
INTRODUCING MULTITHREADED PROGRAMMING:
POSIX THREADS AND NVIDIA’S CUDA

Christiaan Paul Gribble

Department of Computer Science
Grove City College

Abstract

The current progression of commodity

processing architectures exhibits a trend toward
increasing parallelism, requiring that
undergraduate students in a wide range of
technical disciplines gain an understanding of
problem solving in massively parallel
environments. However, as a small
comprehensive college, we cannot currently
afford to dedicate an entire semester-long course
to the study of parallel computing. To combat
this situation, we have integrated the key
components of such a course into a 300-level
course on modern operating systems. In this
paper, we describe a parallel computing unit that
is designed to dovetail with the discussion of
process and thread management common to
operating systems courses. We also describe a
set of self-contained projects in which students
explore two parallel programming models,
POSIX Threads and NVIDIA’s Compute
Unified Device Architecture, that enable parallel
architectures to be utilized effectively. In our
experience, this unit can be integrated with
traditional operating systems topics quite
readily, making parallel computing accessible to
undergraduate students without requiring a full
course dedicated to these increasingly important
topics.

Introduction

The many-core revolution currently underway
in the design of processing architectures
necessitates an early introduction to parallel
computing. Commodity desktop systems with
two cores per physical processor are now
common, and the current processor roadmap for
major manufacturers indicates a rapid
progression toward systems with four, eight, or
even 16 cores. At the same time, programmable

graphics processing units (GPUs) have evolved
from fixed-function pipelines implementing the
z-buffer rendering algorithm to programmable,
highly parallel machines that can be used to
solve a wide range of problems. Together, these
developments require that students possess an
in-depth understanding of the hardware and
software issues related to solving problems
using many-core processing architectures.

Grove City College is a small comprehensive
college, and as such, we in the Department of
Computer Science must wrestle with the
requisite staffing limitations. In particular, we
cannot currently afford to offer an entire course
dedicated to parallel computing—here defined
to comprise a study of parallel processing
architectures and the programming techniques
necessary to utilize those architectures
effectively—without sacrificing the integrity of
our core computer science curriculum. This
situation thus poses a dilemma: the current
trajectory of processing architectures dictates an
ever-increasing need for knowledge
development in this area, but we are simply
unable to dedicate a semester-length course to
the study of these topics.

In response to this situation, we instead
introduce parallel computing in the context of a
semester-long 300-level operating systems
course, which features a 4-week unit focusing
on parallel computing. This unit is specifically
designed to dovetail with the treatment of
process and thread management that is common
to courses on modern operating systems. In this
context, we motivate the opportunities and
challenges introduced by parallel processing
architectures, and students explore the key
programming concepts via a set of self-
contained parallel programming projects. We
also discuss key issues arising in the context of

104 COMPUTERS IN EDUCATION JOURNAL

parallel execution environments, including
resource sharing, thread synchronization, and
atomicity, and these topics provide a smooth
transition back to traditional operating systems
concepts such as semaphores, high-level
synchronization constructs, and deadlock.

Parallel Processing

In particular, our students explore
multithreaded programming in two forms: the
POSIX Threads (pthreads) interface, a
standardized model for multithreaded
application programming [1], and NVIDIA’s
Compute Unified Device Architecture (CUDA),
a co-designed hardware/software architecture
for massively parallel computing [2]. Before
discussing the details of these parallel
programming models, we first motivate the
multithreaded approach to parallel processing
by contrasting it with two other common forms
of parallel processing exploited by
contemporary computer systems.

Some Common Forms of Parallelism

Modern processing architectures exploit
parallelism on a number of levels, including
instruction-level parallelism, multitasking, and
multithreading. Whereas instruction level
parallelism and multitasking enable

programmers to remain blissfully unaware the
details related to parallel execution, relying
instead on optimizing compilers and operating
systems to exploit parallelism automatically,
multithreading requires the programmer to
design a program to capitalize on potential
parallelism from the outset.

