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Abstract 
 
Most students have had some exposure to 

linear regression in their studies. Usually, this is 
limited to simple linear regression and perhaps 
multiple linear regression with several 
independent variables. Often, we need models 
that are nonlinear. We explain how to obtain 
these nonlinear models using the Excel Solver. 
Further, we point out the importance of the 
values of the initial decision variables in the 
Solver’s schemes. We illustrate with two 
examples, one exponential model and one 
sinusoidal model with a linear trend. 

 
Introduction 

 
We teach a three course sequence in 

mathematical modeling for decision making. 
Our audience is mid-career military officers 
whose background prerequisite for our course is 
college algebra.  

 
In course one we spend about five lessons in 

model fitting with least squares. We discuss the 
basic linear model, y=mx+b; polynomial 
models such as y = a + bx + cx2, and multiple 
regression of the form: y = a + bx + cz. During 
those lessons we introduce the concept of 
minimizing the sum of squared error   as our 
decision criterion as well as the concept of R2 
and a visual residual plot analysis. In course 
three we again need the same type models as 
course one so we do a review. 

 
In course two on stochastic models we have 

found that the data sets we examine need more 
than basic models, we need nonlinear regression 
models. We will illustrate how we use Excel to 
perform two of these nonlinear regression 
examples, exponential models and sinusoidal 
regression with a linear trend. 

 
Exponential  Regression  Using 

Excel's  Solver 
 
In this section we consider exponential 

regression. We'll see that if we do exponential 
regression in the usual way, we get an answer 
that is not as good as it could be. As a matter of 
fact, Fox (1993) showed that using the ln-ln 
transformations was merely an approximation to 
the nonlinear regression. We illustrate this again 
using Excel. Let's consider fitting an 
exponential function to the patient data taken 
from Neter (1996) and see what happens. First 
we will do the standard ln-ln fit with a 
transformation back into the original space and 
then we will compare the result we obtain using 
the Solver strictly to minimize the sum of 
squared error of the exponential function of 
interest. We find that we need the initial ln-ln 
model in order to obtain “good” initial estimates 
for our exponential model. We also note that in 
the example shown by http://archives.math. 
utk.edu/ICTCM/VOL13/C013/paper.html the 
differences in SSE are much more dramatic than 
our example below. 

 
The data ( from Neter, et al.,[1]) : 

Days Prognosis 
Hosp Index 

2 54 
5 50 
7 45 
10 37 
14 35 
19 25 
26 20 
31 16 
34 18 
38 13 
45 8 
52 11 
53 8 
60 4 

http://archives.math.utk.edu/ICTCM/VOL13/C013/paper.html
http://archives.math.utk.edu/ICTCM/VOL13/C013/paper.html
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Figure 1. Scatter plot of patient data with decreasing exponential trend. 
 
First we plot the data to examine the trends, 

see Figure 1. 
 
The trend appears to a decreasing function that 

is slightly concave up. Our guess is perhaps an 
exponential model of the form, 1g x

oy g e= might 
work well.  

 
Prior to transforming the data in Excel, we 

need to know what transformation to apply. We 
take the natural logarithm of both sides of our 
model form, 1g x

oy g e=  to obtain the transformed 
model, 1ln ln oy g g x= + . 

 
In Excel, we begin by taking the natural 

logarithm of the “y” variable to match our 
transformation and then we obtain a scatterplot 
of this transformed data, shown in Figure 2. 

 
We note that the plot is reasonably linear so 

we obtain a linear regression model and use it to 
approximate our model. We utilize the 
regression feature in the Data Analysis package 
in Excel and obtain the summary output. 
 

The only two pieces of useful information 
from this output are the intercept, 4.037159, and 
the slope, -0.03797. The regression model is ln 
(y) = 4.037159-0.03797 x. We need to 
transform this back using the laws of logs and 
exponentials into the real xy space to obtain 
y=56.6646e-0.03797x. In this space we find we 
have a SSE of 56.08671. The R2 is about (1-
SSE/SST) =0.995.  We plot the residuals, Figure 
3.  
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Days ln(PI)
2 3.988984
5 3.912023
7 3.806662
10 3.610918
14 3.555348
19 3.218876
26 2.995732
31 2.772589
34 2.890372
38 2.564949
45 2.079442
52 2.397895
53 2.079442
60 1.386294
65 1.791759  

 
 

  

 
 
 

Figure 2. Plot of year versus ln(Prognosis Index) indicating a line.  
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SUMMARY OUTPUT

Regression Statistics
Multiple R 0.97728
R Square 0.955076
Adjusted R 0.951621
Standard E 0.179379
Observatio 15

ANOVA
df SS MS F ignificance F

Regression 1 8.892955 8.892955 276.3791 3.86E-10
Residual 13 0.418296 0.032177
Total 14 9.311251

Coefficientstandard Erro t Stat P-value Lower 95%Upper 95%Lower 95.0%Upper 95.0%
Intercept 4.037159 0.084103 48.00247 5.08E-16 3.855465 4.218853 3.855465 4.218853
X Variable -0.037974 0.002284 -16.62465 3.86E-10 -0.042909 -0.033039 -0.042909 -0.033039

 
 
 

 
 

Figure 3. Residual plot from our approximate model. 
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Now, we go the Solver. Our model is 
1g x

oy g e=  which has two decision variables go 
and g1. Our model to minimize is 

1 2
0( ( ))g x

iSSE y g e= −∑ . 
 
First, we assume the choice of decision 

variables values does not matter and picked go 
=1 and g1 =1. The result was not good. We then 
go    back    and   start    with   our    transformed  

 

parameters   as  guesses:   go =56.6646  and g1 =     
- 0.03797 and obtain a final SSE of 49.459 and 
R2 of 0.9959 with final parameters for our 
model leading to y=58.60656e-0.039586x. 

