
104 COMPUTERS IN EDUCATION JOURNAL

WEB-BASED SCRIPTS FOR ANIMATING SYSTEM SIMULATIONS

Ames Bielenberg, Erik Cheever
Engineering Department

Swarthmore College

Abstract

Visualizing the behavior of physical systems
can be an invaluable tool for a student’s
understanding of linear system dynamics.
When presenting web-based educational
material involving such systems there have been
two standard choices. In the first, the material is
presented with a static drawing of the system
complemented by graphs of system outputs such
as displacements and forces, along with
accompanying text to try to explain what is
happening, exactly as a textbook would. The
second method involves using a web technology
(e.g., Java, JavaScript, Flash…) to create an
animation of the system moving dynamically.
Clearly the second method is preferable, but
requires a good understanding on behalf of the
author of the technologies used and a
considerable investment of time to create each
animation.

To lessen the difficulty of producing web-

based animations, we have created an easy to
use scripting system for defining the system in
three steps. First its constitutive mathematical
relations are defined, then a drawing is created
that depicts the system, and then the drawing is
animated. The system is described
mathematically by a state-space model (i.e., A,
B, C and D matrices). The drawing of the
system is described in terms of graphics
primitives commonly used to depict linear
systems. For translating mechanical systems
this consists of such commonly used objects as
springs, masses, dashpots and sliding friction,
along with dynamically resized arrows to show
force and displacement. For electrical systems,
primitives exist that represent resistors,
capacitors, and inductors as well as arrows to
show current and dials to show voltage. Other
types of systems include rotating, thermal fluid,
and electromechanical. Finally the system

drawing is animated upon pushing of a “Go”
button. There is also the capability to add a
dynamically generated plot below the animation
that shows important system variables.

The scripting system is written in JavaScript

and makes use of the Raphaël vector graphics
library. Vector graphics allow the figures to
remain sharp when scaled to any size and,
ultimately, when printed. The user need not
know JavaScript to use the system; the user
need only add a script to any HTML document.
We have a fully functional system that can
describe, draw, and animate a simple mass-
spring-dashpot system with about ten lines of
script, while also being capable of simulating
much more complicated systems.

Background

A course in Linear Systems is common in

engineering programs. Understanding the
concepts involved can be very important for a
student to develop insights into how a wide
variety of physical systems behave. However,
from a student’s perspective there are many
hurdles to be overcome in the development of a
physical intuition for such systems including the
level of mathematics required (typically Laplace
Transforms and linear algebra), the wide variety
of problem domains (electrical, mechanical,
thermal...), and the fact that textbooks
necessarily present the material in a static way
though the systems are, by their very nature,
dynamic.

Compounding this last difficulty is the fact

that many students are “visual” learners
according to Felder’s index of learning styles
[1]. For these students, an animation of a
physical system can be an important tool to help
them learn [2, 3, 4, 5, 6]. It has been shown that
students prefer having access to animations in

COMPUTERS IN EDUCATION JOURNAL 105

addition to textbook-only presentations and that
the animations significantly increased their
ability to visualize system behavior, as well as
increasing enjoyment and self-confidence [3, 7,
8, 9]. In addition, Kolb’s theory of experiential
learning posits that experience, which can be
provided by animations, and reflection are part
of student learning [10].

There are many ways to present animations of

simulations of physical systems for students.
There are several web pages that have a wide
range of animations [11, 12, 13, 14, 15].
However these largely consist of predefined
system that can’t be changed, or have examples
from only a few problem domains. It would be
better to be able to animate across a variety of
physical domains [16], and to enable an
instructor to develop his or her own examples.
It is possible to develop animations using
MatLab® and/or Simulink® [17, 18], but this
presupposes that all students have ubiquitous
access to those applications, as well as any
necessary toolboxes. Java [14], or other web-
based applications can be used to develop
animations available to those with only a web
browser, but this requires significant knowledge
on the part of those developing the applications.
These, and other, impediments to the successful
use of animations were noted by Naps et al. [2].
The system discussed here avoids these
problems by requiring only a little scripting on
behalf of the author, and a user with a web-
browser with JavaScript.

