS IN EDUCATION JOURNAL 93

A 3D line query is used to find the nearest
object in the parametric space of the ray (Figure
3).

With the introduction of interactive ray
tracing, computer graphics courses must evolve
to reflect the current trends in computer
graphics research. Shirley et al.[6] have
identified several areas in the design of
computer graphics courses on which interactive
ray tracing will likely have an impact:

Ray tracing boasts several key advantages over

the z-buffer algorithm. First, for preprocessed
models, ray tracing is sub-linear in the number
of objects, N; thus, for some sufficiently large
value of N, ray tracing will always be faster than
the z-buffer algorithm, which is linear in N.[3]
Second, the computational kernel of the
algorithm performs a 3D line query, and that
same operation can be reused to generate global
illumination effects that also depend on a 3D
line query; these effects include shadows,
reflection, and refraction.[2] Third, ray tracing
is highly parallel and has been demonstrated to
have over 91% efficiency on 512 processors.[4]
This characteristic, combined with the advent of
multicore microprocessors and algorithmic
developments over the past five years, has made
ray tracing an attractive alternative for
interactive rendering. Interactive ray tracing
algorithms typically trade software complexity
for performance, but impose only modest
hardware requirements to obtain interactive
frame rates for complex scenes.[5]

• Illumination models. Recursive ray tracing

integrates visibility and illumination
computations based on a single
computational kernel, the 3D line query.
Many common physical effects that are
implemented with specialized tricks or
hacks in raster-based pipelines will evolve
into their natural illumination computations.

• Perspective transformation and

homogeneous coordinates. Ray tracing
simulates perspective naturally, so the
mathematic models necessary to simulate
foreshortening will become less important.
This process simplifies the traditional
transformation pipeline and eliminates the
need for perspective transformation.

ray tracing

view point

pixels

Figure 3: The ray tracing algorithm. Rays (3D half-lines) originating at the view point are traced into
the scene, and the object closest to the view point is found. Here, the 3D line query
determines that triangle T2 is visible through the highlighted pixel.

94 COMPUTERS IN EDUCATION JOURNAL

• Higher-order surfaces. Ray tracing
computes visibility by mathematically
intersecting a line and an object, and it is
often straightforward to ray trace
mathematically defined, higher-order
surfaces without tessellation. Current
emphasis on object models composed of
triangle meshes will begin to shift to models
based on the native representation of higher-
order surfaces.

• Volumetric effects. Ray tracing supports

participating media such as aerial fog or
smoke using semitransparent primitives with
dedicated illumination models. Here again,
the need for specialized tricks or other hacks
will be greatly reduced.

While we agree that the advent of interactive

ray tracing will likely have a significant impact
on the structure of traditional computer graphics
courses, we believe that the study of the ray
tracing algorithm is an ideal vehicle through
which to reinforce and apply fundamental
concepts in undergraduate computer science
programs. We have thus mapped the contents
of common graduate-level courses in ray tracing
to an undergraduate audience.

Course topics and pedagogy

Our undergraduate ray tracing course,
currently entitled “Image Synthesis using Ray
Tracing”, is intended to provide the student with

an understanding of the details of the algorithm
through the design and implementation of a full-
featured ray tracing program. Extensive
programming in C++ facilitates knowledge
development in the core areas related to image
synthesis using ray tracing: (1) the physical and
mathematical underpinnings of the algorithm,
and (2) efficient system design and
implementation. A description from the course
catalog is given in Figure 4.

Course outcomes

Upon completion of the course, it is expected

that students will be able to:

• Design and implement the basic components
of the ray tracing algorithm using object-
oriented programming and a variety of
development tools.

• Identify, describe, and analyze the basic

components of the ray tracing algorithm,
including ray/surface intersection methods,
lighting and shading models, and advanced
rendering effects.

• Describe and derive the physical and

mathematical basis for the ray tracing
algorithm, including ray/surface intersection
methods and the geometric model of light
transport.

Image Synthesis using Ray Tracing. An introductory course in the design and

implementation of the ray tracing algorithm for computer graphics. Course topics
include: intersection methods for basic and advanced three-dimensional objects; local
and global shading models; acceleration structures for ray tracing; and introduction to
surface, solid, and volume texturing. Prerequisites: Introduction to Computer
Graphics.

