
Supporting On-line Direct Markup and Evaluation
of Students' Projects

Hussein Vastani, Stephen H. Edwards, Manuel A. Pérez-Quiñones

Department of Computer Science
Virginia Tech

Blacksburg, VA 24061

 Abstract

Automated grading systems have been in use

for several years. These systems automate part
of the grading process by compiling, executing
and testing student submitted source code.
However, such systems often fail to include a
mechanism to allow instructors or grader to
provide free form comments on student work.
One must resort to other methods to provide
feedback to students.

This paper presents the development of a

feedback mechanism that streamlines the
grading process for instructors and teaching
assistants. A web-based grading tool has been
developed that allows course staff to enter
comments for student programs directly through
a web browser. This tool is tightly integrated
with Web-CAT, an automated grader. The result
is a one-stop web-based interface for students to
receive all of their feedback.

We present the results of an anonymous

survey of computer science professors from
different universities on their expectations with
respect to TA grading activities for
programming assignments, as well as the
learning outcomes these professors desire for
their students. In addition, we present the results
of interviews with teaching assistants in
introductory programming level courses to learn
about the different grading methods they use
when grading programming assignments.
Finally, we report on a usability evaluation of
the tool itself and discuss directions for future
work.

 Introduction

Automated grading systems have been in use

in Computer Science education for several

years. Numerous systems have been developed
that automate the process of grading by
compiling, executing and testing student
submitted source code. However, such systems
often fail to include support for free form
comments provided by instructors or grading
staff. Instead, instructors or teaching assistants
have to resort to other methods to provide their
feedback to the students.

This paper presents a web-based grading tool

that allows course staff to enter comments on
student programs directly through a web
browser. This tool is tightly integrated with
Web-CAT, an automated grader [5]. The result
is a one-stop web-based interface where
students receive all of their feedback. We
present the results of an anonymous survey that
was sent out to Computer Science professors to
gather information on their grading practices
when assessing programming assignments. In
addition, we present the results of interviews
with teaching assistants in introductory
programming level courses to learn about the
different grading methods they use when
grading programming assignments, and the
difficulties they face. Information gathered
through these two channels served to form the
requirements for our tool design. Finally, we
present our tool and an initial evaluation of its
functionality.

Related Work

Feedback is an important part of teaching and

learning. Instructors provide feedback to
students to evaluate their work, to inform them
of their mistakes and suggest corrections, and to
help students improve their efforts. Feedback is
usually provided verbally or in written form—
either written by hand or typed using a
computer. Price and Petre [17] compared the

88 COMPUTERS IN EDUCATION JOURNAL

nature and quality of assignment feedback
provided on paper and in electronic form. Their
results showed that the two methods are
comparable. Using electronic marking as a
medium of providing feedback did not impair
students’ or instructors’ ability to communicate
effectively. Price and Petre also showed that
electronically managed assignments offer less
administrative overhead and faster turnaround
time.

Web-CAT

Many educators have used automated systems

to assess and provide rapid feedback on student
programming assignments (for a more in depth
review of the literature see [20,4]). While these
systems vary, they typically focus on
compilation and execution of student programs
against some form of instructor-provided test
data. Virginia Tech is actively exploring an
alternative approach where students write their
own test cases and are graded in part on the
quality of their own testing efforts. As a result,
we have designed and implemented a general-
purpose automated grading tool and
incorporated it into Web-CAT, the Web-based
Center for Automated Testing [5].

Web-CAT is a web-based application

implemented using Apple’s WebObjects
framework [21]. It is designed to be language
independent, and is currently used for grading
program submissions in six languages, including
Java and C++. For Java, it uses open-source
tools such as Checkstyle [2] and PMD [14] to
perform static analysis of coding and
commenting style and to spot potential coding
issues, and uses the commercial tool Clover [3]
to instrument student code for coverage
analysis.

In operation, students submit programming

projects through a web interface, or directly
through a plug-in within their IDE. The Web-
CAT Grader compiles student code and tests
together, executes all the student tests,
optionally executes additional instructor-
provided tests, and uses the results to assess the
validity and completeness of student testing.