Thus, to fully utilize the parallelism afforded
by current and future many-core processing
architectures, we believe that programmers must
possess an intimate knowledge of the issues that
arise in the context of multithreading.

Instruction-Level Paralleism. Consider the
following expression involving several integer
multiplications and additions:

a + (b*c) + (d*e) + f

Assuming we have a processor that requires a
single cycle to evaluate each multiplication or
addition operation, this expression requires five
cycles to evaluate in a sequential manner: one
cycle for each of the arithmetic operations in the
expression (Figure 1a). However, if the
processor is equipped with just one additional
execution unit, then the number of cycles
required to evaluate the expression can be
reduced from five to three (Figure 1b).

Figure 1: Instruction-level parallelism. The lack of data dependencies among operations within an
instruction stream can be exploited by a processor with multiple execution units.

COMPUTERS IN EDUCATION JOURNAL 105

In this example, instruction-level parallelism
(ILP) capitalizes on the absence of data
dependencies among operations within the full
expression to efficiently utilize the processor’s
multiple execution units, thereby improving
performance by a factor of 1.67 over the
sequential version. Typically, applications level
programmers need not be concerned with
parallelism at this level, and instead rely on
optimizing compilers to recognize such
opportunities and schedule instructions in a
manner that leverages ILP. Whereas ILP can
improve the overall performance of a single
program, opportunities to exploit ILP depend
largely on the particular sequence of instructions
required to implement a program’s behavior,
and vary widely from one application to the
next.

Multitasking. At a coarser level, multitasking
also implements parallel processing without any
special effort on the part of an application
programmer. In this case, programmers rely on
the operating system’s scheduler to exploit the
independence of tasks within the system, rather
than the compiler’s ability to exploit the
independence of operations within an
instruction stream.

Interestingly, multitasking operating systems
are able to provide the illusion of parallel
execution without actually requiring truly
parallel hardware. As such, multitasking is
sometimes considered a form of concurrent
processing, as distinguished from true parallel
execution: although multiple programs appear
to be executing simultaneously, each process is
in reality executed sequentially—the system
simply switches among the available processes
so quickly that it appears as though the
programs are executing in parallel.

It is important to note that multitasking does
not improve the performance of any particular
program, but instead improves the overall
system throughput, which is a measure of the
number of tasks completed by the system in a
particular unit of time. With multitasking, no
single task completes more quickly, but instead
some collection of tasks will potentially require

less time to complete than if those tasks were
executed sequentially.

Multithreading. Though multitasking remains
an important feature in the context of highly
parallel processing architectures, this technique
cannot exploit the independence of logical tasks
within a single program. Modern systems thus
afford programmers the ability to explicitly
divide a process into two or more threads—
logical units of computation that share many of
the resources that are used across the program as
a whole, including a program’s binary
instructions and its global data structures
(Figure 2). It is this form of parallelism with
which our 4-week parallel computing unit is
concerned. In particular, this unit centers
around two multithreaded programming models
that can be used to effectively exploit parallel
processing and thereby improve program
performance: pthreads and CUDA.

POSIX Threads

pthreads is a standardized model for dividing a
program into subtasks whose execution can be
interleaved or run in parallel. This model
implements the POSIX multithreading interface
(POSIX Section 1003.1c), which is part of the
more general family of IEEE operating system
interface standards.

Programmers experience pthreads as a set of C
programming language data types and function
calls that operate according to a set of implied
semantics—that is, pthreads offers a
standardized, programmer-friendly application
programming interface (API). Specific vendors
typically supply pthreads implementations in
two parts:

• a header file that is included in a
multithreaded program, and

• a library that is linked to the program
during compilation.

