
INTRODUCING   MULTITHREADED   PROGRAMMING: 
POSIX   THREADS   AND   NVIDIA’S   CUDA 

 
Christiaan  Paul  Gribble 

Department  of  Computer  Science 
Grove  City  College 

 
Abstract 

 
The current progression of commodity 

processing architectures exhibits a trend toward 
increasing parallelism, requiring that 
undergraduate students in a wide range of 
technical disciplines gain an understanding of 
problem solving in massively parallel 
environments.  However, as a small 
comprehensive college, we cannot currently 
afford to dedicate an entire semester-long course 
to the study of parallel computing.  To combat 
this situation, we have integrated the key 
components of such a course into a 300-level 
course on modern operating systems.  In this 
paper, we describe a parallel computing unit that 
is designed to dovetail with the discussion of 
process and thread management common to 
operating systems courses.  We also describe a 
set of self-contained projects in which students 
explore two parallel programming models, 
POSIX Threads and NVIDIA’s Compute 
Unified Device Architecture, that enable parallel 
architectures to be utilized effectively.  In our 
experience, this unit can be integrated with 
traditional operating systems topics quite 
readily, making parallel computing accessible to 
undergraduate students without requiring a full 
course dedicated to these increasingly important 
topics. 
 

Introduction 
 

The many-core revolution currently underway 
in the design of processing architectures 
necessitates an early introduction to parallel 
computing.  Commodity desktop systems with 
two cores per physical processor are now 
common, and the current processor roadmap for 
major manufacturers indicates a rapid 
progression toward systems with four, eight, or 
even 16 cores.  At the same time, programmable 

graphics processing units (GPUs) have evolved 
from fixed-function pipelines implementing the 
z-buffer rendering algorithm to programmable, 
highly parallel machines that can be used to 
solve a wide range of problems.  Together, these 
developments require that students possess an 
in-depth understanding of the hardware and 
software issues related to solving problems 
using many-core processing architectures. 
 

Grove City College is a small comprehensive 
college, and as such, we in the Department of 
Computer Science must wrestle with the 
requisite staffing limitations.  In particular, we 
cannot currently afford to offer an entire course 
dedicated to parallel computing—here defined 
to comprise a study of parallel processing 
architectures and the programming techniques 
necessary to utilize those architectures 
effectively—without sacrificing the integrity of 
our core computer science curriculum.  This 
situation thus poses a dilemma:  the current 
trajectory of processing architectures dictates an 
ever-increasing need for knowledge 
development in this area, but we are simply 
unable to dedicate a semester-length course to 
the study of these topics. 
 

In response to this situation, we instead 
introduce parallel computing in the context of a 
semester-long 300-level operating systems 
course, which features a 4-week unit focusing 
on parallel computing.  This unit is specifically 
designed to dovetail with the treatment of 
process and thread management that is common 
to courses on modern operating systems.  In this 
context, we motivate the opportunities and 
challenges introduced by parallel processing 
architectures, and students explore the key 
programming concepts via a set of self-
contained parallel programming projects.  We 
also discuss key issues arising in the context of 
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parallel execution environments, including 
resource sharing, thread synchronization, and 
atomicity, and these topics provide a smooth 
transition back to traditional operating systems 
concepts such as semaphores, high-level 
synchronization constructs, and deadlock. 
 

Parallel  Processing 
 

In particular, our students explore 
multithreaded programming in two forms:  the 
POSIX Threads (pthreads) interface, a 
standardized model for multithreaded 
application programming [1], and NVIDIA’s 
Compute Unified Device Architecture (CUDA), 
a co-designed hardware/software architecture 
for massively parallel computing [2].  Before 
discussing the details of these parallel 
programming models, we first motivate the 
multithreaded approach to parallel processing 
by contrasting it with two other common forms 
of parallel processing exploited by 
contemporary computer systems. 

 
Some  Common  Forms  of  Parallelism 
 

Modern processing architectures exploit 
parallelism on a number of levels, including 
instruction-level parallelism, multitasking, and 
multithreading.  Whereas instruction level 
parallelism and multitasking enable 

programmers to remain blissfully unaware the 
details related to parallel execution, relying 
instead on optimizing compilers and operating 
systems to exploit parallelism automatically, 
multithreading requires the programmer to 
design a program to capitalize on potential 
parallelism from the outset. 
 

Thus, to fully utilize the parallelism afforded 
by current and future many-core processing 
architectures, we believe that programmers must 
possess an intimate knowledge of the issues that 
arise in the context of multithreading. 