Static analysis and stylistic checks are also
performed when possible.

The reports produced by the various

assessment tools are merged into one seamless
source code markup report that is viewable on
the web by the student. This unified feedback
report shows overall summary information,
including the score, compilation problems, and
test run results, as well as detailed file-by-file
feedback on the submission. The TA markup
capability discussed in this paper is integrated
into Web-CAT to support direct markup of
code. The goal is to have instructor- or TA-
provided comments presented to the student in
the same unified feedback report, directly
embedded in the color-coded source code view
provided to students.

Role of Automated Systems in the Grading
Process

Instructors teaching Computer Science

courses, particularly introductory courses, often
find themselves overburdened with work and do
not have enough time to do a thorough
assessment of students’ programming
assignments. As a solution, automated grading
systems have been developed and have achieved
some success in improving the grading of
assignments. These systems undoubtedly
provide additional benefits in terms of
consistency, thoroughness and efficiency in
assessing student programs [8]. Most support
the electronic submission of student
assignments [10,12,19], with many also
supporting the automatic compilation and
execution of student code against some
instructor-provided tests or test data [8,18,9]. A
smaller number of such systems also supports
electronic markup of student code in some form
[15,16,11,13] and the automatic return of
results.

The biggest advantage of many automated

tools is that they support the work of instructors
and teaching assistants by automating various
aspects of the grading process. They maintain
consistency in grading and provide timely
feedback to the students. The instructors and

COMPUTERS IN EDUCATION JOURNAL 89

teaching assistants can then spend their grading
effort on deeper issues such as style, design and
documentation.

Although such systems help instructors and

teaching assistants, very few support actual
markup of the student code. Some graders
follow the usual practice of printing out the
student code and making comments and point
deductions on the paper copy itself, which is
then handed back to the student. Others read
student code by retrieving it electronically, and
then make comments on a separate document
that is then mailed back to the student. The
efficiency of the grading process achieved by
the use of automated systems is not maintained
during the later, more important steps in
grading, i.e. TA feedback and return of student
assignments.

Systems That Support Online Marking

The work of Popyack, Herrmann,Char, Zoski,

Cera and Lass at Drexel University [15] is the
most relevant to our work. They have developed
a marking methodology that combines the
electronic and paper grading approaches. They
considered the advantages of both of these
methods and present a solution that allows
graders to write free-hand comments on a
student’s electronic submission using pen-based
Tablet PCs. This style of feedback closely
resembles traditional pen and paper grading and
represents the final document in digital form for
better archiving (as seen in Figure 1). They
make use of Adobe Acrobat1 to markup
documents.

Figure 1. Electronic Markup in Popyack et al.

Survey of CS Professors

In order to understand how Computer Science

professors grade programming assignments, an
online survey was prepared and announced on
the mailing list of the Special Interest Group on
Computer Science Education (SIGCSE) of the
ACM. The survey goals were to elicit responses
from professors about their grading practices,
and to gather information about the expectations
they have with respect to TA grading activities.
Sixty two people responded. All participants
had prior experience in grading student
programming assignments.

Results

On average, most graders (63%) spend 10 or

more minutes on each student’s assignment.
Most (96%) provide 15 comments or less per
student assignment. Overall, most professors
were satisfied with the quality (27 agree, 16
strongly agree) and the quantity (33 agree, 13
strongly agree) of the feedback provided to
students. A rubric was a common method used
for grading assignments, and most respondents
believe that the rubric is a useful tool to assess
the student’s work (34 agree, 16 strongly agree).

The survey also asked professors to rate the

relative time (as a percentage) spent on
providing programming assignment feedback in
different categories: commenting, indentation,
naming, design, control flow, correctness/bugs,
and student testing. Almost 50% of the graders
feel they do not spend enough time providing
feedback on student testing and 36% feel they
do not spend enough time grading design issues.
On the other hand, around 14% of graders spend
too much time on grading for correctness/bugs
and seven percent spend too much time
checking the quality and adequacy of student
commenting. The percent distribution is shown
in Figure 2. Given the time constraints on
grading and the requirement that feedback be
provided in a timely manner, it is no surprise to
see that the two most time consuming activities
(grading design and evaluating student testing of
their code) were the ones that need more time
devoted to them.