To exploit multithreading, programmers must
design and implement their programs as a series
of independent tasks. Using the pthreads API,

106 COMPUTERS IN EDUCATION JOURNAL

Figure 2: Classic versus modern processes. A process represents a program in execution. The classic
process model contains just a single execution engine, but modern processes—multithreaded
processes—allow multiple execution engines to share the resources within the computational
framework provided by the process.

multiple threads of execution are spawned and
scheduled as independent units by the operating
system, proceeding independently unless the
programmer explicitly synchronizes the threads’
execution.

The behavior of each thread is specified during
its creation by passing the name of a C function
to the thread creation routine as an argument.
Other properties of the thread, including
arguments to the function that define its
behavior, are passed at the time of creation as
well.

Common synchronization primitives such as
barriers, locks, and higher-level constructs can
be constructed using pthreads mutexes.
Primitive mechanisms for inter-thread
communication via shared data structures are
available as well.

In general, the pthreads execution model treats
threads as peers. Only the main thread, which is
created by the operating system when it
instantiates the multithreaded process, has
slightly different properties, but these
differences can typically be ignored: all of the
threads in a well-designed pthreads program

will thus cooperate to execute the task at hand in
a manner that effectively utilizes the underlying
resources of the processor.

NVIDIA Compute Unified Device Architecture

Over the past several years, multicore
processors have evolved from traditional central
processing units (CPUs) and afford one means
to exploit parallel processing through
multithreaded programming. At the same time,
recent advances in the programmability of so-
called graphics processing units (GPUs) now
permit these devices to be used for general
purpose computing. In fact, these devices have
spawned an entire field of academic and
industrial research [3], and have been
demonstrated to provide significant performance
improvements for various computing problems
across a wide range of application domains [4].

Historically, GPUs comprise a series of fixed-
function pipelines that implement the z-buffer
rendering algorithm to provide the real-time
graphics capabilities that have become an
integral component of the modern human-
computer interface. As a result, GPU devices
have found wide deployment, and most

COMPUTERS IN EDUCATION JOURNAL 107

contemporary desktop computer systems, as
well as gaming consoles, digital music players,
and high-end mobile devices, are often equipped
with one or more such processors.

Recently, GPU manufactures have begun to
expose the low-level hardware components on
which these devices are based, permitting an
unprecedented level of programmability. The
programming models through which
programmers interact with these devices have
evolved accordingly, rapidly progressing from
low-level assembly language programs written
specifically for a particular GPU architecture to
high-level programming interfaces such as the
NVIDIA Compute Unified Device Architecture
[2].

CUDA is a co-designed hardware and software
platform designed to leverage the massively
parallel compute capabilities of programmable
GPUs for general purpose computing. CUDA
consists of three core components:

• a massively parallel hardware execution
environment based on NVIDIA-brand
processors;

• a comprehensive collection of software
development tools, including run-time
libraries, performance analysis
programs, and documentation; and

• a scalable, multithreaded programming
model using extensions to the C
programming language [5].

As a unified hardware and software architecture,
CUDA is designed to scale to thousands of
threads across hundreds of cores in a manner
that is both extensible to many-core CPU- and
GPU-based systems. CUDA is also designed be
useable, meaning the programmer should be
able to focus on the development of efficient
parallel algorithms and not low-level
implementation details required to utilize the
hardware effectively.

Currently, the CUDA programming model

provides a view of the GPU as a highly
multithreaded compute coprocessor with a local

dedicated DRAM (Figure 3). Each device
consists of multiple thread processors
(multiprocessors), each with an on-chip memory
comprised of several 32-bit registers and a
programmer-managed parallel data cache
(PDC).

A globally accessible DRAM, typically
ranging in size from 256 MB to 1 GB or more,
permits threads to communicate across
multiprocessor boundaries. However, no
hardware caching mechanisms are provided.
Read/write access to data in this global memory
is about 100 times slower than for data in the
PDC, so optimal performance depends on an
algorithm’s ability to minimize access to global
memory and use the PDC effectively.