Introduction

The system described in this paper easily

allows a user to create web-based animations of
linear systems while requiring no web-
programming experience. S/he simply writes a
simple script. The system is described
mathematically by using a state-space model
(i.e., A, B, C and D matrices) with initial
conditions and optional input functions. The
drawing to be animated is described in terms of
graphics primitives such as masses, springs,
resistors, and capacitors. System inputs are
defined by the user. The system is simulated

using a fourth order Runge-Kutta algorithm, and
the system outputs define the behavior of the
drawing.

For translating mechanical systems the

primitives consist of commonly used objects
such as springs, masses, dashpots and sliding
friction, and dynamically resized arrows to
show force and displacement (or, indeed, any
system variable). For electrical systems the
primitives are resistors, capacitors, inductors,
voltage and current sources, and op-amps, as
well as arrows and dials to show current and
voltage. Other types of systems include rotating
mechanical, thermal/fluid, and
electromechanical. In addition to the animation
it is possible to add a dynamically generated
plot below the animation that shows system
inputs and outputs.

Implementation

The scripting system is written in JavaScript

and uses the Raphaël vector graphics library
[19]. Vector graphics allow the figures to
remain sharp when scaled to any size and
ultimately, when printed. There is no need to
know JavaScript to use the system; the user
need only add a short script to any HTML
document. A detailed description for a simple
system follows.

To demonstrate the system in action, consider

first the output of an animation, and then the
script itself. The output of a simple mass-
spring-friction system is shown in Figure 1.
This image, including the animation, was
created with a script of 16 lines (not including
comments).

The input to the system is a sawtooth, u(t),

near the resonant frequency of the system. The
output is the position of the mass, y(t). Though
obviously not visible in this screen shot, during
the course of the animation the mass moves
back and forth, the arrow depicting u(t) grows
and shrinks, the spring expands and contracts,
and the lower plot is created.

106 COMPUTERS IN EDUCATION JOURNAL

Figure 1: Output of Simple System.

////// State Space representation of system ///////
m=2, b=.1, k=1; // Define mass, friction and spring values.

A=[[0,1], [-k/m,-b/m]]; // Define A matrix
B=[[0], [1/m]]; // ... B matrix
C=[[0,0], [1,0]]; // ... C matrix
D=[[1], [0]]; // ... D matrix

sys1=system(A,B,C,D).tMax(90); // Define system, and end time.

// Define system input (a ramp that repeats every 9 seconds)
sys1.input(0,function(t) {return t%9});

Figure 2: State-Space description of the system.

To understand the script, it can be examined in

pieces. Figure 2 shows the portion of the script
that describes the system using a standard state
space representation. The notation should be
very comfortable to anybody familiar with
MatLab or C, with only small variations (for
example, a two-dimensional matrix is defined in
terms of nested one-dimensional matrices).
Note that there are two outputs. The output with
index ‘0’ is simply the input (used in the graph),
and the output with index ‘1’ is the position of
the mass. These two outputs drive the
animation and are shown on the plot.

Figure 3 shows the description of the drawing.

This is a fairly simple drawing, but much more

complex drawings are possible. Of critical
importance is the line:

m1=fig1.mass(1,'m',ax,200,10,100,60,'b
');

which defines system output “1” (the first
argument) as the variable that determines the
position of the mass during the animation. One
end of the spring is defined to be attached to the
mass (i.e., the last argument)

fig1.spring('k',ax,0,m1);

so it automatically extends and contracts along
with the mass.

COMPUTERS IN EDUCATION JOURNAL 107

Figure 4 shows the description of the mass,
spring and arrow definitions from the help
documentation. For the mass, the fifth
argument describes the support under the mass
(either wheels, friction, or nothing). A full help
system and tutorial is available at
http://www.swarthmore.edu/NatSci/echeeve1/R
ef/LPSA/Animations/index.html.

Lastly, the output graph is defined, as shown
in Figure 5. The arguments, in order, are:

● the size of the plot,
● the system being plotted,
● the outputs (of the state variable system to

be plotted),
● the axis limits, [final time, min y, max y],

and
● the labels for the plot.

There are a few more lines necessary to complete

the html file. The entire file (without comments) is
in Figure 6. This short file is sufficient to create an
interactive simulation.

Results

There are many features not described in the

example above.