90 COMPUTERS IN EDUCATION JOURNAL

Figure 2. Percentage of time spent on different categories.

Too many assignments to assess

5

10

22

25

0

5

10

15

20

25

30

not at all very little some what to a great
extent

Not enough time or resources to do a
thorough job

1

9

29

23

0

5

10

15

20

25

30

35

not at all very little some what to a great
extent

Poor testing or work by the
student before submission

2

9

28

22

0

5

10

15

20

25

30

not at all very little some what to a great
extent

Figure 3. Impediments faced while providing feedback.

The survey also asked professors about the

impediments that graders face when providing
feedback to students. The question used a scale
with the options: “Not at all”, “Very Little”,
“Somewhat”, “To a Great Extent.” The three
impediments that are relevant for this paper are:
too many assignments, not enough time to do a
thorough job, and poor testing done by the
student before submission. The graphs below
show the distribution of the responses. About
70% of the graders agree that clerical tasks of
managing student assignments and returning
results are obstacles in the grading process.

Thirty two out of sixty two responses stated

that students turn in their source code print-out
for the graders to read and assess. Almost an
equal number of responses mention the use of
an electronic submission system. About 65% of
graders write their comments on a paper
printout and primarily use plain text with
occasional arrows, circles and lines to point out
source code issues. One person stated that s/he
provides “hand written” comments, typing them
would be preferred but it is not done “simply

as a time factor issue.” From those that provide
comments electronically, one “include[s] a link
to a Web document that contains the instructor's
solution at the relevant line in the instructor's
solution source code.” Comments are provided
directly in the code in some cases, or as “short
comments” as part of the student’s score file
that is e-mailed back to the student in many
others. Some feedback was also given verbally
“during the demo” of the program.

To assess student assignments for correctness,
many graders either hand-execute the
assignments against instructor provided data or
use support software to execute the file(s) and
compare the results with the professors’ output.
Some use a combination. One professor stated,
“I have the automatic grader send all output to a
big file which I examine manually. When
appropriate I use diff to compare student output
to correct output.”

Almost half of the responses stated that the

biggest disadvantage of the grading method was
that their grading process was time consuming
and sometimes “inconsistencies can creep in

COMPUTERS IN EDUCATION JOURNAL 91

even though a rubric is used.” One person felt
that the process was “time consuming and
subjective ~ high variability.”

Summary

We have seen that despite the numerous

developments in systems that automate the
grading process, many instructors still use a
paper-based grading method. The reason could
be that most automated systems are developed
in-house and only provide support for the most
basic form of feedback (program execution).
Professors still find it difficult to grade
assignments in big classes and prefer to
automate the testing process if possible. Most of
the professors do code markup on paper and
many feel that they do not get adequate time to
grade for code design and student testing.

Interviews with Teaching Assistants

In addition of the survey of professors, we

conducted interviews with teaching assistants
(TAs) to understand their perspective on the
grading process. The interviews focused on
getting a thorough understanding of the different
grading methods used by TAs and their relative
advantages and disadvantages. Six TAs at
Virginia Tech who had experience using
different grading methods (both electronic and
paper) were selected for these interviews. Each
interview took about 60 to 80 minutes. Two
general findings are reported here: how the TAs
organize the submission files while grading, and
how markup is done.

File Organization

All six TAs used the same method of

organizing files while grading submissions. TAs
maintained a folder (submission folder) with the
submitted source files for all the student
assignments sorted alphabetically. They would
go through the submissions in order and use
appropriate software to read the source code
files. As they would finish reading a student’s
code, they would type their comments as well as
the overall score in a plain text file and save it in
a different folder (results folder) using the

student’s e-mail ID as part of the file name.
They would then move the students’ source
code from the submission folder to a third folder
(graded folder) to keep track of their progress.
After all the files were graded and moved to the
graded folder, a script would be used to e-mail
each student his or her results file.

