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Abstract 
 

The kinetic theory of gases is an important 
element of undergraduate training in various 
engineering and scientific fields. This article 
presents a general derivation of the moments of 
the Maxwell-Boltzmann velocity distribution 
for arbitrary dimension. Numerical simulations 
of hard hypersphere collisions are performed to 
test the theoretical predictions. Good agreement 
is found. Such activities expose students to 
special functions, numerical simulation 
methods and graphics software.  

 
Introduction 

 
Students in engineering and science need to 

understand the relationship between 
microscopic molecular motion and macroscopic 
properties. The kinetic theory of gases [1] 
makes this connection by relating macroscopic 
properties such as the temperature to the 
average of the square of the velocities of 
individual particles.  In D dimensions the 
kinetic energy, ½ m<V2>, is given as 

 
            ½ m<V2> = ½ D kBT                       (1) 

 
Here, m is the mass of the particles, <V2>, is 
the average of the square of their velocities, kB 
is Boltzmann's constant and T is the absolute 
temperature. The right side of Eq. 1 follows 
from the law of equipartition [1]. Each degree 
of freedom contributes one factor of ½ kBT to 
the energy and there are D total translational 
degrees of freedom for unstructured hard 
hyperspheres in D dimensions. In this article we 
employ reduced units for which m/kBT = 1. 
 
 
 

The velocities follow the Maxwell-Boltzmann 
probability distribution function. This 
distribution function is essentially a Gaussian 
distribution. The D-dimensional Gaussian 
distribution, P(V), is given by 
 

P(V) = [D / (2π<V2>)] D/2 exp( - DV2 /(2<V2>))  (2)                    
 

P(V) must obey the normalization condition for 
probabilities: 
 
                      ∞       ∞  
        1   =      ∫ ...    ∫   P(V) dV                      (3)          
                   - ∞     - ∞     
 

where dV in Eq. 3 is the appropriate volume 
element in D-dimensional velocity space.  
 
In two dimensions (D=2) for example,  the 

volume element in Cartesian coordinates is dVx 
dVy. Since the velocities have angular 
symmetry, polar coordinates can be employed 
to reduce the integral over two separate 
components, Vx and Vy, to a single integral. 
The volume element in polar coordinates is   
dV = dθ VdV.   
 
Then Eq. 3 becomes 
                        ∞ 2π   

1 = [1/(π<V2>)] ∫ ∫ exp(-V2/(<V2>))dθ VdV  (4)   
                          0 0 
                                                 
The right hand side of Eq. 4 evaluates to 1 as 
expected. 
 
      According to Eq.1, in D dimensions, 
 
                     <V2> = D                               (5) 

 
The general equation for the average value of 

the Q - th moment  of  velocity, <VQ>, is  given  
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by 
                            ∞       ∞  
        <VQ>  =     ∫ ...    ∫   VQ  P(V) dV         (6) 
                         - ∞     - ∞    

 
To transform this general case which involves 
D component integrals to a single integral over 
the magnitude of V, |V|, one needs to relate the 
Cartesian coordinates of V to its D dimensional 
spherical coordinates involving |V| and the  
D - 1 angles θ1 θ2... θ D - 1.  Alternatively, one 
can reformulate the integration procedure as 
integrating over the surface area of a D-
dimensional hypersphere, ΩD. To do this we 
change the expression given in Tiglias and 
Bishop [2] in R space to V space, to find that 

 
            ΩD = 2 π D/2 V D - 1/ Γ(D/2)             (7) 
 
where, Γ is the Gamma function [3] 
 
                      ∞ 
           Γ(x) = ∫ t x - 1 exp ( - t ) dt                   (8) 
                      0 
 
Thus, the general equation for the Q - th 
moment can be recast as 
 
                              ∞                       
           <VQ>  =   ∫ VQ P(V) ΩD  dV             (9) 
                             0                       
or 
                                                                                                              
<VQ> = {2π D/2 / Γ(D/2)} [D / (2π<V2>)] D/2   
 ∞ 
 ∫ V Q + D - 1 exp ( - DV2 / (2<V2>))  dV    (10)           
0                                                                    
                                                                              
Using Eq. 5, this simplifies to 
                                                                             

  <VQ> = [21 – D/2 / Γ(D/2) ]  
 
          ∞    
          ∫ V Q + D - 1 exp(-V2/2) dV                 (11)                                 
         0 

                                                                      

If we set Z = V2/ 2, Eq. 11 reduces to  
  
                                   ∞                       
<VQ>=[2Q/2/Γ(D/2)] ∫ Z(Q + D)/2 – 1exp(Z)dZ 

     
 

                                   0 

                                                                    (12)                    
which becomes 
 
  <VQ> = 2Q/2  Γ( (Q+D)/2)  /  Γ(D/2)      (13) 
                                                                           
Eq. 13 is the generalized D-dimensional Q-th 

moment which will be compared with 
simulation results. 
  
    When Q = 2, one finds that 
 
      <V2> = 2 Γ( (2+D)/2) / Γ(D/2)           (14) 
 

However, one of the properties [3] of the 
Gamma function is that Γ(1 + X)  = X Γ(X).  It 
then follows that 
 
Γ((2+D)/2) = Γ(1+D/2) = (D/2) Γ(D/2)    (15) 
 

and Eq.5 is obtained. 
 
