
COMPUTERS IN EDUCATION JOURNAL 93 

TEACHING   THERMO-CHEMICAL   EQUILIBRIUM  
USING   A   MATLAB   ALGORITHM 

 
P.  Jha  and  L.  Massa  

Mechanical  and  Aerospace  Engineering  Department 
University  of  Texas  at  Arlington 

 
Abstract 

 
The chemical equilibrium model is 

significantly more accurate than the perfect gas 
model when calculating constant heat release as 
pertains to systems taught in courses within the 
thermo-fluid area of mechanical and aerospace 
engineering curricula, including 
thermodynamics, propulsion, and internal 
combustion engines. This paper presents a novel 
approach to teaching chemical equilibrium 
using a method based on matrix factorization. 
The advantages of the present approach, when 
compared to previous algorithms based on 
constrained optimization, are the 
straightforward formulation and the ease of 
implementation in MATLAB. The formulation 
is straightforward because it emphasizes that the 
equilibrium composition is based on 
thermodynamic considerations and thus, does 
not require knowledge of reaction paths. The 
implementation is simple because it avoids 
summation over chemical elements and species 
in favor of a singular value decomposition and 
matrix-vector multiplications. The teaching 
effectiveness of the new formulation is tested 
using an in-class survey. Based on the students’ 
feedback, we find that this module proved 
beneficial towards developing a sound 
understanding of the topic. 

 
Introduction 

 
Computer technology plays a two-fold role in 

the field of engineering education. On the one 
hand, using computer software to create 
multimedia demonstrations in class aids the 
students in understanding new concepts. 
Previous research[1,2] has shown that students 
who learned from lectures supplemented by 
animations performed better than those who 
learned through the text-only technique. Using 

graphics, simulations, animations of concepts 
and their applications has the potential to 
explain concepts more clearly and in a shorter 
time when compared to the conventional 
lecture-only approach. On the other hand, 
scientific computing allows the analysis of 
large, complex engineering problems, involving, 
for example the solution of coupled non-linear 
equations. The advantage of computers in 
education is, in this second case, to test and 
improve the problem-solving skills of the 
students on real world problems.  

 
The present research investigates benefits 

related to the second issue. The topic under 
investigation is the definition of thermo-
chemical equilibrium, which mechanical and 
aerospace engineering students learn and apply 
to determine chemical compositions, flame 
temperatures, specific impulses, etc..., in 
thermodynamics, combustion, propulsion and 
atmospheric modeling classes. Thermochemical 
equilibrium is significantly more accurate than 
the perfect gas model with constant heat release 
whenever exothermic processes are considered. 
The widespread use of perfect gases in thermo-
fluid engineering courses is historically due to 
the difficulty in calculating the equilibrium 
composition. Nowadays, the widespread use of 
advanced-interface programming languages 
such as MATLAB and MATHEMATICA in 
engineering courses yields the possibility of 
introducing a more realistic gas model in 
thermo-fluid engineering courses.  

 
In order to facilitate the use of thermochemical 

equilibrium in undergraduate thermo-fluid 
courses, we reformulate the problem based on 
the singular value decomposition of the 
stoichiometric matrix to remove the need of 
introducing chemical reactions in the 
formulation. In fact, we argue that explaining 
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the concept of thermodynamic equilibrium 
based on chemical reactions [3,4] is an 
uninformative approach for two reasons. First, it 
does not establish that the equilibrium principle 
is based on purely thermodynamic 
considerations, where chemical paths play no 
role. The rationale for its applicability to various 
stoichiometric balances is that thermo-chemical 
equilibrium is a detailed balance principle [5], 
meaning that each subsystem of the mixture is 
itself in equilibrium. Nonetheless, subsystem 
balances are neither chemical paths nor 
reactions and can include, for example, 
fractional stoichiometric coefficients [6]. 
Second, it does not identify what information is 
actually needed for an equilibrium computation, 
which should include two thermodynamic 
variables and a number of additional constraints 
equal to the number of atom types in the 
mixture. Since these constraints are imposed by 
the stoichiometry, they are equal in number to 
the non-zero singular values of the 
stoichiometric matrix. In this regard, we argue 
that a proper definition of the number of system 
constraints is the dimension of the range of the 
stoichiometric matrix.  