The plain text feedback file would contain a

few statements from the TA and a common
header usually placed at the beginning or at the
end of the document. This header shows a
summary of the deductions taken and other
information, like the TA name, course name,
and assignment.

TAs sometimes wrote a header template in
another text file so that they could copy and
paste it in each new grade report. All they would
do then is fill out the missing fields in the
header. TAs also included the scores produced
by any automated compilation tool as a part of
the deduction summary.

The organization and movement of files in the

three folders sometimes became cumbersome
for the TAs. Such work can become confusing,
particularly when a TA needs to go back to a
previously graded assignment to make
modifications. This method of grading also
requires a lot of time. TAs must be meticulous
while writing comments because they have to
explain in a clear way where and why the points
were taken off in the student’s assignment.
Using a single file to provide feedback also
indirectly encourages a TA to provide more
general, overall comments for an assignment,
since it is more difficult to identify specific
features of the student’s submission. For
example, a TA would make a comment that
“you have used upper case letters for some
variables” or “you could have used a do while
instead of a while loop”. But the TA would not
point out the specific variable or file or function
to which this comment referred.

Code Markup

Two TAs out of the six interviewed had used

Adobe Acrobat for marking up code

92 COMPUTERS IN EDUCATION JOURNAL

electronically. As with the process described
above, TAs maintained a folder of students’
source code files in PDF format sorted
alphabetically. The difference is that when using
Acrobat, the TA can directly entered comments
in the PDF files themselves. Thus, the TA does
not have to maintain a separate folder of text file
grade reports. Acrobat has a feature to enter
comments in the form of a pop-up note. TAs
used this feature to write comments on student
files and sometimes make this comment point to
a specific line in the source code for emphasis.
The disadvantage here is that these pop-up notes
are not embedded in the code well and tend to
move away from their original location as the
user scrolls through the file. TAs claimed that it
took them some time to learn the markup
features of this software. Other markup features
used included inserting images/icons and
highlighting lines with color. When done with
an assignment, the TA can move the files to
another folder. When all grading is complete, a
script can be used to e-mail the annotated PDF
files back to the students.

Even though this method of grading reduced

the overall grading time of the TAs, they still
did not like the way they had to organize
students’ files. TAs also had to manually
calculate the score summary for each student’s
assignment file. However, they felt that the
markup features of this software helped them
provide better feedback to the students by
making their comments more understandable
and readable.

Observations

The interviews with TAs helped us understand

the problems they face while grading students’
submitted assignments. TAs usually spend a lot
of time organizing students’ source code and
report files. They find it difficult to point out
mistakes or to provide corrective solutions.
They also find it tedious to copy and paste
comments that point out the common mistakes
made by many students. TAs stated that they
prefer to have an automated way to total up the
point deductions made and add the header block

for every report file that is sent out to the
students.

Requirements for an Ideal Solution

Based on our survey of Computer Science

professors and our interviews with TAs, we
describe in this section the “ideal” solution. This
serves as a set of requirements for a tool that
will allow instructors and teaching assistants to
markup a student’s submitted source code files.
A grading tool that supports direct markup of
code should have the following features:

• Insert, edit and remove comments for any

line of the source code using mouse clicks or
using a pen-based interface. Allow
comments to be entered about a group of
lines.

• Assign a category for each comment made

so that types of errors can be classified
easily and accounted for in the summary of
points.

• Support some form of visibility of the

comment by selecting who can view the
particular comment. E.g. Professors only,
Professors and Teaching Assistants, etc.

• Save the comments and update the overall

scores based on the deductions made by the
user. The grader can resume grading at any
time and find the file in the same state as
he/she had left.

• Track the progress of grading, so that one

can see which student assignments have
been completed, or which files within a
submission already have been reviewed.