● Figure 7 shows a system that has sliders to

define the mass spring and friction. The
sliders remain active and can be moved
during the simulation. In this simulation
the friction was increased during the third
oscillation, after which the oscillations
quickly dampen.

● Figure 8 shows a system for which the
input force was determined interactively
by the position of the mouse. The low
pass behavior is evident as fast inputs are
attenuated.

● Figure 9 shows an electrical system.
During the simulation the length of the
arrow was determined by the inductor
current, while the angle of the dial gauge
was determined by the capacitor voltage.

////// Description of drawing ///////
// Define the drawing of sys1 to be 400x200 pixels.
fig1=diagram([400,200],sys1);

// Define the vertical wall:
// First argument, [40,60], is the upper right corner
// Second argument, [10,82], is width and height. The wall is hatched,
// so the letter 'E' specifies a bold vertical on the 'E'ast side.
fig1.wall([40, 60],[10,82],'E');
fig1.wall([50,142],[300,10],'N'); // Define the horizontal wall (the floor)
fig1.wall([40,141],[11,11]); // Define small square where walls meet

// Define the axis of motion.
// First argument is origin of the axis (x=50, y=101).
// Second argument is the direction of motion
// (in degrees, 0 degrees is to the right).
ax=fig1.axis([50,101],0);

// Define the mass (see figure 4 for details)
// (note: position is defined by state variable output '1').
m1=fig1.mass(1,'m',ax,200,-10,100,60,'b');

fig1.spring('k',ax,0,m1); // Define spring (figure 4 for details)

// Define the arrow depicting the input force (figure 4 for details)
// (note: length is defined by state variable output '0').
fig1.arrow(0,ax,200,-50,5,'u');

Figure 3: Physical description of the system drawing.

108 COMPUTERS IN EDUCATION JOURNAL

Diagram.mass(v,label,axis,rest,wheel,w,h,flabel)
Creates translating Mass.
● v System output Y[v] to move by. Use -1 for a stationary mass.
● label label
● axis Axis along which to move.
● rest resting location of the mass center, along the axis.
● wheel wheel radius. Negative for surface friction 'xxxxx'. Zero for none.
● w dimension along the axis (width if horizontal).
● h dimension perpendicular to the axis (height if horizontal).
● flabel friction label
Returns: a Mass object
 m1=dia.mass(-1,'M',ax,100,-8,70,40,'B',1);

Diagram.spring(label,axis,mA,mB,off)
Diagram.dash(label,axis,mA,mB,off)
Diagram.rope(label,axis,mA,mB,off)
Creates a spring, dashpot, or line segment (rope) between two masses or fixed points.
● label label
● axis Axis along which to move.
● mA, mB Connected mass on each end, or location along axis.
● off Offset from axis, for parallel elements. [Optional]
Returns: a Linkage object
dia.spring('K',ax,25,175,-20);
dia.dash('B',ax,25,175, 20);
dia.rope('',ax,25,175, 0);

Diagram.arrow(v,loc,angle,scale,label)
Diagram.arrow(v,A,rest,off,scale,label)
A thick arrow, for indicating applied force, heat flow, current, etc. Becomes a diamond when length is near 0.
Can be called in two ways. The second is for translating systems and uses an Axis.
● v associated Y[v] index. If negative, the constant number -1-v (~v) is used.
● loc tail location, in the form [x,y].
● angle angle in which to point.
● A the axis along which to move.
● rest the point along the axis to call home.
● scale value scaling factor. [Optional: defaults to 2]
● label label
Returns: an Arrow object
dia.arrow(0,[60,25],0,4,'q');

Figure 4: Descriptions of mass, spring and arrow in help documentation.