 
The main contributions of the present paper 

are a novel formulation of the equilibrium 
problem and a computational module developed 
for teaching chemical equilibrium in a 
combustion course. The algorithm uses singular 
value decomposition (SVD) both to define the 
problem and to solve it through non-linear 
searches on a (reduced) manifold spanned by 
the range of the stoichiometric matrix. The 
numerical operations are cast in a matrix-vector 
form, leading to a lean presentation and 
implementation. A similar SVD approach was 
used by Fox [7] to reduce the finite rate 
chemistry species into conserved and reactive 
subspaces. Further, the idea of reducing the 
search manifold by manipulation of the 
stoichiometric matrix is similar to the concept of 
element potentials introduced by Reynolds [8], 
but is more suitable for education because of its 
definition in terms of matrix-vector products.  

In the remainder of this paper a complete 
MATLAB implementation of the algorithm is 

presented, verified and discussed. The 
educational outcomes of this work are analyzed 
through in class surveys, and, finally, the 
conclusions are discussed.  

 
Chemical  Equilibrium 

 
Combustion of hydrocarbon fuels releases a 

variety of product species. At high temperature, 
the products of hydrocarbon combustion are not 
just represented by the major species 
(CO2, O2, H2O, N2). These species dissociate 
and produce a variety of minor species, which 
may be important from both the energetic and 
the environmental stand-points. In this section 
we briefly discuss the theoretical background 
and method to calculate the mole fractions of 
the product species at a given temperature and 
pressure. This problem is also referred to as TP 
(temperature and pressure), but the outlined 
solution procedure can be easily extended to HP 
(enthalpy and pressure) or SP (entropy and 
pressure) problems.  

 
Second  Law  of  Thermodynamics 

 
The second law of thermodynamics identifies 

the equilibrium condition in composition space 
as the state of maximum entropy of the system. 
In order for equilibrium to represent a detailed 
(rather than global) balance, the entropy must be 
maximal over all the degrees of freedom of the 
system. For a system at a given pressure and 
temperature, the maximization of the entropy 
leads to (seeVincenti and Kruger [5])  

 

 

(1) 
  where μi are the species Gibbs functions and dni 

the changes in species mole numbers. 
Constraints are of stoichiometric nature, and in 
the absence of any, the only detailed solution 
would be μi = 0 ∀i, which violates conservation 
of mass, thus it is discarded.  
 

Stoichiometry constraints on equation (1) are 
typically expressed in terms of the 
stoichiometric matrix  

 

 d 0,dT
i in nµ µ= =∑
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(2) 
  where the matrix A is of size nelement × nspecies, 

and expresses the number of each atomic 
element in each species molecule. Therefore, the 
product 𝐴𝑛 counts the total number of elements 
in the system, which is set to a constant by 
equation (2). The evaluation of A can be 
implemented in MATLAB in terms of the array 
of strings for the species and elements, as 
demonstrated in the code fragment reported in 
Figure 1.  

 
elements={’c’,’h’,’o’};  
species = {’ch4’,’o2’,’co2’,’co’,’h2o’,’h’,’h2’,’
o’,’oh’,’ho2’};  
Nel = numel (elements);  
Nsp = numel (species);  
A=zeros (Nel,Nsp);  
for i = 1:Nel  
    for j = 1:Nsp  
        ip=strfind(species{j},elements{i});  
        if ~isempty(ip);  
            ip1= min(ip+1,numel(species{j}));  
            coe=str2num(species{j}(ip1));  
            if ~isempty(coe);  
                A(i,j) = coe;  
            else  
                A(i,j)=1;  
            end  
        end  
    end  
end 
 
Figure 1. Fragment of code to determine the 
stoichiometric matrix A in equation (2). 

 
The implementation and manipulation of the 

stoichiometric constraints renders equilibrium 
didactically challenging: the Lagrange 
multipliers strategy [9], is effective but 
cumbersome. We propose a singular value 
decomposition of the stoichiometric matrix as a 
viable solution strategy, because of its lean and 
straightforward implementation in MATLAB. 
The algorithm starts with identifying the 
effective number of constraints as the 
codimension of the nullspace of A (N(A)), which 
is, as a consequence, mapped by the right 

singular vectors corresponding to zero singular 
values. Hence,  

 

 

 
 

(3) 
 

where dc is the projection of d non the nullspace 
N(A), and the columns of the matrix 
 

 
 
spanN(A). Thus, equation (1) becomes,  
 

 

(4) 
  where the implication is supported by the fact 

that dc can be any element of N(A), which is a 
consequence of the detailed balancing principle. 
The MATLAB implementation is simple, i.e., 
 

[U,S,V]=svd(A); 
 

S1 = V(:,Nel+1:end)’. 
 