• If possible, this functionality should be a

complement to existing testing services for
program grading. This will allow the grader
to focus on providing feedback based on
design issues and have automated tools test
for functionality and/or assignment
coverage.

COMPUTERS IN EDUCATION JOURNAL 93

• The feedback provided to the student should
include a combination of style, design,
testing, and other feedback in a single
“format” (e.g. same report).

• The commenting tool should be integrated

with a tool that supports online submission
of assignments, distribution of feedback
back to students, and archival of student
submissions.

Direct Markup in Web-CAT

In this section, we discuss the grading tool that

supports direct markup of student code. The tool
is integrated with Web-CAT and uses a “What
You See Is What You Get” (WYSIWYG)
editor. The TA can enter comments associated
with any line of code. The comments most
recently entered are stored together with the
points taken off for each comment in a “history
list.” This allows the TA to reselect the most
common error from a menu and reuse the
comment and the point deduction. Grading can
be done in multiple sessions, and the tool will
keep track of the state of the grading process.
The scores are automatically tabulated and
include scores from other automated grading
components as well as the points deducted by
the TA by hand. The tool addresses other
concerns, such as security, that are beyond the
scope of this article. More discussion can be
found in [20].

The following example, supported by

screenshots, will walk us through the steps a TA
takes while grading the assignment using the
direct markup interface of Web-CAT. The TA
is grading an introductory programming level
course CS 1705 and uses the Web-CAT system
to make comments on a student’s submission
for Program Assignment #2. Figure 4 shows the
list of students and the scores they received
during the automated phase of grading. In this
example, the TA has already started grading Joe
Hokie’s assignment and has given him a score
of 41 points but has not finished grading the
entire assignment yet. S/he now has the option
of going back to grade the remainder of Joe

Hokie’s assignment or to start grading Guy
Smart’s submission.

Once the TA chooses to return to Joe Hokie’s

assignment, s/he has to select which one of the
files to grade, as shown in Figure 5. The check
marks next to the last three class files indicate
that the TA has already finished grading those
files. The table also shows the number of
remarks generated by static analysis tools or by
the TA, the deductions, and the percentage of
code executed by the student’s test cases. At the
bottom of the page is a text box where the TA
writes any overall comments s/he has for the
assignment and edits the final score if necessary.
S/he clicks on the edit icon next to the first file
(TrashCollector) to enter comments for that file.
This brings up the markup editor, shown in
Figure 6.

Figure 6 shows the WYSIWYG interface of

our grading tool. The tool supports adding new
comments, editing comments, and removing
comments. New comments can be created by
selecting the line and creating a comment or
selecting the line and then selecting a previous
comment from the history list to be reused.
Comments include the name of the author
(usually the grader), a textual description,
a category, and the point deduction.
The categories available are Error, Warning,
Question, Answer, Good, Suggestion, Extra
Credit (in order of severity). The comment can
include font style (bold, italics, and underline),
and can also include a hyperlink to another web
page.

Figure 7 above shows one of the comment
boxes shown in the formatted source listing.
These boxes can either be TA-generated or tool-
generated. For boxes generated by one of the
testing tools, the comments are not editable. The
box mentions the source of the comment: the
TA’s name, the instructor’s name, or the name
of a static analysis tool that generated the
feedback message((e.g., PMD, Checkstyle, etc.).
Figure 7 is an example of a user-generated
comment box. It has been inserted for line 120
which has been executed 7 times. This new

94 COMPUTERS IN EDUCATION JOURNAL

Figure 4. Selection of Students.

Figure 5. A students grade report, as viewed by the TA.

Figure 6. What You See is What You Get markup editor, based on HTMLArea [7].

COMPUTERS IN EDUCATION JOURNAL 95

Figure 7. Comment Box in Web-Cat produced formatted output.

comment is labeled as a 'Suggestion'. Each
category has a color, an icon and (optionally) a
point deduction associated with it. The icon here
is a small light bulb and line 120 has been
highlighted in yellow.

Figure 8. Sample Deduction Summary Table.