////// PLOT ///////
myPlot=plot([600,250],sys1,[0,1],[90,-30,36],['u','y']);

Figure 5: Physical description of the system drawing.

http://www.google.com/url?q=http%3A%2F%2Fwww.sccs.swarthmore.edu%2Fusers%2F12%2Fabiele1%2FLinear%2Fref.html%23label&sa=D&sntz=1&usg=AFQjCNHilS9rRi0g5g6xa6sPlNThSqL5aw

COMPUTERS IN EDUCATION JOURNAL 109

<html> <head>
<title>Damped Oscillator</title>
<script src="../raphael.js"></script>
<script src="../linear.js"></script>
<link rel="stylesheet" type="text/css" href="../style.css"/>
</head>
<body>
<h2>Damped Oscillator</h2>
<h3>with sawtooth input</h3>
<p>m=2, b=.1, k=1</p>

<script>
////// SYSTEM ///////
m=2, b=.1, k=1;

A=[[0, 1], [-k/m,-b/m]];
B=[[0], [1/m]];
C=[[0,0], [1,0]];
D=[[1], [0]];

sys1=system(A,B,C,D).tMax(90);
sys1.input(0,function(t){return t%9});

////// DIAGRAM ///////
fig1=diagram([400,200],sys1);

fig1.wall([40, 60],[10,82],'E');
fig1.wall([50,142],[300,10],'N');
fig1.wall([40,141],[11,11]);

ax=fig1.axis([50,101],0);
m1=fig1.mass(1,'m',ax,200,-10,100,60,'b');
fig1.spring('k',ax,0,m1);
fig1.arrow(0,ax,200,-50,5,'u');

////// PLOT ///////
myPlot=plot([600,250],sys1,[0,1],[90,-30,36],['u','y']);
</script>
</body> </html>

Figure 6: Complete html file for system simulation, animation and plotting.

● Figure 10 shows a thermal system with a

pulsatile input. During the simulation the
length of the arrows between the
capacitances and resistances were
determined by the heat flow, while the
angle of the dial gauge was determined by
the temperature. Again the low pass
behavior is evident in this second order
model.

● Figure 11 shows a motor. During the
simulation the rotor spins, and the
directions of the current in the wires on the
rotor change as they go under the brushes
(this is an extremely difficult concept to
depict in a static drawing). The curved
arrow shows the direction of the torque on
the rotor.

● Not shown are translating electro-

mechanical system (e.g.,speaker or
microphone), rotating mechanical systems,
mechanical systems that both rotate and
translate, and mixed thermal/fluid systems
Examples of these, and others, are
available at
http://www.swarthmore.edu/NatSci/echee
ve1/Ref/LPSA/Animations/index.html.

Conclusions

A system has been developed to generate web-

based simulations of linear physical systems.
To develop an animation only a short script is
required. The script defines the system (in
state-space format), its inputs (as functions or

http://www.swarthmore.edu/

110 COMPUTERS IN EDUCATION JOURNAL

Figure 11: An electromechanical

 system (motor).

user input) and outputs, as well as the drawing
that is to be simulated. Two JavaScript libraries
are used: one developed for the simulation and
the animation, and the Raphaël Library for
vector graphics. A wide variety of systems can
be simulated and animated, including rotating
and/or translating mechanical systems, electrical
systems (including op-amps), electromechanical
systems (rotating or translating), thermal
systems, and mixed thermal/fluid systems.

These animations are being incorporated into a

web-based resource for a Linear Systems
course. After students have had access to the

Figure 7: Sliders used to define mass, spring
and friction. Friction increased during the

third oscillation.

Figure 8: Input determined by mouse.

Figure 9: Electrical system.

Figure 10: A thermal system, pulsatile input.

COMPUTERS IN EDUCATION JOURNAL 111

simulations, the effectiveness of the simulations
relative to static diagrams will be assessed.

The system discussed in this paper is available

at: http://www.swarthmore.edu/NatSci/echeeve1
/ Ref/LPSA/Animations/index.html

References

1. “Learning Styles and Teaching Styles in

Engineering Education,” R.M. Felder and L.K.
Silverman, Engineering Education, 78:7, 1988,
674-681.

2. “Evaluating the educational impact of

visualization,” Naps, et al., Proceeding
ITiCSE-WG, 2003, pp 124-136.

3. “Visual Learning for Science and

Engineering,” McGrath & Brown, IEEE
Computer Graphics and Applications, 25:5,
2005, pp 56-63.

4. “Incorporating Animation Concepts and

Principles in STEM Education,” Harrison &
Hummell, Technology Teacher; v69 n8 p20-
25 May-Jun 2010

5. “Animated Instructional Software for

Mechanics of Materials: Implementation and
Assessment,” Philpot & Hall, Computer
Applications in Engineering Education, John
Wiley and Sons, 14:1, 2006, pp 31-43.