Note that the vector μ contains the unknown 
mole fractions X, in fact, 

 

, 
 
Where g0 ≡ h-Ts0, and p0 is the pressure at 
which s0 is evaluated (typically 1 bar).  

 
We start manipulating eq. (4) by focusing on a 

TP problem. The unknowns are brought to the 
left-hand side and the following system is 
obtained,  

 

 

        (5) 
Equation (5) provides 𝑛𝑠𝑝𝑒𝑐𝑖𝑒𝑠 − 𝑛𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 

equations that are supplemented by equation (2), 
which is recast in an homogeneous form 
dependent on the mole fractions as follows,  

 

(6) 
  

 d 0,An b A n= ⇒ =

( )element species:, 1:  d d , TA USV n V n n c= ⇒ = +

( )1 element species:, 1:TS V n n≡ +

1 1 1d d 0 0,T T TS c c S Sµ µ µ= = ⇒ =

0
0

ˆ ˆ/ / log log /RT g RT X p pµ ≡ + +

0

1 1 1 0 1log [1,1, ,1] log / .ˆ
TgS X S S p p v

RT
= − − … ≡

2 2
ˆ0,  where,   .TS X S A bM A= ≡ − 
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Here 𝑏� is the vector of the mole mass ratios of 
the elements, and 𝑀�  is the vector of the atomic 
molecular weights; e.g., 𝑀� = [12,1,16]𝑇for the 
MATLAB code in Figure 1. The matrix S2 in 
equation (6) is obviously singular because it 
does not enforce conservation of mass, and thus 
one of its rows is replaced by the condition 

; 
 

whereby the system is non-singular, but also 
non-homogeneous. Finally, we have 
 

 

(7) 
 
as the second part of the resolvent system.  
 
Each of the two sub-systems is linear; 

equation (4) in log X and equation (7) in X. 
Nonetheless, the combination of the two 
systems is not linear. Since the dimension (nr) 
of the range of S1 is typically much larger than 
that of S2, we find it computationally efficient to 
reduce equation (4) by parameterizing the 
variation of its solution with a vector of size 
equal to the codimension of the range of S1. 
Hence, we carry out a singular value 
decomposition 

 

, 
and set 
 

 

(8) 
where,  
 

 

(9) 
and 
 

 

(10) 
 
 
 
 
 
 
 

This operation is performed in MATLAB 
without the need of the matrix inversion as 
shown in Figure 2.  

 
 

[L,K,R0]=svd(S1)  
N=R0(:,1:nr)*((S1*R0(:,1:nr))\V1);  
R=R0(:,nr+1:end);  
 
Figure 2. Fragment of code to reduce the 
dimensions of the solution log X by 
manipulation of equation (4).  

 
 

Thus, the search of the solution is restricted to 
a vector of size equal to the codimension of the 
range of S1, which is typically equal to the 
number of elements. This drastic reduction of 
the unknown space from (possibly) hundreds to 
a few elements sharply decreases the 
computational burden associated with the 
solution of the non-linear system in 
equation (7). Another advantage of equation (8) 
is that it avoids the problem with species 
disappearing from the mixture at high 
temperature, in which case the Newton update 
of the original formulation becomes singular 
because of the problem with log(0) → −∞.  
 

The solution of a TP problem can be 
accomplished by a multivariate minimization 
procedure instead of the Newton method, thus 
avoiding the calculation of the system Jacobian. 
Multivariate minimization is also a more robust 
solution method (has a larger convergence 
radius) than the Newton method. This outcome 
becomes important when one introduces 
equilibrium to teach problems with variable 
parameters, e.g., when evaluating Hugoniot 
curves for detonation waves. Multivariate 
minimization is implemented in MATLAB 
using the intrinsic function fminsearch as 
described in Figure 3.  