 
Sinusoidal  Data  with  a  Linear Trend 

Regression  with  Excel’s  Solver 
 

Given the following CO2 data and the 
scatterplot below, see Figure 4. 

 
 
 
 
 
 

 
 

Figure 4. Scatterplot of CO2 data showing possible trend. 
 
We analyze the trends seen from the plot. Our 

analysis of the data from the plot is that the 
trend is an increasing oscillating function over 
time. Our goal is predicting the next three 
months of CO2.   

 

If we use the standard [1,1,1,1,1] as initial 
estimates for our model in the Solver, we 
obtained final estimates of: 
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Decision variables 
 

a 1.567461 
b 1.125106 
c 1.766401 
d 0.80018 
e 14.61877 

 
Our model y = 1.567461*sin(1.125106 x + 

1.766401)+0.80018 x + 14.61877 yields a 
model  that  we  overlay  in  Figure 5 and we see  

does not fit well although it does oscillate with a 
linear trend even with a SSE of 382.2 and an R2 
that appears good at 0.966. The visualization 
gives the lack of validity of the model.  

 
Neter et al. mention without much comment 

that sometimes a default like a vector of all 1’s 
will not converge properly to the better result. 
This is the case above. The model does not 
capture the exact trend we seek. We must obtain 
better initial estimates. 
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Figure 5. Plot of data and model from [1,1,1,1,1] showing a poor visual fit. 
 
A quick review of trigonometric definitions for 

amplitude, period, and phase shift as well as a 
quick review of slopes of lines and intercepts 
enable the modeler to obtain a better initial 
guess. In this case, in order to do better, we go 
back to the original scatter plot, Figure 4, and 
we estimate the parameters of the model.  The 
amplitude values (peaks) are from about 10 to 
20 and provide an estimate of 5 for the 
amplitude. The period, b, is found by using the 

formula, 2b
p
π

= . Weestimate 2 1.57
4

b π
= = . 

 
 

We see a shift, c, of approximately -3 from a 
typical sine function as it is about 2 units to the 
right of the origin. The slope of the line through 
the oscillation, d, is about 1.  Lastly, we use the 
midpoint of the sum  of  the peaks to 
approximate e as about 15. We point out that 
using these final parameter values previously 
obtained by the model did not constitute better 
initial estimates. Starting over using these new 
approximate starting values improves the model 
results.  Our new starting vector is [5,1.57,-
3,1,15]. We use these as our initial values in the 
Solver to obtain these values and model: 
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decision variables 
a -6.31644 
b 1.573548 
c -3.05807 
d 0.875956 
e 13.69287 
 

y=-6.31644*sin(1.575486x3.05807)+0.875956x 
     +13.69287. 

 
 In Figure 6, we show the data with our fit. 

Our SSE is 11.577 ( a vast reduction from the 
previous 383.2) and an R2 of 0.998977. More 
importantly, the figure attests to the model 
capturing our trends. 
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Figure 6. Plot of CO2 data and our model from the initial estimates [5,1.57,-3,1,15]. 
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Figure 7. Residual plot from our model showing no pattern. 
 

 
Class  Example 

 
Recently we were examining the following 

data for casualties due to IED devices in 
Afghanistan. 

 
The following data represents 9 years of IED 

casualties from 2001-2009. 
 
We want to predict the casualties for 2010-12 

with our model. We then take the real 2010 
outcome and compare it to our model to see 
how well the model performed. 

 
Our data is increasing and curved (see Figure 

8), so  in  our   analysis  in   class  we  build  and  
 
 

 
 
compare   both  a  polynomial  model, y =  b x +  
c x2,   and  an exponential model, y =  a eb x. The 
polynomial model is a review from previous 
classes on basic regress and the students obtain 
the model,  y = - 20.7 x + 7.27 x2 with a SSE 
=6774 and an R2 of approximately 0.979.  
Additionally the residual plot shows no trend. 
The prediction for x=10 is 520. 

 
Next, we want to fit the model, y =  a eb x. 

Using Excel 2010’s Solver and its GRG 
Nonlinear solver and starting values for “a” and 
“b” of 1, we find the optimal values are a=7.077 
and b=0.4602. This gives the model, y =  7.077 
e0.4602 x.  The R2 is 0.9965 and the residual plot 
show no trends (see Figure 9).  Our prediction 
for x=10 is 705.51. 
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Figure 8. Scatterplot of IED casualties. 
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Figure 9. Residual plot shows no trend. 
 
The students find that there were actually 630 

casualties in 2010. The polynomial model  
under estimated the actual value by 17.4% while 
the exponential model over estimated  12.3%. 
The students conclude in this example that the 
exponential model is better not only because the 
R2 was higher  and the SSE  was smaller but also  

 

 
they would prefer to over estimate casualties 
than under estimate them. 

 
Conclusion 

 
We have shown how to use the Solver to 

perform the  minimization of the sum of squared  
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error. Further, we have shown the importance of 
starting values used by the Solver to obtain the 
final models. Additionally, we have shown the 
importance of visualization not relying only on 
SSE and R2 to determine model adequacy. In 
other papers (Fox, 2011) should that good 
starting points are critical in using Maple, a 
powerful computer algebra system to achieve 
similar results.  

 
So why use Excel at all when there are other 

packages available? The main reasons are:  
 
● Excel is readily available and very 

inexpensive (often it is included with the 
computer when it is purchased).  

 
●   Although the Solver takes care of finding 

the parameters, there is pedagogical value 
is setting up the function for optimization. 
We think that students get a better feel for 
the process using Excel.  

 
●   It is fun to set up and solve!  
 
● The Solver might be the only available 

package and data might require a 
nonlinear model. 
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