 
Instruction-Level Paralleism.  Consider the 
following expression involving several integer 
multiplications and additions: 
 

a + (b*c) + (d*e) + f 
 
Assuming we have a processor that requires a 
single cycle to evaluate each multiplication or 
addition operation, this expression requires five 
cycles to evaluate in a sequential manner:  one 
cycle for each of the arithmetic operations in the 
expression (Figure 1a).  However, if the 
processor is equipped with just one additional 
execution unit, then the number of cycles 
required to evaluate the expression can be 
reduced from five to three (Figure 1b). 

 
 

 
 

Figure 1:  Instruction-level parallelism.  The lack of data dependencies among operations within an 
instruction stream can be exploited by a processor with multiple execution units. 
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In this example, instruction-level parallelism 
(ILP) capitalizes on the absence of data 
dependencies among operations within the full 
expression to efficiently utilize the processor’s 
multiple execution units, thereby improving 
performance by a factor of 1.67 over the 
sequential version.  Typically, applications level 
programmers need not be concerned with 
parallelism at this level, and instead rely on 
optimizing compilers to recognize such 
opportunities and schedule instructions in a 
manner that leverages ILP.  Whereas ILP can 
improve the overall performance of a single 
program, opportunities to exploit ILP depend 
largely on the particular sequence of instructions 
required to implement a program’s behavior, 
and vary widely from one application to the 
next. 
 
Multitasking.  At a coarser level, multitasking 
also implements parallel processing without any 
special effort on the part of an application 
programmer.  In this case, programmers rely on 
the operating system’s scheduler to exploit the 
independence of tasks within the system, rather 
than the compiler’s ability to exploit the 
independence of operations within an 
instruction stream. 
 

Interestingly, multitasking operating systems 
are able to provide the illusion of parallel 
execution without actually requiring truly 
parallel hardware.  As such, multitasking is 
sometimes considered a form of concurrent 
processing, as distinguished from true parallel 
execution:  although multiple programs appear 
to be executing simultaneously, each process is 
in reality executed sequentially—the system 
simply switches among the available processes 
so quickly that it appears as though the 
programs are executing in parallel. 
 

It is important to note that multitasking does 
not improve the performance of any particular 
program, but instead improves the overall 
system throughput, which is a measure of the 
number of tasks completed by the system in a 
particular unit of time.  With multitasking, no 
single task completes more quickly, but instead 
some collection of tasks will potentially require 

less time to complete than if those tasks were 
executed sequentially. 

 
Multithreading.  Though multitasking remains 
an important feature in the context of highly 
parallel processing architectures, this technique 
cannot exploit the independence of logical tasks 
within a single program.  Modern systems thus 
afford programmers the ability to explicitly 
divide a process into two or more threads—
logical units of computation that share many of 
the resources that are used across the program as 
a whole, including a program’s binary 
instructions and its global data structures 
(Figure 2).  It is this form of parallelism with 
which our 4-week parallel computing unit is 
concerned.  In particular, this unit centers 
around two multithreaded programming models 
that can be used to effectively exploit parallel 
processing and thereby improve program 
performance:  pthreads and CUDA. 
 
POSIX  Threads 
 

pthreads is a standardized model for dividing a 
program into subtasks whose execution can be 
interleaved or run in parallel.  This model 
implements the POSIX multithreading interface 
(POSIX Section 1003.1c), which is part of the 
more general family of IEEE operating system 
interface standards. 
 

Programmers experience pthreads as a set of C 
programming language data types and function 
calls that operate according to a set of implied 
semantics—that is, pthreads offers a 
standardized, programmer-friendly application 
programming interface (API).  Specific vendors 
typically supply pthreads implementations in 
two parts: 
 

• a header file that is included in a 
multithreaded program, and 

• a library that is linked to the program 
during compilation. 

 
To exploit multithreading, programmers must 
design and implement their programs as a series 
of independent tasks.  Using the pthreads API,
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Figure 2:  Classic versus modern processes.  A process represents a program in execution.  The classic 
process model contains just a single execution engine, but modern processes—multithreaded 
processes—allow multiple execution engines to share the resources within the computational 
framework provided by the process. 
 

multiple threads of execution are spawned and 
scheduled as independent units by the operating 
system, proceeding independently unless the 
programmer explicitly synchronizes the threads’ 
execution. 
 

The behavior of each thread is specified during 
its creation by passing the name of a C function 
to the thread creation routine as an argument.  
Other properties of the thread, including 
arguments to the function that define its 
behavior, are passed at the time of creation as 
well. 
 

Common synchronization primitives such as 
barriers, locks, and higher-level constructs can 
be constructed using pthreads mutexes.  
Primitive mechanisms for inter-thread 
communication via shared data structures are 
available as well. 
 