 
 
 
 
 
 

species

1
1

n

i
i

X
=

=∑

2 2[1,0, ,0] ,TS X v= … ≡

1 0  TS L K R=

log  ,X N Rc= +

1
1 1 1 1( ) ,N R S R v−≡

1 0 0  and(:,1: ) (:, 1: end).r rR R n R R n≡ ≡ +
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options=optimset(’TolFun’,1d-9,’TolX’,1d-

9,’MaxFunEvals’,10000);  
cv0 = cguess*ones(nv,1);  
c = fminsearch(@locfun,cv0,options);disp(c);  
X=exp(N+R*c);  
    function out=locfun(cv)  
        l=N+R*cv;  
        resid=b2-Z2*exp(l);  
        out = norm(resid);  
    end  
end 

 
Figure 3.Code for the evaluation of chemical 

equilibrium using a multivariate minimization 
strategy. 

 
 

Properties 
 
The evaluation of the mixture properties is an 

important aspect of the algorithm and comes 
about in the definition of the potentials g0. 
Assuming the mixture composed of calorically 
perfect gases, the information necessary for the 
computation of the chemical potential is the 
temperature dependent heat capacity Cp∘, plus 
the enthalpy and entropy at formation. We find 
it useful to point students to a website where 
they can obtain thermodynamic information on 
a wide variety of gases, so that they can use this 
knowledge for other discipline studies, beyond 
the scope of thermo-fluid education. A 
comprehensive non-commercial resource [10] is 
the National Institute of Standards website 
(http://webbook.nist.gov/chemistry/). Here, the 
Shomate equation defines the heat capacity in 
terms of five coefficients A - E, which can be 
used to evaluate the standard entropy and 
enthalpy by means of additional integration 
constants,  

 
𝐶𝑝0 = 𝐴 + 𝐵𝑡 + 𝐶𝑡2 + 𝐷𝑡3 + 𝐸/𝑡2 (11a) 

  

ℎ − ℎ298𝐾 = � 𝐶𝑝0d𝑇
𝑇

298 𝐾

 (11b) 

s0 − s298𝐾0 = �
𝐶𝑝0

𝑇 d𝑇
𝑇

298 𝐾

 (11c) 

 
Verification 

 
We have carried out sample computations 

involving small hydrocarbons 
(𝐶5𝐻12,𝐶3𝐻8,𝐶𝐻4 and air, and found that with 
the initial guess 𝑐 = [−20,−20,−20,−20]𝑇 
the algorithm converges everywhere in the 
temperature range 𝑇 ∈ [1000 − 3000]𝐾,  and 
for fuel weight fractions 𝑊 ∈ [0.05, 0.95]. The 
accuracy of the approach is verified against the 
NASA thermochemical equilibrium code [9] by 
evaluating the product composition supported 
by CH4 + Air burning at 3000 K, 1 bar and with 
weight fractions 𝑊𝐶𝐻4 = 0.055,𝑊𝑂2 =
0.21, and,𝑊𝑁2 = 0.735. Results reported in 
Table 1 show a good agreement between the 
two algorithms, also considering that the 
interpolating polynomials used to define the 
thermodynamic properties (equation (11)) 
differ.  

 
   

   Species NASA  Present 
   

   CO  5.9803 ×10-2 5.9832 ×10-2 
CO2 2.6807 ×10-2 2.6956 ×10-2 
H  2.8659 ×10-2 2.8901 ×10-2 
H2 3.2837 ×10-2 3.341 ×10-2 
H2O  1.0895 ×10-1 1.096 ×10-1 
N  1.1266 ×10-5 1.126 ×10-5 
NO  1.4111 ×10-2 1.4716 ×10-2 
NO2 2.6669 ×10-6 2.4375 ×10-6 
N2 6.5577 ×10-1 6.5538 ×10-1 
O  1.6799 ×10-2 1.6847 ×10-2 
OH  3.4207 ×10-2 3.2225 ×10-2 
O2 2.2040 ×10-2 2.2107 ×10-2 

   

    
Table 1.Verification of the chemical equilibrium 
algorithm against the NASA thermochemical 
equilibrium code [9]. 
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HP  Algorithm 
 
HP problems are rather important in 

mechanical/aerospace engineering education 
because they define flame temperatures, rocket 
chamber pressures and specific impulses, and 
the detonation speed according to the Chapman-
Jouguet theory [11]. The core algorithm for an 
HP problem is only slightly different from what 
is discussed in the previous sections. The 
conservation of energy in terms of the mass 
fraction is written in a vector-matrix form as 

 

 