Figure 4: Details of the ray tracing course from the course catalog. Our current ray tracing course is

intended for advanced (junior- and senior-level) computer science students.

COMPUTERS IN EDUCATION JOURNAL 95

• Locate, analyze, and present articles
describing the theoretical and practical
research results concerning the ray tracing
algorithm.

By the start of their junior year, our students

have completed two semesters of physics
(statics, dynamics, and kinematics), three
courses in calculus, a course in discrete
mathematics for computer science, and a
semester of mathematical methods for engineers
(probability/statistics and linear algebra). These
courses provide the background required to
understand the physical and mathematical
underpinnings of the ray tracing algorithm.

Moreover, our students have completed a

three-semester programming core, which
provides in-depth experience with object-
oriented programming in C++. The students
have also completed a course in data structures
and algorithms, and are comfortable with
designing, analyzing, and coding complex data
structures and high-performance algorithms.
Finally, the students have completed courses in
computer architecture/organization and
operating systems, and are familiar with
process/thread management, memory
management, and file input/output. These
courses provide the background required for the
design and implementation of an efficient ray
tracing system.

Teaching and assessment methodology

The course consists of traditional classroom

lectures and discussion sections that focus on
questions arising from the programming
assignments. During the discussion sections,
implementation details and code examples are
provided, as is debugging assistance for
common problems. Chapters in the text,
research articles, and student presentations also
facilitate the discussion.

Most computer graphics textbooks include at

least one chapter on the ray tracing algorithm.
However, these texts are not sufficient to
support a semester-long study of the algorithm

and its applications. We currently are aware of
two textbooks dedicated entirely to ray tracing
that are suitable for an undergraduate audience:

• Peter Shirley and R. Keith Morely. Realistic

Ray Tracing, 2nd edition. AK Peters, ISBN
1-56881-198-5, 2003.

This text takes a nuts-and-bolts approach to

implementing a ray tracing system. Each
chapter tackles a relatively self-contained piece
of the overall system, and code examples are
provided at the end of each.

• Kevin Suffren. Ray Tracing from the

Ground Up. AK Peters, ISBN 978-1-56881-
272-4, 2007.

This text offers a more comprehensive view of

ray tracing theory and practice. Topics range
from algorithm basics to advanced techniques
that would be explored in the context of a
second course on ray tracing. A wide range of
code examples are also included throughout the
text.

The Suffern text was not yet available for our

initial offering, so we opted for the Shirley text.
However, in future versions of the course, we
plan to adopt the Suffern book as the main text
and suggest the Shirley text as a highly
recommended (but optional) resource.

Topics from the text are supplemented by

readings from the ray tracing research literature.
A partial bibliography of key ray tracing papers
that are read and discussed throughout the
semester includes:

• T. Whitted. An improved illumination

model for shaded display. Communications
of the ACM, 23(6):343-349, 1980.

• J. Kajiya. The rendering equation. In
Proceedings of SIGGRAPH ’86, pp. 143-
150, 1986.

• S. Parker, W. Martin, P.-P. Sloan, P. Shirley,
B. Smits, and C. Hansen. Interactive ray
tracing. In Symposium on Interactive 3D
Graphics, pp. 119-126, 1999.

96 COMPUTERS IN EDUCATION JOURNAL

• I. Wald, P. Slusallek, C. Benthin, and M.
Wagner. Interactive rendering with coherent
ray tracing. Computer Graphics Forum,
20(3):153-164, 2001.

These articles detail many of the theoretical

and practical aspects of ray tracing, and are
appropriate for advanced undergraduate students
with some guidance. Students are expected to
read each article and actively participate in the
corresponding discussions. Moreover, students
are periodically required to submit highlighted
versions of some articles, as well as a short (one
to two pages) summary of the authors’
contributions. In these cases, guiding questions
are provided to help focus the students’ reading
comprehension.