6. “Is there a better way to present an example

problem?,” Philpot, Hall, Flori, Hubing,
Oglesby, & Yellamraju, ASEE Conference
Proceedings, 2003.

7. “Comprehensive Evaluation of Animated

Instructional Software For Mechanics Of
Materials,” Philpot & Hall, ASEE/IEEE FIE
Conference, 2004.

8. “Interactive Web Based Animation Software:

An Efficient Way to Increase the Engineering
Student’s Fundamental Understanding of
Particle Kinematics and Kinetics”, Stanley,
Proceedings of ASEE Zone 1 Conference,
2008

9. “An Efficient Way to Increase the Engineering

Student’s Fundamental Understanding of
Particle Kinematics and Kinetics by Utilizing

Interactive Web Based Animation Software,”
Stanley, ASEE Computers in Education
Journal, 18:3, 2008, pp 23-41.

10. Experiential Learning: Experience as the

Source of Learning and Development. Kolb,
D. A., Ed.
Prentice-Hall Inc, New Jersey, USA, 1984.

11. “The educational encyclopedia, Engineering

Animations and Java applets,”
www.educypedia.be/education/ physicsoscilla
tions.htm (accessed Jan 3, 2011)

12. “Math, Physics, and Engineering Applets,”

www.falstad.com/mathphysics.html, (accessed
Jan 5, 2011).

13. “Signals, Systems, and Control

Demonstrations” http://www.jhu.edu/signals/,
(accesed Jan 3, 2011)

14. “A Java-based system for building animated

presentations over the Web,” Bonifaci,
Demetrescu, Finocchi, & Luigi, Science of
Computer Programming, 53:1, 2004, pp 37-49

15. “MyPhysicsLab — Physics Simulation with

Java,” www.myphysicslab.com, (accessed Jan
5, 2011).

16. “Redesigning Undergraduate Control

Courseware,” Chang, Jaroonsiriphan & Chang,
International Conference on Engineering
Education, 2004.

17. Fundamentals of Signals and Systems Using

the Web and MatLab, Kamen & Heck,
Prentice Hall, 2002

18. Mastering Simulink, Dabney & Harman,

Prentice Hall, 2003

19. “Raphaël—JavaScript Library,”

www.raphaeljs. com (accessed Jan 3, 2011)

Biographical Information

Ames Bielenberg is an Engineering Student at
Swarthmore College.

Erik Cheever is a Professor of Engineering at

Swarthmore College. He teaches in the areas of
Circuits, Electronics, Linear Systems, Control Theory
and DSP.