(12) 

where h is the vector of molar enthalpies of 
products and ℎ�0 is the enthalpy of the reactants 
per unit mass. The HP algorithm requires two 
modifications with respect to the TP analog. 
First, the vector v1 is not fixed at the beginning 
of the computations, thus we find it useful to 
rewrite equation (8) as 
 
logX = -R1(S1R1)-1S1(v +[1,1,….,1]T log p/p0) + 
 
Rc = N0v +Rc +Np , (13) 
 
where N0 should be evaluated before the non-
linear search. Note that if the matrix S1 was full-
rank, equation (13) would become 
 

, 
 
which we previously identified as the solution 
for the non-constrained problem. Second, 
solving the problem as a multivariate 
minimization is inefficient, because the 
computer time necessary in evaluating mixture 
properties (𝜈 ≡ 𝑔0

𝑅�𝑇
and ℎ) overwhelms the linear 

algebra time. The large computational time 
becomes an issue when the algorithm is run with 
a large set of initial values, as when evaluating 
the Hugoniot curve for a given fuel in the 
context of a combustion wave analysis. 
Therefore, we use the Newton method with 
solution vector[𝑐𝑇 ,𝑇𝑇], residual,  
 

 

(14) 

and Jacobian,  

 

(15) 

with 

 

 

  (16) 
 
where 𝐷[𝑋] is a square matrix having X on the 
main diagonal and the prime indicates 
differentiation with respect to the temperature. 
A sample code for the calculation of the 
adiabatic flame temperature of a generic 
hydrocarbon 𝐶𝑚𝐻𝑛 in stoichiometric air is 
included in Figure 4. The only module to be 
added to this program is the perfgas.mroutine, 
needed to evaluate the thermodynamic 
properties of the mixture. This code was 
validated against data provided in Ref [3] 
(Appendix B) and results shown in Table 2 
show that the flame temperatures are evaluated 
with an error lower than 2° K. No convergence 
problem was detected when analyzing 
hydrocarbons with m up to 10.  

 
   

   Fuel Glassman3 Present 
   

   CH 4 2226K 2227 K 
C 2H2 2541K 2539K 
C2H6 2260K 2261K 
C3H8(L) 2257K 2258K 
C5H12(L) 2262K 2263K 
C10H16(L) 2308K 2308K 

   

    
Table 2.Verification of the HP algorithm 
against the adiabatic flame calculations in 
normal stoichiometric conditions reported by 
Glassman [3]. 

 
  
 
 
 

( )0
ˆ 0,T TX h A Mh− =

( )0log [1,1, ,1] log /TX p pν= + …

( )2 2 0
ˆ, , 

T
T Tr v S X X h A Mh= − − 

 

1 2

3 4

,
J J

J
J J

 
=  
 
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function T= Tflame(m,n,Tcold,p)  
p0=1; %bar  
Nfrac = 3.76; %molar ratio between nitrogen and oxygen in air  
  
%set the problem data  
W_F = (m*12+n)/(m*12+n + (m+n/4)*(32+3.76*28)); W_A = 1-W_F;  
fuel = [’c’,num2str(m),’h’,num2str(n)];  
W_O = W_A*32/(32+Nfrac*28); W_N = W_A*Nfrac*28/(32+Nfrac*28);  
  
%Mass matrix:  
elements={’c’,’h’,’o’,’n’};  
species = {fuel,’o2’,’n2’,’co2’,’co’,’h2o’,’h’,’h2’,’o’,...  
    ’oh’,’ho2’,’no’,’hno’,’n’,’no2’};  
Nel = numel(elements);Nsp = numel(species);  
A=zeros(Nel,Nsp);  
for i = 1:Nel;  
    for j = 1:Nsp  
        ip=strfind(species{j},elements{i});  
        if ~isempty(ip);  
            ip1 = ip-1+ regexp(species{j}(ip:min(ip+2,end)),’\d’);  
            coe=str2num(species{j}(ip1));  
            if ~isempty(coe)&& ip1(1)-ip <=1;  
                A(i,j) = coe;  
            else  
                A(i,j)=1;  
            end;  
        end;  
    end;  
end  
  
%Molar Mass of elements and species  
Mel = [12,1,16,14];Msp = Mel*A;  
  
%system matrices  
[U,S,V]=svd(A);S1 = V(:,Nel+1:end)’;S2 = A;  
  
%RHS vectors  
Sp = ones(size(S1,2),1)*log(p/p0);  
V2 = W_F/Msp(1)*A(1:4,1)+[0;0;W_O/Mel(3);W_N/Mel(4)];  
%mole-mass of reactants  
eta0=[W_F,W_O,W_N]./Msp(1:3);  
%enthalpy of reactants (per unit mass)  
H0=0;for k=1:3;H0=H0+ eta0(k)*perfgas(’h’,Tcold,species{k});end  
  