In general, the pthreads execution model treats 
threads as peers.  Only the main thread, which is 
created by the operating system when it 
instantiates the multithreaded process, has 
slightly different properties, but these 
differences can typically be ignored:  all of the 
threads in a well-designed pthreads program 

will thus cooperate to execute the task at hand in 
a manner that effectively utilizes the underlying 
resources of the processor. 
 
NVIDIA Compute Unified Device Architecture 
 

Over the past several years, multicore 
processors have evolved from traditional central 
processing units (CPUs) and afford one means 
to exploit parallel processing through 
multithreaded programming.  At the same time, 
recent advances in the programmability of so-
called graphics processing units (GPUs) now 
permit these devices to be used for general 
purpose computing.  In fact, these devices have 
spawned an entire field of academic and 
industrial research [3], and have been 
demonstrated to provide significant performance 
improvements for various computing problems 
across a wide range of application domains [4]. 
 

Historically, GPUs comprise a series of fixed-
function pipelines that implement the z-buffer 
rendering algorithm to provide the real-time 
graphics capabilities that have become an 
integral component of the modern human-
computer interface.  As a result, GPU devices 
have found wide deployment, and most 
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contemporary desktop computer systems, as 
well as gaming consoles, digital music players, 
and high-end mobile devices, are often equipped 
with one or more such processors. 
 

Recently, GPU manufactures have begun to 
expose the low-level hardware components on 
which these devices are based, permitting an 
unprecedented level of programmability.  The 
programming models through which 
programmers interact with these devices have 
evolved accordingly, rapidly progressing from 
low-level assembly language programs written 
specifically for a particular GPU architecture to 
high-level programming interfaces such as the 
NVIDIA Compute Unified Device Architecture 
[2]. 
 

CUDA is a co-designed hardware and software 
platform designed to leverage the massively 
parallel compute capabilities of programmable 
GPUs for general purpose computing.  CUDA 
consists of three core components: 
 

• a massively parallel hardware execution 
environment based on NVIDIA-brand 
processors; 

• a comprehensive collection of software 
development tools, including run-time 
libraries, performance analysis 
programs, and documentation; and 

• a scalable, multithreaded programming 
model using extensions to the C 
programming language [5]. 

 
As a unified hardware and software architecture, 
CUDA is designed to scale to thousands of 
threads across hundreds of cores in a manner 
that is both extensible to many-core CPU- and 
GPU-based systems.  CUDA is also designed be 
useable, meaning the programmer should be 
able to focus on the development of efficient 
parallel algorithms and not low-level 
implementation details required to utilize the 
hardware effectively. 

 
Currently, the CUDA programming model 

provides a view of the GPU as a highly 
multithreaded compute coprocessor with a local  

dedicated DRAM (Figure 3).  Each device 
consists of multiple thread processors 
(multiprocessors), each with an on-chip memory 
comprised of several 32-bit registers and a 
programmer-managed parallel data cache 
(PDC). 
 

A globally accessible DRAM, typically 
ranging in size from 256 MB to 1 GB or more, 
permits threads to communicate across 
multiprocessor boundaries.  However, no 
hardware caching mechanisms are provided.  
Read/write access to data in this global memory 
is about 100 times slower than for data in the 
PDC, so optimal performance depends on an 
algorithm’s ability to minimize access to global 
memory and use the PDC effectively. 
 

Parallel computations are decomposed into 
one or more kernels, each of which executes in 
parallel across a set of light-weight thread 
primitives.  Threads are logically grouped into 
warps that execute in SIMD (single instruction, 
multiple data) fashion.  These groups are in turn 
organized hierarchically into thread blocks, 
which indicate a group of threads that execute 
concurrently, cooperate via barrier 
synchronization, and communicate via access to 
the PDC.  Finally, thread blocks are organized 
into grids:  each block within the grid can 
execute independently, which permits parallel 
execution of many thread blocks across the 
device’s multiprocessors.  A hardware execution 
manager provides a low-overhead threads 
implementation and handles details such as 
thread creation, scheduling, and context 
switching. 
 

As with POSIX Threads, CUDA provides a 
set of powerful mechanisms to implement 
programs as a collection of cooperating, 
communicating threads.  Moreover, CUDA 
exposes the massively parallel execution 
environment provided by modern GPU 
hardware, enabling non-graphics applications to 
leverage the computational power afforded by 
these architectures.  As many-core CPU and 
GPU hardware designs continue to evolve, 
many are predicting the eventual convergence of

108  COMPUTERS IN EDUCATION JOURNAL 



 
 

 
Figure 3:  Simplified view of a CUDA device.  The GPU is a compute coprocessor, enabling 
computations to be decomposed into a series of parallel threads executing across multiprocessors.  Each 
multiprocessor in turn consists of multiple thread processors, a collection of 32-bit registers, and a 
programmer-managed parallel data cache. 
 
the designs [6,7].  In this context, CUDA 
becomes a particularly attractive and potentially 
widely applicable multithreaded parallel 
programming model. 
 