Graded work products for the course consist of

weekly programming assignments in which
each student builds his or her own ray tracer
from scratch. Students create web pages to
display their results, and the contents of these
pages are submitted for grading. Programming
assignments are typically composed of the
following elements:

• Required images: Students must duplicate

one or more required images that
demonstrate the required functionality.
Scene descriptions in a common format are
provided for the required images.

• Code listing: Students are required to
provide a link to the project source code on
their web pages. Students are not graded on
the quality of the code or comments, only on
its presence.

• Creative images: Students are typically
required to render one or more images that
demonstrate the features of their ray tracer.
Again, students are not graded on the
creativity displayed in these images, only on
their presence.

• Design decisions: Students are required to
describe any design decisions that were
made while implementing the assignment.
Students are not graded on their choices,
only on the completeness of the description
and justifications.

The required images represent the vast
majority of the credit for any particular
assignment (typically 70-80%), whereas the
remaining elements are intended to ensure
academic integrity and reasonable thought
processes.

The majority of student programming effort

occurs early in the semester, as they bootstrap
the necessary infrastructure. For example, the
first three programming assignments include:

1. Basic infrastructure. Students construct

the basic foundation for their ray tracer.
C++ classes for Point, Vector, Ray,
Color, and Image objects are designed
and implemented. Students must provide all
of the legal operators for a given class,
including arithmetic operators, dot product,
cross product, length, and normalization
routines.

In this assignment, students also implement
a simple Sphere class for testing their
infrastructure. The sphere stores its center
and radius, and has a single member
function intersects that indicates
whether or not a ray hits the sphere. Throw-
away code to generate rays and test the
various classes is provided.

2. Ray tracing architecture. Students

continue to develop their ray tracing
infrastructure throughout the course of the
semester. Students must implement C++
base classes for the Object, Camera,
Light, Material, and Background
objects, as well as an intermediate
Primitive class (optional).

In this assignment, students also implement
derived classes for sphere and plane
primitives, a pinhole camera, point light
sources, simple Lambertian surfaces, and a
constant-colored background.

3. Triangle meshes. Students add simple

triangle meshes to their ray tracers by

COMPUTERS IN EDUCATION JOURNAL 97

completing the member function definitions
for a Mesh class that is provided.

Later assignments typically consist of minor

modifications to the existing infrastructure or
the addition of new functionality that requires
very few changes to the code developed in
earlier assignments. Examples include the
introduction of acceleration structures such as
bounding volume hierarchies or kd-trees, as
well as additional material models. Students are
encouraged to follow the basic software
architecture presented in class, but they are free
to experiment with alternative designs.

We have developed a self-contained reference

implementation that provides efficient solutions
to each of the programming assignments in the
course. The reference implementation provides
students with a target for ray tracing
performance, and is available to instructors at
other institutions interested in developing their
own ray tracing courses (upon request).

All students at Grove City College receive the

most current Hewlett-Packard tablet computers
when they enter as freshmen. The current
freshmen model, the HP Compaq Tablet PC
tc4400 mobile computer, boasts a 2.16Ghz Intel
Core2 Duo Processor and 2GB of RAM. These
systems are more than sufficient for generating
the required images within a reasonable period
of time, typically just tens of seconds.
Computer laboratory facilities with reasonably
up-to-date equipment would also suffice.

Experience

We have offered the ray tracing course as a

special topics course, which is one way new
courses are piloted at Grove City College. Four
senior students enrolled in the course for credit,
and three sophomore students attended the
lectures and discussion sections but did not
receive academic credit.

Although special topics courses are not

evaluated in the same manner as standard
semester-length courses, feedback directly from

the students indicates that the initial offering
was well-received. At the conclusion of the
course, one student writes:

Thanks for this study Dr. Gribble, it was
very interesting and now I have a cool
program to show off. It's the biggest system
I've made since being at Grove City College
so I now feel like all my time coding and in
math classes has paid off, I think that's been
the coolest thing about this ray tracing stuff.

Additional feedback from the senior students

indicates that:

• Students gained an appreciation of the
extensive mathematics background required
by our computer science program. Ray
tracing puts many concepts in calculus,
linear algebra, and numerical analysis to
practical use in a context that has been
described as “cool” by the students.