Tguess=1000;cguess = -10*ones(Nel,1);  
[X,cv] = NewtonHP(S1,S2,V2,Msp,species,H0,Sp,[cguess;Tguess]);  
T=cv(end);  
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function [X,cva]=NewtonHP(S1,S2,V2,Msp,species,H0,Sp,cguess)  
Runi = 8.31447215;  %KJ/Kmole  
[L,K,R0]=svd(S1);  
nc=size(S1,2);nr=size(S1,1);nv=nc-nr;Nsp = numel(species);  
N0=-R0(:,1:nr)*inv(S1*R0(:,1:nr))*S1;R=R0(:,nr+1:end);Np= N0*Sp;  
nu = zeros(Nsp,1);h  = zeros(Nsp,1);nu1= zeros(Nsp,1);h1 = zeros(Nsp,1);  
  
Z2=[ones(1,size(S2,2));S2-V2*Msp];  
Z2=Z2(1:nv,:);b2=zeros(nv,1);b2(1)=1;  
Hi=(Msp*H0)’;  
  
cva = cguess;iter=0;  
while iter < 5000  
    iter=iter+1;  
    cv=cva(1:end-1);T=cva(end);  
    for k = 1:Nsp;nu(k) = perfgas(’g’,T,species{k})/(Runi*T);end  
    for k = 1:Nsp;h(k) = perfgas(’h’,T,species{k});end  
    Tp=T+.1;  
    for k = 1:Nsp;nu1(k) = perfgas(’g’,Tp,species{k})/(Runi*Tp);end  
    for k = 1:Nsp;h1(k) = perfgas(’h’,Tp,species{k});end  
    h1=(h1-h)*10;nu1=(nu1-nu)*10;  
    X=min(max(exp(N0*nu+R*cv+Np),1d-18),1);  
    resid = [b2-Z2*X;-X’*(h-Hi)];  
    if norm(resid) < 1d-8;break;end;  
    J=[Z2*diag(X)*[R,N0*nu1];(X’.*(h-Hi)’)*R,X’*h1+(X.*(N0*nu1))’*(h-Hi)];  
    cva = cva + min(max(J\resid,-10),10);  
end  
 
Figure 4.Complete code to evaluate the adiabatic flame temperature of a generic hydrocarbon 𝐶𝑚𝐻𝑛 in 
stoichiometric air at the given pressure and temperature. 

 
Educational  Approach  and  Results 

 
We used the algorithm detailed above to teach 

combustion thermodynamics to a split level 
(senior/graduate student) class including fifteen 
students (eight undergraduate and seven 
graduate students).We first introduced the topic 
of chemical equilibrium to the students with a 
verbal lecture that emphasized the concepts of 
singular value decomposition and projection 
over finite dimensional vector fields. Then, we 
used a computer connected to a projector to 
explain the same concepts using MATLAB. The 
code was explained to the students line-by-line. 
The students were given a demo on how to use 
the code to obtain results. Homework was 
assigned where the students were asked to  

 
perform two tasks. a) Validate the code by 
comparing the results of the SVD procedure to 
the NASA thermo-chemical equilibrium code 
[9]. b) Solve a series of problems involving 
thermo-chemical equilibrium.  

 
The analysis of the educational outcomes 

focused on the following issues:  
 
1. Student keenness in using advanced linear 

algebra concepts to solve problem.  
 

2. Ease with which students can learn the 
tool.  
 

3. Ease with which students can apply the 
tool.  
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4. Student’s learning performance with the 
aid of the tool. 

 
Student  Feedback 

 
Students were asked to give their feedback, by 

answering a questionnaire, so that we could 
assess if the use of computer technology to 
teach this topic was beneficial. The 
questionnaire contained the following questions.  

 
On a scale of 1 to 5, 1 being the lowest and 5 

being the highest, rate the following:  
 
Q1 How well did you understand the principle 

of chemical equilibrium in combustion?  
 
Q2 How helpful was the MATLAB program 

in understanding the principle of chemical 
equilibrium?  

 
Q3 What is your level of experience with 

MATLAB?  
 

Q4 How good would your understanding be if 
you were explained only the theory behind 
the principle of chemical equilibrium?  