Parallel  Programming  Projects 
 

As noted, we have developed a 4-week unit 
exploring the multithreaded programming 
models described above that can be integrated 
with a course in modern operating systems.  The 
core feature of this unit is a set of self-contained 
programming projects that enable students to 
explore multithreaded programming.  
Specifically, students develop two variations of 
a multithreaded program that approximates the 
value of π using Monte Carlo integration. 

 
Monte  Carlo  Integration 
 

Monte Carlo integration is a powerful method 
for approximating the value of an integral using 
probabilistic techniques.  For example, to 
compute the integral of a complicated function f 
over in the interval [a, b], 
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Monte Carlo integration approximates F by 
computing the average value of the function 
over the interval using N random sample points 
in [a, b]: 
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This technique is particularly useful for 
evaluating high-dimensional integrals and is 
often applied in several problem domains, 
including computational physics, computational 
chemistry, and computer graphics. 
 

More importantly, Monte Carlo integration is a 
so-called embarrassingly parallel application:  
each sample point x within the domain is 
completely independent of all other sample 
points.  In the limit, given N threads, the N 
random sample points used to compute the 
average value can be evaluated simultaneously.  
Decomposition of the computational domain is 
thus straightforward, and students are readily 
able to appreciate the advantage of parallelism 
in this context.  Finally, a basic understanding of 
Monte Carlo integration requires only a cursory 
knowledge of calculus and statistics, so the 
details of this problem solving technique are 
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thus accessible to undergraduate students with a 
standard mathematics background. 
 
The pthreads Programming Projects 
 

To help students manage the complexity of the 
problem, the pthreads project is composed of a 
series of C programs, each of which implements 
a subset of the functionality required by the final 
task.  Students thus construct the full Monte 
Carlo estimator incrementally, mastering the 
key parallel programming concepts along the 
way.  The following points outline each of the 
tasks involved in the problem solving process, 
highlighting the features of the pthreads 
interface required to complete the task: 
 
• Task 1:  Multithreaded “Hello, world!”.  

Students write a C program to create a 
user-specified number of threads, each of 
which executes a function that simply 
outputs “Hello, world!” to the console 
window before exiting.  The main program 
spawns N such threads, initiates execution, 
and simply waits for each of them to 
complete before terminating itself. 
 

This simple task allows the student to 
grasp the pthreads execution model, 
enabling them to utilize the pthreads 
functions related to basic thread 
management. 
 

• Task 2:  Modifying thread behavior 
with run-time arguments.  In this task, 
students modify the program for Task 1 to 
communicate (possibly unique) parameters 
to each thread during the thread creation 
process.  These arguments define the run-
time behavior of each thread, allowing the 
behavior of any one thread to differ from 
that of each of its peers, if desired. 
 

In particular, the program from Task 1 
is modified so that each thread: 

 
1. computes a random number of 

microseconds in some range (for 
example, 0-1000), as determined 

by the thread’s run-time 
configuration; 

2. informs the user of the number of 
microseconds it will sleep by 
outputting a simple message to 
the console window; 

3. sleeps for the specified time 
interval; and 

4. outputs a final message to the 
console window before exiting. 

 
Here, the students learn the pthreads 
mechanisms for communicating 
information to each thread during the 
creation process.  Given unique inputs, 
each thread’s behavior will manifest 
differently than that of each of its peers, 
and students thus begin to grasp the truly 
independent nature of the threads as they 
execute in parallel. 

 
• Task 3:  Communication and 

synchronization via locks.  Students 
build on the solution to Task 2 and 
modify the program so that each thread 
gains exclusive access to a shared data 
structure and manipulates that structure’s 
values. 

 
In this task, the pthreads mutex is 

introduced as a synchronization 
primitive that enables coordinated access 
to shared data.  The final (correct) value 
in the shared data structure is dependent 
on each thread obtaining mutually 
exclusive access to its members; thus, in 
order to solve this problem correctly, 
students must coordinate the threads’ 
behavior properly through the use of 
locks. 

 
In addition, students begin to 

appreciate the potential sources of 
computational bottlenecks:  this exercise 
specifically introduces a serialization 
point (in the form of access to the shared 
data structure) to demonstrate that 
multithreading alone does not guarantee 
performance improvements—algorithms 
must be designed carefully to exploit the 
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potential parallelism in a manner that 
leads to actual performance gains. 