• Students gained an appreciation of the
natural science courses required by our
computer science program, particularly
physics. Often, students reported that the
physical concepts related to a particular
topic (for example, ideal Lambertian
surfaces) made much more sense after
implementing the concept in the context of
the ray tracer.

• Students gained an appreciation for the
difficulties involved in developing and
debugging a complex software system. The
ray tracer was, for many students, the first
experience with a non-trivial code base that
had to be designed and written from scratch.

• Students spent a significant amount of time
on the programming assignments
(presumably relative to their other course
work), but the results were satisfying. We
did not receive any complaints about the
level of effort required by, nor the time
spent on, the programming assignments.

Student performance in the initial offering was

exceptionally high. This result is due, at least in
part, to a biased sampling: the four seniors
taking the course for credit initiated the effort,

98 COMPUTERS IN EDUCATION JOURNAL

COMPUTERS IN EDUCATION JOURNAL 99

and the sophomores that attended regularly were
invited by the instructor. We hope to see
similarly excellent performance in future
versions of the course, but a wider range of
students will undoubtedly bring mixed
performance.

Summary

We believe that a detailed study of the ray

tracing algorithm provides an opportunity to
reinforce and apply fundamental concepts in
computer science with undergraduate students.
We have mapped the contents of common
graduate-level courses in ray tracing to an
undergraduate audience. Students design and
implement a full-featured ray tracing system in
a semester-long course that focuses on the
essential physics and mathematics, software
architecture and the impact of design decisions,
writing efficient object-oriented code, and basic
algorithm analysis. The course also affords an
opportunity to introduce students to the relevant
computer science literature throughout the
semester.

Ray tracing provides opportunities for more

advanced study and undergraduate research.
We are currently planning a second course in
ray tracing focused on topics such as sampling
theory and the aliasing problem; advanced
global illumination effects such as soft shadows,
depth-of-field, and motion blur; and Monte
Carlo methods for simulating the physical
transport of light throughout an environment.

As a small comprehensive college, we hope to

demonstrate that ray tracing is accessible to
undergraduate students at a broad range of
colleges and universities, both large and small.
We also hope that our experiences are both
insightful and useful to other instructors
interested in developing their own ray tracing
courses.

References

1. E. Catmull. A subdivision algorithm for
computer display of curved surfaces. PhD
dissertation, University of Utah, 1974.

2. T. Whitted. An improved illumination model

for shaded display. Communications of the
ACM, 23(6):343-349, 1980.

3. J. Cleary, B. Wyvill, G. Birtwistle, and R.

Vatti. A Parallel Ray Tracing Computer. In
Proceedings of the Association of Simulat
Users Conference, pp. 77-80, 1983.

4. S. Parker, W. Martin, P.-P. Sloan, P. Shirley,

B. Smits, and C. Hansen. Interactive ray
tracing. In Symposium on Interactive 3D
Graphics, pp. 119-126, 1999.

5. I. Wald, P. Slusallek, C. Benthin, and M.

Wagner. Interactive rendering with coherent
ray tracing. Computer Graphics Forum,
20(3):153-164, 2001.

6. P. Shirley, K. Sung, E. Brunvand, A. Davis, S.

Parker, and S. Boulos. Rethinking Graphics
and Gaming Courses Because of Fast Ray
Tracing. In ACM SIGGRAPH 2007 Educators
Program, article number 15, 2007.

Biographical Information

Christiaan P. Gribble is an Assistant Professor in

the Department of Computer Science at Grove
City College. His research focuses on global
illumination algorithms, interactive and realistic
rendering, scientific visualization, and high-
performance computing. Gribble has served as a
post-doctoral research fellow and research
assistant for the Scientific Computing and
Imaging (SCI) Institute at the University of Utah,
and as a research assistant at the Pittsburgh
Supercomputing Center. In 2005, he received the
Graduate Research Fellowship from the
University of Utah. Gribble received the BS
degree in mathematics from Grove City College in
2000, the MS degree in information networking
from Carnegie Mellon University in 2002, and the
PhD degree in computer science from the
University of Utah in 2006.