 
Q5 To what extent do you think that computer 

aided teaching can replace just lecturing?  
 
Q6 How helpful do you think it would be to 

apply this computer aided teaching 
technique to other topics? 

 
The feedback was anonymous and the students 

were given a week to answer all the questions at 
home.  

 
Survey Results 

 
Thirteen of the fifteen students enrolled in the 

class responded to the survey. The responses to 
the six questions listed in the previous section 
are shown in Figure 5. Overall, the students 
considered the present computer approach to 
teaching combustion useful. Only one student

 
Figure 5.Results of student surveys. The six questions are analyzed independently and displayed in 

increasing order from left to right, top to bottom. The first number close to each pie segment refers to 
the score (1 lowest, 5 highest), the second number to the percentage of students agreeing with that score. 
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strongly disagreed with the teaching method, 
and he marked both questions Q2 and Q6 with a 
score of one. In his comments such a student 
remarked that he previously took a combustion 
course at another university, that he understood 
chemical equilibrium well (the Q1 score was 4), 
and that he would have preferred an approach 
based on an existing graphic user interface 
(GUI) program (the NASA CEA code [9]); in 
other words, he deemed modifying an existing 
program provided to the class by the instructor 
“frustrating” and “futile”. Based on these and 
other comments made in person to the 
instructor, we conclude that having previously 
being taught the subject with a different 
approach made him reject our alternative 
explanation. We also remark that the student has 
a strong visual and global approach to learning2, 
which explains his preference for a GUI 
computer program. His learning style might 
interfere with the analytical computational 
approach to teaching proposed here.  
 

The correlation coefficient matrix based on the 
survey answers is shown in Table 3. As 
expected, questions Q2 and Q6 are strongly 
correlated. Surprisingly, question Q3 (i.e., 
MATLAB knowledge) is negatively correlated 
with both Q2 and Q6, which indicates that 
students with weak prior MATLAB knowledge 
are willing to learn this language and use it to 
solve engineering problems. Further, the strong 
negative correlation between Q4 and both Q2 
and Q6 indicates that students thought that the 
MATLAB approach helped them learn the 
theory.  

 

Summary  and  Conclusions 
 
We propose a MATLAB program based on 

singular value decomposition (SVD) of the 
stoichiometric matrix to explain the equilibrium 
composition of high temperature combustion. 
The teaching of equilibrium should focus on 
two aspects 1) that it is a purely thermodynamic 
rather than kinetic principle 2) that it represents 
a detailed rather than global balance. The 
proposed formulation accomplishes these 
objectives by eliminating reaction paths, and 
reducing the degrees of freedom of the system 
to the vector basis spanning the nullspace of the 
stoichiometric matrix: detailed balance implies 
maximization of entropy over these degrees of 
freedom. The proposed use of SVD to impose 
the atom conservation constraints and to reduce 
the size of the unknown (search) manifold leads 
to a simple implementation that involves only 
matrix-vector products, suitable for engineering 
education.  

 
From the evaluation of the student feedback, 

we found that 48% of the students deemed the 
computer aided teaching either helpful or very 
helpful. A follow-up test proved that the 
students had understood the concept well. 
Regardless of their previous experience with 
MATLAB, a majority of students found it easy 
to understand a provided code and modify it 
towards learning the chemical equilibrium 
principle.  
 

 
 
 

 
       

       Question Q 1 Q2 Q3 Q4 Q5 Q6 
       

       Q 1 1  0.5  0.24 0.08 0.17 0.22 
Q 2 0.5  1  -0.2  -0.44 0.28 0.81 
Q3 0.24 -0.2  1  0.36 -0.06 -0.37 
Q4 0.08 -0.44 0.36 1  0.12 -0.45 
Q5 0.17 0.28 -0.06 0.12 1  0.32 
Q6 0.22 0.81 -0.37 -0.45 0.32 1  

       

        
Table 3.Correlation coefficient based on the answers to questions Q1 - Q6 reported in this section. 
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We conclude that the use of the ubiquitous 
perfect gas approximation in thermo-fluid 
courses can be replaced with a more accurate 
gas model (equilibrium in the case analyzed by 
the present research) and the use of tables and 
Mollier diagrams can be replaced with species 
calculations. The key step to a wider acceptance 
of equilibrium thermodynamics is the removal 
of the chemical reactions from the teaching of 
this subject, which erroneously puts emphasis 
on chemistry rather than thermodynamics. 
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