 
• Task 4:  Monte Carlo estimator.  

Finally, students compose the 
multithreaded programming lessons 
learned in Tasks 1-3 to implement a full 
Monte Carlo estimator.  In particular, the 
students use the method to approximate 
the value of π by scaling the estimate for 
a quarter-circle over the domain [0, 
1]×[0, 1]: 

 

 
 

Those samples whose values fall 
within the shaded region above are 
contained within the circle, and thus 
contribute to the estimate.  The final 
result is then scaled by a factor of four, 
leading to an overall estimate for the 
value of π. 

 
Once complete, the students conduct a series 

of experiments to determine the scaling 
properties of their implementation using the 
multicore machines in our computer laboratory.  
Specifically, students measure the wall time 
required to approximate the value of π using 100 
million random samples distributed across one, 
two, four, eight, or 16 threads.  A written 
analysis of the observed scaling behavior is 
submitted along with the source code for each of 
their multithreaded programs. 
 

The pthreads project is introduced first 
primarily because the execution environment, 
though requiring the students to begin thinking 
“in parallel”, is nevertheless more familiar than 
that of the GPU devices.  Once students have 
gained a certain level of comfort with the core 
issues arising from a multithreaded 
implementation of the Monte Carlo estimator, 
they rewrite their estimators using CUDA. 

The  CUDA  Programming  Projects 
 

In general, the CUDA-based programming 
projects proceed similarly, with a few important 
differences.  First, because the implementation 
actually executes in a different memory space 
than standard applications (that is, in the DRAM 
of the GPU device and not the main memory of 
the host system), output to the console window 
directly from the CUDA program is prohibited.  
However, the CUDA compiler offers a device 
emulation mode in which the program is 
compiled for the host architecture and, when 
executed, simulates the actual device behavior 
using a standard threading model.  We have 
found device emulation mode to be useful for 
debugging purposes, particularly when students 
run into problems during the conversion of their 
Monte Carlo estimator from the pthreads 
interface to CUDA. 
 

Second, the thread hierarchy imposed by the 
CUDA programming model potentially requires 
more careful thought about the decomposition 
of the computational domain.  Unlike the 
pthreads model, not all threads are peers in the 
CUDA execution model:  only those threads 
within a block can coordinate their behavior and 
communicate directly (via the parallel data 
cache), which may require a slightly different 
implementation than under the pthreads model. 
 

We have found both of these programming 
exercises to be useful tools in helping the 
students grasp and overcome the issues that 
arise in the context of many-core applications 
level programming.  Additionally, experience 
shows that these projects can be deployed quite 
smoothly in an existing operating systems 
course, permitting an initial exploration of 
parallel computing without the need to dedicate 
the sometimes scare faculty resources to an 
entire semester-long course on the topic. 
 

Summary 
 

We believe that the progression of commodity 
processing architectures will eventually 
culminate in the wide distribution of massively 
parallel many-core architectures such as those 
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used in current graphics processors.  Moreover, 
we believe this trajectory will require that 
undergraduate students in a wide range of 
technical disciplines possess an in-depth 
understanding of the hardware and software 
issues related to solving problems using such 
highly parallel architectures. 
 

We have thus integrated the key components 
of a semester-length course in parallel 
computing into a 300-level operating systems 
course.  The parallel programming unit of this 
course motivates two influential parallel 
programming models, with a focus on the issues 
of which programmers must be aware when 
writing applications for parallel architectures.  
In particular, multithreaded programming is 
introduced in two forms:  the POSIX Threads 
interface and NVIDIA’s Compute Unified 
Device Architecture.  A set of self-contained 
programming projects is used to highlight the 
core concepts required to utilize multithreading 
effectively.  In our experience, these projects 
can be integrated quite readily by merging the 
key concepts with a discussion of the process 
and thread management facilities of modern 
operating systems. 
 

Parallel computing obviously provides 
opportunities for more advanced study and 
undergraduate research.  We hope to institute a 
semester-length course in parallel computing 
focused on topics such as parallel hardware 
architectures, parallel algorithms, and additional 
parallel programming models, when time and 
resources permit. 
 

More immediately, however, as a small 
comprehensive college with staffing constraints 
that limit our ability to introduce such courses 
trivially, we hope to demonstrate that important 
topics in parallel computing can be made 
accessible to undergraduate students at a broad 
range of colleges and universities, both large 
and small.  We also hope that our experiences 
are both insightful and useful to other 
instructors who may be interested in integrating 
parallel computing into their own operating 
systems courses. 
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