Parallel computations are decomposed into
one or more kernels, each of which executes in
parallel across a set of light-weight thread
primitives. Threads are logically grouped into
warps that execute in SIMD (single instruction,
multiple data) fashion. These groups are in turn
organized hierarchically into thread blocks,
which indicate a group of threads that execute
concurrently, cooperate via barrier
synchronization, and communicate via access to
the PDC. Finally, thread blocks are organized
into grids: each block within the grid can
execute independently, which permits parallel
execution of many thread blocks across the
device’s multiprocessors. A hardware execution
manager provides a low-overhead threads
implementation and handles details such as
thread creation, scheduling, and context
switching.

As with POSIX Threads, CUDA provides a
set of powerful mechanisms to implement
programs as a collection of cooperating,
communicating threads. Moreover, CUDA
exposes the massively parallel execution
environment provided by modern GPU
hardware, enabling non-graphics applications to
leverage the computational power afforded by
these architectures. As many-core CPU and
GPU hardware designs continue to evolve,
many are predicting the eventual convergence of

108 COMPUTERS IN EDUCATION JOURNAL

Figure 3: Simplified view of a CUDA device. The GPU is a compute coprocessor, enabling
computations to be decomposed into a series of parallel threads executing across multiprocessors. Each
multiprocessor in turn consists of multiple thread processors, a collection of 32-bit registers, and a
programmer-managed parallel data cache.

the designs [6,7]. In this context, CUDA
becomes a particularly attractive and potentially
widely applicable multithreaded parallel
programming model.

Parallel Programming Projects

As noted, we have developed a 4-week unit
exploring the multithreaded programming
models described above that can be integrated
with a course in modern operating systems. The
core feature of this unit is a set of self-contained
programming projects that enable students to
explore multithreaded programming.
Specifically, students develop two variations of
a multithreaded program that approximates the
value of π using Monte Carlo integration.

Monte Carlo Integration

Monte Carlo integration is a powerful method
for approximating the value of an integral using
probabilistic techniques. For example, to
compute the integral of a complicated function f
over in the interval [a, b],

∫=
b

a

dxxfF)(,

Monte Carlo integration approximates F by
computing the average value of the function
over the interval using N random sample points
in [a, b]:

∑∫
=

−
≈=

N

i
i

b

a

xf
N

abdxxfF
1

)()()(.

This technique is particularly useful for
evaluating high-dimensional integrals and is
often applied in several problem domains,
including computational physics, computational
chemistry, and computer graphics.

More importantly, Monte Carlo integration is a
so-called embarrassingly parallel application:
each sample point x within the domain is
completely independent of all other sample
points. In the limit, given N threads, the N
random sample points used to compute the
average value can be evaluated simultaneously.
Decomposition of the computational domain is
thus straightforward, and students are readily
able to appreciate the advantage of parallelism
in this context. Finally, a basic understanding of
Monte Carlo integration requires only a cursory
knowledge of calculus and statistics, so the
details of this problem solving technique are

COMPUTERS IN EDUCATION JOURNAL 109

thus accessible to undergraduate students with a
standard mathematics background.

The pthreads Programming Projects

To help students manage the complexity of the
problem, the pthreads project is composed of a
series of C programs, each of which implements
a subset of the functionality required by the final
task. Students thus construct the full Monte
Carlo estimator incrementally, mastering the
key parallel programming concepts along the
way. The following points outline each of the
tasks involved in the problem solving process,
highlighting the features of the pthreads
interface required to complete the task:

• Task 1: Multithreaded “Hello, world!”.

Students write a C program to create a
user-specified number of threads, each of
which executes a function that simply
outputs “Hello, world!” to the console
window before exiting. The main program
spawns N such threads, initiates execution,
and simply waits for each of them to
complete before terminating itself.

This simple task allows the student to
grasp the pthreads execution model,
enabling them to utilize the pthreads
functions related to basic thread
management.