Figure 8 shows the deduction summary table

present at the top of the grading page in Figure
6. This table provides the TA with information
about the deductions made for the current file as
well as other files in this student’s submission.
The deductions made by the TA are shown
alongside those generated through automated
analysis (labeled “Tool & Testing”). In this
example, there are no deductions made for the
current TrashCollector file.

Figure 9. Final Grade Report.

Once the grading is done, the TA can view the
final grade report, as shown in Figure 9. This is
the view of the report that the student will see.
The page displays the score summary with
respect to Design/Readability, Style/Coding and
Correctness/Testing. Any overall comments
made by the TA on this assignment appear next.
This summary page also shows the list of files—
the student can click on any file to view the
inline comments made by the TA. Finally, this
page shows the results produced by running
student-written tests together with an estimate of
how thoroughly the students solution covers the
required behavior.

One advantage of the Web-CAT system is that

the TA does not have to save and email the
grade report back to the students or update any
scores in a different spreadsheet. Once the TA is
done with grading, s/he clicks on the Finish
button. A notification e-mail is automatically
sent to the student informing him or her that
their assignment has been graded and feedback

96 COMPUTERS IN EDUCATION JOURNAL

is now available to view online. The student can
then log into the system and view the grading
report shown in Figure 9.

Usability Evaluation of System

After our new markup interface was developed

and added to the Web-CAT grading system, we
interviewed four TAs that had an opportunity to
use it. The TAs were asked their opinions about
our new markup interface. Two TAs were clear
victims of “new software syndrome” and were
reluctant to use the new system. Instead, they
continued to use their old method of writing
comments and did not explore the new features.
They assumed the new system to be
complicated and imagined that it would take too
much time to learn and adjust to the new way of
grading in the middle of the semester. The other
two TAs used the new interface to provide
comments. Overall, they were very happy with
this new way of grading.

There were three key features they liked and

felt were advantageous in the new interface:

Points summary/Header on top of page:

One of the biggest complaints that TAs had with
the other methods of grading was the absence of
some kind of a header to provide information
such as file name, point deductions, the total
points assigned, etc. They found the process of
creating a header table and manually copying &
pasting in all other report files very tedious. The
header on our interface is a summary table that
has the point deductions made by the TAs and
the automated tools for the current source file
and the other source files in a student’s
assignment.

Ability to write inline comments: TAs really

liked the way our new grading interface allowed
direct mark up the student’s source code. During
the interview, a TA commented, “Sometimes I
had to copy and paste the code in the overall
comment box to let students know what line of
comment has the error”. By providing inline
comments directly in the source code file, TAs
could easily point out errors in any line and
provide solutions to it. TAs also felt that the

inline comment boxes looked consistent and
emphasized their comments.

Accessing history of comments written

earlier: Another factor that the TAs found
bothersome about the other ways of grading was
the extra effort to rewrite or copy and paste the
frequently used comments. “I wish I didn’t have
to type the same comments over and over again.
What I do now is type it in a separate text file
and then copy and paste it whenever needed”
said a TA. The history list not only stores the
twenty most recently used textual comments
written by the TA, but also the point deductions,
category and visibility. This helps the TA
maintain consistency and fairness in grading all
student assignments. TAs also felt that this
feature would greatly reduce grading time since
many students tend to make common mistakes.

The TAs also provided some suggestions that

point areas of improvement for our work:

Having many comment boxes affects code

readability: A TA claimed that “Extreme
coloring and large number of comment boxes,
makes the code look cluttered and unreadable”.
It was difficult to read the source code lines
between the multiple comment boxes inserted
by the TAs, PMD tool and Checkstyle tool. TAs
found it troublesome to scroll the code window
since the increased number of comment boxes
took up too much space. They suggested that if
the comment boxes can be minimized somehow
(like the post-it feature in Adobe acrobat), the
source view would look cleaner and more
readable. Also TAs felt it would be convenient
to include a feature to toggle on/off the
comment boxes inserted by the automated tools
(PMD and Checkstyle) since they sometimes
found it hard to spot out their own comments.