http://www.swarthmore.edu/NatSci/echeeve1%20/
http://www.swarthmore.edu/NatSci/echeeve1%20/
http://www.google.com/url?q=http%3A%2F%2Fcsaweb107v.csa.com%2Fids70%2Fview_record.php%3Fid%3D3%26recnum%3D0%26log%3Dfrom_res%26SID%3Dudvccrmc1l2mis8mun2tje1e95&sa=D&sntz=1&usg=AFQjCNHU1opRjGNVih-cP4RZkoXMYa7BHg
http://www.google.com/url?q=http%3A%2F%2Fcsaweb107v.csa.com%2Fids70%2Fview_record.php%3Fid%3D3%26recnum%3D0%26log%3Dfrom_res%26SID%3Dudvccrmc1l2mis8mun2tje1e95&sa=D&sntz=1&usg=AFQjCNHU1opRjGNVih-cP4RZkoXMYa7BHg
http://www.google.com/url?q=http%3A%2F%2Fcsaweb107v.csa.com%2Fids70%2Fview_record.php%3Fid%3D3%26recnum%3D0%26log%3Dfrom_res%26SID%3Dudvccrmc1l2mis8mun2tje1e95&sa=D&sntz=1&usg=AFQjCNHU1opRjGNVih-cP4RZkoXMYa7BHg
http://www.google.com/url?q=http%3A%2F%2Fcsaweb107v.csa.com%2Fids70%2Fview_record.php%3Fid%3D3%26recnum%3D0%26log%3Dfrom_res%26SID%3Dudvccrmc1l2mis8mun2tje1e95&sa=D&sntz=1&usg=AFQjCNHU1opRjGNVih-cP4RZkoXMYa7BHg
http://www.google.com/url?q=http%3A%2F%2Fcsaweb107v.csa.com%2Fids70%2Fview_record.php%3Fid%3D3%26recnum%3D0%26log%3Dfrom_res%26SID%3Dudvccrmc1l2mis8mun2tje1e95&sa=D&sntz=1&usg=AFQjCNHU1opRjGNVih-cP4RZkoXMYa7BHg
http://www.google.com/url?q=http%3A%2F%2Fcsaweb107v.csa.com%2Fids70%2Fview_record.php%3Fid%3D3%26recnum%3D0%26log%3Dfrom_res%26SID%3Dudvccrmc1l2mis8mun2tje1e95&sa=D&sntz=1&usg=AFQjCNHU1opRjGNVih-cP4RZkoXMYa7BHg
http://www.google.com/url?q=http%3A%2F%2Fcsaweb107v.csa.com%2Fids70%2Fview_record.php%3Fid%3D3%26recnum%3D0%26log%3Dfrom_res%26SID%3Dudvccrmc1l2mis8mun2tje1e95&sa=D&sntz=1&usg=AFQjCNHU1opRjGNVih-cP4RZkoXMYa7BHg
http://www.google.com/url?q=http%3A%2F%2Fcsaweb107v.csa.com%2Fids70%2Fview_record.php%3Fid%3D3%26recnum%3D0%26log%3Dfrom_res%26SID%3Dudvccrmc1l2mis8mun2tje1e95&sa=D&sntz=1&usg=AFQjCNHU1opRjGNVih-cP4RZkoXMYa7BHg
http://www.google.com/url?q=http%3A%2F%2Fcsaweb107v.csa.com%2Fids70%2Fview_record.php%3Fid%3D3%26recnum%3D0%26log%3Dfrom_res%26SID%3Dudvccrmc1l2mis8mun2tje1e95&sa=D&sntz=1&usg=AFQjCNHU1opRjGNVih-cP4RZkoXMYa7BHg
http://www.google.com/url?q=http%3A%2F%2Fcsaweb107v.csa.com%2Fids70%2Fview_record.php%3Fid%3D3%26recnum%3D0%26log%3Dfrom_res%26SID%3Dudvccrmc1l2mis8mun2tje1e95&sa=D&sntz=1&usg=AFQjCNHU1opRjGNVih-cP4RZkoXMYa7BHg
http://www.google.com/url?q=http%3A%2F%2Fcsaweb107v.csa.com%2Fids70%2Fview_record.php%3Fid%3D3%26recnum%3D0%26log%3Dfrom_res%26SID%3Dudvccrmc1l2mis8mun2tje1e95&sa=D&sntz=1&usg=AFQjCNHU1opRjGNVih-cP4RZkoXMYa7BHg
http://www.google.com/url?q=http%3A%2F%2Fcsaweb107v.csa.com%2Fids70%2Fview_record.php%3Fid%3D3%26recnum%3D0%26log%3Dfrom_res%26SID%3Dudvccrmc1l2mis8mun2tje1e95&sa=D&sntz=1&usg=AFQjCNHU1opRjGNVih-cP4RZkoXMYa7BHg
http://www.google.com/url?q=http%3A%2F%2Fcsaweb107v.csa.com%2Fids70%2Fview_record.php%3Fid%3D3%26recnum%3D0%26log%3Dfrom_res%26SID%3Dudvccrmc1l2mis8mun2tje1e95&sa=D&sntz=1&usg=AFQjCNHU1opRjGNVih-cP4RZkoXMYa7BHg
http://www.google.com/url?q=http%3A%2F%2Fcsaweb107v.csa.com%2Fids70%2Fview_record.php%3Fid%3D3%26recnum%3D0%26log%3Dfrom_res%26SID%3Dudvccrmc1l2mis8mun2tje1e95&sa=D&sntz=1&usg=AFQjCNHU1opRjGNVih-cP4RZkoXMYa7BHg