• Task 2: Modifying thread behavior
with run-time arguments. In this task,
students modify the program for Task 1 to
communicate (possibly unique) parameters
to each thread during the thread creation
process. These arguments define the run-
time behavior of each thread, allowing the
behavior of any one thread to differ from
that of each of its peers, if desired.

In particular, the program from Task 1
is modified so that each thread:

1. computes a random number of

microseconds in some range (for
example, 0-1000), as determined

by the thread’s run-time
configuration;

2. informs the user of the number of
microseconds it will sleep by
outputting a simple message to
the console window;

3. sleeps for the specified time
interval; and

4. outputs a final message to the
console window before exiting.

Here, the students learn the pthreads
mechanisms for communicating
information to each thread during the
creation process. Given unique inputs,
each thread’s behavior will manifest
differently than that of each of its peers,
and students thus begin to grasp the truly
independent nature of the threads as they
execute in parallel.

• Task 3: Communication and

synchronization via locks. Students
build on the solution to Task 2 and
modify the program so that each thread
gains exclusive access to a shared data
structure and manipulates that structure’s
values.

In this task, the pthreads mutex is

introduced as a synchronization
primitive that enables coordinated access
to shared data. The final (correct) value
in the shared data structure is dependent
on each thread obtaining mutually
exclusive access to its members; thus, in
order to solve this problem correctly,
students must coordinate the threads’
behavior properly through the use of
locks.

In addition, students begin to

appreciate the potential sources of
computational bottlenecks: this exercise
specifically introduces a serialization
point (in the form of access to the shared
data structure) to demonstrate that
multithreading alone does not guarantee
performance improvements—algorithms
must be designed carefully to exploit the

110 COMPUTERS IN EDUCATION JOURNAL

potential parallelism in a manner that
leads to actual performance gains.

• Task 4: Monte Carlo estimator.

Finally, students compose the
multithreaded programming lessons
learned in Tasks 1-3 to implement a full
Monte Carlo estimator. In particular, the
students use the method to approximate
the value of π by scaling the estimate for
a quarter-circle over the domain [0,
1]×[0, 1]:

Those samples whose values fall
within the shaded region above are
contained within the circle, and thus
contribute to the estimate. The final
result is then scaled by a factor of four,
leading to an overall estimate for the
value of π.

Once complete, the students conduct a series

of experiments to determine the scaling
properties of their implementation using the
multicore machines in our computer laboratory.
Specifically, students measure the wall time
required to approximate the value of π using 100
million random samples distributed across one,
two, four, eight, or 16 threads. A written
analysis of the observed scaling behavior is
submitted along with the source code for each of
their multithreaded programs.

The pthreads project is introduced first
primarily because the execution environment,
though requiring the students to begin thinking
“in parallel”, is nevertheless more familiar than
that of the GPU devices. Once students have
gained a certain level of comfort with the core
issues arising from a multithreaded
implementation of the Monte Carlo estimator,
they rewrite their estimators using CUDA.

The CUDA Programming Projects

In general, the CUDA-based programming
projects proceed similarly, with a few important
differences. First, because the implementation
actually executes in a different memory space
than standard applications (that is, in the DRAM
of the GPU device and not the main memory of
the host system), output to the console window
directly from the CUDA program is prohibited.
However, the CUDA compiler offers a device
emulation mode in which the program is
compiled for the host architecture and, when
executed, simulates the actual device behavior
using a standard threading model. We have
found device emulation mode to be useful for
debugging purposes, particularly when students
run into problems during the conversion of their
Monte Carlo estimator from the pthreads
interface to CUDA.

Second, the thread hierarchy imposed by the
CUDA programming model potentially requires
more careful thought about the decomposition
of the computational domain. Unlike the
pthreads model, not all threads are peers in the
CUDA execution model: only those threads
within a block can coordinate their behavior and
communicate directly (via the parallel data
cache), which may require a slightly different
implementation than under the pthreads model.