Providing comments for a block of code:

One TA felt that certain comments not only
apply to one line of code but also to multiple
lines. For example, if a student’s logic in the
while loop was incorrect, then the TA would
want to highlight the entire loop to show the
error. The TA therefore suggested that if the
new interface had the feature to highlight

COMPUTERS IN EDUCATION JOURNAL 97

multiple lines of code and apply a comment box
to it, he/she could provide a better solution for
the error thus increasing the quality of feedback.

Discussion and Future Work

In this paper we have presented our work on

creating a code markup tool that is integrated
with Web-CAT, and online automated grading
system. We have shown how our tool tries to
streamline the grading process by helping the
instructors and teaching assistants focus more
on the deeper issues of grading while the
automated tools do the work of assessing for
correctness as well as checking for testing
coverage and other stylistic considerations. The
system also automates the return of the results
back to the students, and archives student
assignments which can easily be accessed
online.

Our work was motivated by a survey of

Computer Science professors and interviews of
TAs on how they do their grading of
programming assignments. We tried to build a
system that addressed their needs. The system
has been in use at Virginia Tech for close to a
year.

In the future, we want to expand our grading

tool to support peer review of other student
assignments by presenting a student with the
same interface and features that the TA sees
during grading. The only difference is that
during peer review, students cannot make point
deductions or modify the comments made by
the professors or teaching assistants. The peer
review feature is still under development and
will be integrated into Web-CAT in the near
future.

We are also exploring how to provide direct

markup of code using a Tablet PC instead of a
web based interface. We expect this
functionality to be integrated with Web-CAT
but not to be available for another year or so.

Finally, we have completed support for

Eclipse and BlueJ to further automate the
submission process. Our students develop their

projects on their personal computers. The
development environment has an option to
automatically send their project directly from
their environment to Web-CAT.

References

1. Adobe website, website last accessed on June

30, 2004, http://www.adobe.com/.

2. Checkstyle home page, website last accessed on

June 30th 2004, http://checkstyle.source forge.
net/ .

3. Clover: a code coverage tool for Java, website

last accessed on June 30th 2004,
http://www.thecortex.net/clover/.

4. Edwards, S., “Teaching Software Testing:

Automatic Grading Meets Test-first Coding”,
OOPSLA ’03, October 26-30, 2003, Anaheim,
California, USA, 2003.

5. Edwards, S., “Improving student performance

by evaluating how well students test their own
programs”, Journal of Educational Resources in
Computing, v3, n3 (September 2003), pp. 1-24,
ACM Press.

6. Edwards, S., “Using Software Testing to Move

Students from Trial-and-Error to Reflection-in-
Action”, SIGCSE’04, March 3–7, 2004,
Norfolk, Virginia, USA, 2004, pp.

7. HTMLArea, website last accessed on June 30th,

2004, http://www.interactivetools.co/products/
htmlarea/.

8. Isong, J., “Developing An Automated Program

Checker”, Proceedings of the Seventh Annual
Consortium for Computing in Small Colleges
Central Plains Conference on the Journal of
Computing in Small Colleges, Bransom, MO,
The Consortium for Computing in Small
Colleges USA, 2001, pp. 218-224.

9. Jones, E. L., “Grading Student Programs – A

Software Testing Approach.”, Proceedings of
the Fourteenth Annual Consortium on Small
Colleges Southeaster Conference, Salem, VA,
The Consortium for Computing in Small
Colleges USA, 2000, pp. 185-192.

98 COMPUTERS IN EDUCATION JOURNAL

http://www.adobe.com/
http://www.thecortex.net/clover/

10. Dr. Latham, J.T., “Managing Coursework:
Wringing the Stone, or Cracking the Nut?”,
Nikos Drakos, Computer Based Learning Unit,
University of Leeds. 1995, http://www.cs.man.
ac.uk/~jtl/ARCADE/huddersfield98/huddersfiel
d98.html.