http://www.google.com/url?q=http%3A%2F%2Fcsaweb107v.csa.com%2Fids70%2Fview_record.php%3Fid%3D3%26recnum%3D0%26log%3Dfrom_res%26SID%3Dudvccrmc1l2mis8mun2tje1e95&sa=D&sntz=1&usg=AFQjCNHU1opRjGNVih-cP4RZkoXMYa7BHg
http://www.google.com/url?q=http%3A%2F%2Fcsaweb107v.csa.com%2Fids70%2Fview_record.php%3Fid%3D3%26recnum%3D0%26log%3Dfrom_res%26SID%3Dudvccrmc1l2mis8mun2tje1e95&sa=D&sntz=1&usg=AFQjCNHU1opRjGNVih-cP4RZkoXMYa7BHg
http://www.google.com/url?q=http%3A%2F%2Fcsaweb107v.csa.com%2Fids70%2Fp_search_form.php%3Ffield%3Dau%26query%3Dharrison%2Bhenry%2Bl%2Biii%26log%3Dliteral%26SID%3Dudvccrmc1l2mis8mun2tje1e95&sa=D&sntz=1&usg=AFQjCNGoZkI_ThtBqtaV3hPszzmTWdEzkw
http://www.google.com/url?q=http%3A%2F%2Fcsaweb107v.csa.com%2Fids70%2Fp_search_form.php%3Ffield%3Dau%26query%3Dharrison%2Bhenry%2Bl%2Biii%26log%3Dliteral%26SID%3Dudvccrmc1l2mis8mun2tje1e95&sa=D&sntz=1&usg=AFQjCNGoZkI_ThtBqtaV3hPszzmTWdEzkw
http://www.google.com/url?q=http%3A%2F%2Fcsaweb107v.csa.com%2Fids70%2Fp_search_form.php%3Ffield%3Dau%26query%3Dhummell%2Blaura%2Bj%26log%3Dliteral%26SID%3Dudvccrmc1l2mis8mun2tje1e95&sa=D&sntz=1&usg=AFQjCNHNvvAmJxNvSOVNGKv74b3U3aOdBQ
http://www.google.com/url?q=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Fjournal%2F01676423&sa=D&sntz=1&usg=AFQjCNHCE3s99nCubaYX56awyKNNmWazZA
http://www.google.com/url?q=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Fjournal%2F01676423&sa=D&sntz=1&usg=AFQjCNHCE3s99nCubaYX56awyKNNmWazZA
http://www.google.com/url?q=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Fjournal%2F01676423&sa=D&sntz=1&usg=AFQjCNHCE3s99nCubaYX56awyKNNmWazZA
http://www.google.com/url?q=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Fjournal%2F01676423&sa=D&sntz=1&usg=AFQjCNHCE3s99nCubaYX56awyKNNmWazZA
http://www.google.com/url?q=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Fjournal%2F01676423&sa=D&sntz=1&usg=AFQjCNHCE3s99nCubaYX56awyKNNmWazZA
http://www.google.com/url?q=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Fjournal%2F01676423&sa=D&sntz=1&usg=AFQjCNHCE3s99nCubaYX56awyKNNmWazZA
http://www.google.com/url?q=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Fjournal%2F01676423&sa=D&sntz=1&usg=AFQjCNHCE3s99nCubaYX56awyKNNmWazZA
http://www.google.com/url?q=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Fjournal%2F01676423&sa=D&sntz=1&usg=AFQjCNHCE3s99nCubaYX56awyKNNmWazZA
http://www.google.com/url?q=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%3F_ob%3DPublicationURL%26_tockey%3D%2523TOC%25235667%25232004%2523999469998%2523513591%2523FLA%2523%26_cdi%3D5667%26_pubType%3DJ%26view%3Dc%26_auth%3Dy%26_acct%3DC000019938%26_version%3D1%26_urlVersion%3D0%26_userid%3D421321%26md5%3Dc55ba6eb8da83f7e744044d0e5ca5ae8&sa=D&sntz=1&usg=AFQjCNECquKfqyJBml6ZKbdEOBS0mPMZqg
http://www.raphaeljs/

	Diagram.mass(v,label,axis,rest,wheel,w,h,flabel)
	Diagram.spring(label,axis,mA,mB,off)
	Diagram.dash(label,axis,mA,mB,off)
	Diagram.rope(label,axis,mA,mB,off)
	Diagram.arrow(v,loc,angle,scale,label)
	Diagram.arrow(v,A,rest,off,scale,label)