We have found both of these programming
exercises to be useful tools in helping the
students grasp and overcome the issues that
arise in the context of many-core applications
level programming. Additionally, experience
shows that these projects can be deployed quite
smoothly in an existing operating systems
course, permitting an initial exploration of
parallel computing without the need to dedicate
the sometimes scare faculty resources to an
entire semester-long course on the topic.

Summary

We believe that the progression of commodity
processing architectures will eventually
culminate in the wide distribution of massively
parallel many-core architectures such as those

COMPUTERS IN EDUCATION JOURNAL 111

112 COMPUTERS IN EDUCATION JOURNAL

used in current graphics processors. Moreover,
we believe this trajectory will require that
undergraduate students in a wide range of
technical disciplines possess an in-depth
understanding of the hardware and software
issues related to solving problems using such
highly parallel architectures.

We have thus integrated the key components
of a semester-length course in parallel
computing into a 300-level operating systems
course. The parallel programming unit of this
course motivates two influential parallel
programming models, with a focus on the issues
of which programmers must be aware when
writing applications for parallel architectures.
In particular, multithreaded programming is
introduced in two forms: the POSIX Threads
interface and NVIDIA’s Compute Unified
Device Architecture. A set of self-contained
programming projects is used to highlight the
core concepts required to utilize multithreading
effectively. In our experience, these projects
can be integrated quite readily by merging the
key concepts with a discussion of the process
and thread management facilities of modern
operating systems.

Parallel computing obviously provides
opportunities for more advanced study and
undergraduate research. We hope to institute a
semester-length course in parallel computing
focused on topics such as parallel hardware
architectures, parallel algorithms, and additional
parallel programming models, when time and
resources permit.

More immediately, however, as a small
comprehensive college with staffing constraints
that limit our ability to introduce such courses
trivially, we hope to demonstrate that important
topics in parallel computing can be made
accessible to undergraduate students at a broad
range of colleges and universities, both large
and small. We also hope that our experiences
are both insightful and useful to other
instructors who may be interested in integrating
parallel computing into their own operating
systems courses.

References

1. B. Nichols, D. Buttlar, & J. Farrell, Pthreads

Programming, O’Reilly, Sebastopol, 1996.

2. NVIDIA Corporation, “CUDA 2.2

Programming Guide,” http://www.nvidia.
com/object/cuda_develop.html, (accessed June
2009).

3. “GPGPU: General-Purpose Computing Using

Graphics Hardware,” http://www. gpgpu.org
(accessed June 2009).

4. J. Owens, D. Luebke, N. Govindaraju, M.

Harris, J. Kruger, A. Lefohn, & T. Purcell, “A
Survey of General-Purpose Computation on
Graphics Hardware,” in Eurographics 2005,
State of the Art Reports, pp. 21-51, August 2005.

5. J. Nickolls, I. Buck, & M. Garland, “Scalable

Parallel Programming with CUDA,” ACM
Queue, vol. 6, no. 2, pp. 40-53, March/April
2008.

6. K. Fatahalian & M. Houston, “GPUs: A closer

look,” ACM Queue, vol. 6, no. 2, pp. 18-28,
March/April 2008.

7. W. Mark, “Future Graphics Architectures,”

ACM Queue, vol. 6, no. 2, pp. 54-64,
March/April 2008.

Biographical Information

Christiaan P. Gribble is an Assistant Professor in the
Department of Computer Science at Grove City
College. His research focuses on global illumination
algorithms, interactive and realistic rendering,
scientific visualization, and high-performance
computing. Gribble has served as a post-doctoral
research fellow and research assistant for the
Scientific Computing and Imaging (SCI) Institute at
the University of Utah, and as a research assistant at
the Pittsburgh Supercomputing Center. In 2005, he
received the Graduate Research Fellowship from the
University of Utah. Gribble received the BS degree
in mathematics from Grove City College in 2000,
the MS degree in information networking from
Carnegie Mellon University in 2002, and the PhD
degree in computer science from the University of
Utah in 2006.