11. Joy, M and Luck M, "The BOSS System for On-

line Submission and Assessment of Computing
Assignments", Computer Based Assessment
(Volume 2): Case studies in Science &
Computing, ed. Dan Charman and Andrew
Elmes, SEED Publications, University of
Plymouth, pp. 39-44, 1998.

12. MacPhereson, P.A., “A Technique for Student

Program Submission on UNIX Systems.” ACM
SIGCSE Bulletin, Volume 29, Issue 4, New
York, NY, ACM Press, 1997, pp 54-56.

13. Mason, D.V. and Woit, D.M., “Providing Mark-

Up and Feedback to Students with Online
Marking”, Proceedings of the Thirtieth Annual
SIGCSE Technical Symposium on Computer
Science Education, New Orleans, LA, ACM
Press, 1999, pp. 3-6.

14. PMD home page, website last accessed on June

30th 2004, http://pmd.sourceforge.net/.

15. Popyack, J.L, Herrmann, N., Char B., Zoski, P.,

Cera C., Lass R., “Pen-Based Electronic
Grading of Online Student Submissions”, Drexel
University, Presented at the Syllabus fall2002
Boston Area Conference on Education
Technology, Newton, Massachusetts, November
4-5, 2002.

16. Preston, Jon A. and Shackelford R., “Improving

On-line Assessment: An Investigation of
Existing Marking Technologies.”, Proceedings
of the 4th Annual SIGCSE/SIGCUE ITiCSE
Conference on Innovation and Technology in
Computer Science Education, Cracow, Poland,
ACM Press, 1999, pp. 29-32.

17. Price, B. and Petre, M., “Teaching Programming

Through Paperless Assignments: An Empirical
Evaluation of Instructor Feedback”, Proceedings
of the 2nd Conference on Integrating
Technology into Computer Science Education,
Uppsala, Sweden, ACM Press, 1997, pp 94-99.

18. Reek, K.A., “The TRY System – or – How to
Avoid Testing Student Programs”, Proceedings
of the Twentieth SIGCSE Technical Symposium
on Computer Science Education, Louisville,
KY, ACM Press, 1989, pp. 112-116.

19. Reek, K.A., “A Software Infrastructure to

Support Introductory Computer Science
Courses”, Proceedings of the Twenty-Seventh
SIGCSE Technical Symposium on Computer
Science Education, Philadelphia, PA, ACM
Press, 1996, pp. 125-129.

20. Vastani, Hussein Kamaluddin, "Supporting

Direct Markup and Evaluation of Students’
Projects On-line" Master Thesis, Department
Computer Science, Virginia Tech, June 11,
2004, Electronic Thesis etd-08172004-020310,
available at http://scholar.lib.vt.edu/theses/
available/etd-08172004-020310/.

21. WebObjects Development, Student Guide

WebObjects 5.2, web page last accessed on June
30th, 2004, http://www.apple.com/webobjects .

Biographical Information

Hussein Vastani works as a Software Engineer

at Advanced Simulation Technology Inc
located in Herndon, Virginia. He received
Bachelor’s Degree (2002) and a Master’s
Degree (2004) in Computer Science from
Virginia Tech.

Stephen H. Edwards is an Associate Professor
in Computer Science at Virginia Tech. His
research interests include software engineering,
automated testing, software reuse, computer
science education, formal methods, and
programming languages. Learn more about
Web-CAT on-line at: http://web-cat.cs.vt.edu/
WCWiki.

Manuel A. Pérez-Quiñones is an Assistant

Professor in Computer Science at Virginia Tech.
He is a member of the Center for Human-
Computer Interaction. His research interests are
in Human-Computer Interaction, Educational
Uses of Computers, and Interaction with
Portable Devices (phones, pdas,etc.).

COMPUTERS IN EDUCATION JOURNAL 99

http://www.cs.man/
http://pmd.sourceforge.net/
http://scholar.lib.vt.edu/theses/ available/etd-08172004-020310/
http://scholar.lib.vt.edu/theses/ available/etd-08172004-020310/
http://web-cat.cs.vt.edu/ WCWiki
http://web-cat.cs.vt.edu/ WCWiki