Similarly, when Q = 4, 6 and 8 we find that 

     
   <V4> = (D + 2) D                        (16)  
 

             <V6> = (D + 4) (D + 2) D             (17) 
 

and                     
 
         <V8> = (D + 6) (D + 4) (D + 2) D   (18) 
 
 
The numerical values for these moments when 

D = 2 through 5 are listed in Table I. 
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Table I. Theoretical values of the moments in 
different dimensions 
 

D <V2> <V4> <V6> <V8> 

2 2 8 48 384 
3 3 15 105 945 
4 4 24 192 1920 
5 5 35 315 3465 

 
Computer  Simulation 

 
We have developed an independent study 

project for a simulation and modeling course 
which tests Eq.13 for D = 2 through 5 
dimensions by computing the moments of the 
velocity distribution of hard hyperspheres. 
Detailed discussions of the properties of hard 
particle systems are available in the literature 
[4,5,6]. These sources also include sample 
codes. 
 
We first consider a two dimensional system 

with N disks at a density ρ. These parameters 
determine the side length of a box containing 
the disks 
 
                     L = (N / ρ) ½                              (19)  
 
Each disk is given an initial position and 

velocity. Let two disks, i and j, with a diameter 
of one in our reduced system of units, have 
positions ri and rj and velocities vi and vj at 
time t. If these disks are to collide at time t + tij, 
e.g. be tangent, then 
                                      
         | rij(t+tij)| = |rij + vij *  tij| = 1          (20) 
 

where  rij =  ri -  rj and  vij =  vi – vj. Define 
bij =  rij · vij and then Eq. 20 becomes 

 
            vij2 tij2 + 2bij tij + rij2 – 1 = 0       (21) 
 
 
This is a quadratic equation in tij. If bij > 0 the 

disks are moving away from each other and will 

not collide. The discriminant cannot be 
negative or the equation will have complex 
roots. Taking the smaller of the two roots, one 
finds that 
               
  tij = [- bij - (bij2  - vij2 (rij2 -1))1/2] /vij2 (22) 
 
Then the tijs for all the possible pairs need to 

be computed. This is an O(N2) calculation if 
done directly inside two nested loops over i and 
j. We have utilized this approach for simplicity. 
The smallest tij value is selected and all 
particles are moved for that time. The velocities 
of the colliding pair then change. We assume 
perfectly elastic collisions for which the kinetic 
energy and linear momentum are conserved. 
Then 
           vi (after) = vi (before) + dvi          (23a) 
 
and 
          vj (after) = vj (before) – dvi           (23b) 
 
where  
                    dvi = - bij rij                           (24) 
 
bij is evaluated at the moment of impact.  
 
Now the tijs of all particles which would have 

collided with particle i or j need to be updated. 
After this procedure a new shortest tij is found 
and the process repeated. In this manner the 
two dimensional hard disks are moved. We 
have selected a ρ value of 0.2. A total of 
1,000,000 collisions are followed and 500,000 
are discarded to allow for equilibration. Data is 
gathered every 1,000 collisions and the mean 
and standard deviation of the 500 samples are 
obtained via standard methods [7]. It is simple 
to extend this analysis to higher dimensions 
since all the above equations are cast in terms 
of vectors. Figure 1 illustrates the locations of 
64 three dimensional spheres at a density of 0.2. 
The left panel contains a snapshot of the 
starting configuration whereas the right panel is 
a snapshot of the last configuration.  



 
 
Figure 1: Snapshots of the initial and final configurations when N=64, Density=0.2, with 100,000 

collisions discarding the first 50,000. 
 

Table II. Values of the velocity moments in different dimensions obtained by simulation 
 
 
 
 
 
 
 
 

 
 
The program was coded in C++. The 

simulation results are contained in Table II. 
 
There is generally good agreement between 

these values and the theoretical predictions in 
Table I. The differences from the theoretical 
values depend upon the number of 
hyperspheres, the number of collisions, and the 
magnitude of the quantity studied. 
 

Conclusions 
 
We have presented a general derivation and 

performed computer simulations of the average 
moments   of   the   velocity    of  hard   particle  
 
 

 
 

 
systems in two to five dimensions. The 
agreement between the theoretical predictions 
and the computer results for the second, fourth, 
sixth and eighth moment of velocity depends 
upon a number of factors. Having students 
numerically compute these moments exposes 
them to important ideas in kinetic theory, 
computer modeling, computer programming 
and statistical tools which will be of great use 
in their future careers. Snapshots generated 
with the Maple software package reveal the 
random arrangement of particles after a 
sufficient number of collisions and further 
enhance student understanding. This project 
demonstrates the key elements of simulation 
and the impact of statistical fluctuations. 
 

D N <V2> <V4> <V6> <V8> 

2 625 1.993±0.004 7.969±0.021 47.864±0.266 383.688±0.446
3 512 2.983±0.006 14.748±0.036 101.080±0.481 880.922±8.764
4 625 3.994±0.008 23.925±0.054 190.355±0.699 1884.22±13.15
5 243 4.996±0.010 34.905±0.083 312.429±1.362 3401.66±28.72
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Appendix:  The  Manhattan  College 
Undergraduate  Research  Program 

 
Manhattan College has a long tradition of 

involving undergraduates in research and was 
one of the original members of the Oberlin 50 
[8]. This is a group of undergraduate 
institutions whose students have produced 
many PhDs in engineering and science.  At 
Manhattan College, students can elect to take 
an independent study course for 3 credits 
during the academic year.  In addition, the 
College provides grant support to the students 
for 10 weeks of work during the summer.  I 
have personally recruited the students from my 
junior level course in Systems Programming. 
Previously published articles in this journal by 
Manhattan College student co-authors are a 
very effective recruitment tool.  The students 
have also presented their results at a variety of 
undergraduate research conferences including 
the Hudson River Undergraduate Mathematics 
Conference and the Spuyten Duyvil 
Undergraduate Mathematics Conference.  
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