
COMPUTERS IN EDUCATION JOURNAL 13

TEACHING SOFTWARE ENGINEERING:
AN ACTIVE LEARNING APPROACH

Walter W. Schilling, Jr., Mark J. Sebern

Electrical Engineering & Computer Science Department
Milwaukee School of Engineering

Abstract

Software Engineering is a core component of

many computer engineering programs. In
software engineering courses, students are
taught to apply their programming and
development skills to solve a larger scale
problem. The resolution of this problem
involves the development of an understanding
of the problem from the client’s perspective as
well as an analysis of solution alternatives.

Unfortunately, in many cases, the software

engineering course is offered late in the
curriculum, typically at the senior level. This
makes it difficult for students to apply the
knowledge that they have learned effectively on
capstone and other academic projects. Students
often comment that it would have been “nice to
know this” before making the wrong decisions
on their capstone projects. Thus, to be
successful, components of software engineering
need to be taught earlier in the undergraduate
curriculum. This shifting to an earlier level,
however, poses pedagogical issues.

This paper describes the metamorphosis of an

undergraduate software engineering course from
a senior level course to a sophomore level
course. In this course, students are taught to use
software engineering tools and practices in
pursuit of a solution to a software based
embedded systems problem. Students actively
work together in teams while theoretical
software engineering concepts are delivered
using “Just in Time” instruction.

In addition to providing an overview of the

course material and exercises, this article will
discuss the changes made to the course in each
of the previous 4 offerings. Changes were

based upon student comments and other
feedback. An analysis of student performance
will also be provided.

Introduction

The Milwaukee School of Engineering offers
two computer related engineering fields, a
Bachelor’s of Science in Software Engineering
degree and a Bachelor’s of Science degree in
Computer Engineering. For many years, seniors
within the Computer Engineering field took a
required course, CS-489 Software Engineering
Design, as is shown in Figure 1. The course
was designed as a project based course
providing a survey of software engineering
methods as well as introducing a design process
for their capstone projects. Details of this
course are provided in Sebern[1] and Welch[2].

Based on senior exit interviews (samples of

which are given in Figure 2) and other course
feedback, there was a strong consensus that the
placement of the software engineering course
was too late in the curriculum. As part of a
curriculum overhaul, a decision was made to
convert the existing software engineering course
into a sophomore level course[2]. This resulted
in the Computer Programming related sequence
shown in Figure 3. In addition to moving the
course sooner in the curriculum, the course also
received a credit reduction, reducing both the
lecture and lab contact hours by 33%. A second
change that should be noted is that the number
of contact hours associated with the introductory
programming courses was also reduced 25%
from 8 contact hours of lecture and 8 contact
hours of lab to 6 contact hours of lecture and 6
contact hours of lab. This change was
accomplished by combining CS-1010, CS-1020,
and CS-1030 into two courses.

14 COMPUTERS IN EDUCATION JOURNAL

The New Course Initial Offering

The initial inception for the new Software
Engineering Practices course was to offer
students a scaled down version of the senior
level course, removing some topical content,

such as formal methods and client interviews,
but otherwise, retaining the initial flavor of the
senior level course. For the initial course
offering, the 13 course outcomes listed in Figure
4 were defined for the course, and the syllabus
of Table 1 was used for lecture and lab content.

 Figure 2: Sample student comments from exit interviews about CS-489 course.

• "Should be introduced to us earlier and more often than just Software Engineering
Design."

• This was only given to us in Software Engineering Design where we had to cram too
much information in.

• The only real attempt to apply the principles of team process and project management
came in Software design, which was much too late to be of much help.

• The project in the SE class for CE's was what I would consider the first real team project
that I'd participated in. What I learned about teamwork and team roles would have been
extremely helpful earlier on. As I mentioned before, this class needs to move to earlier
in the curriculum.

• More Software Engineering in Computer Engineering: It seemed kind of strange that the
only class that covered software engineering processes was only taught in senior year. I
think a lot of the software design knowledge would have been more beneficial at an
earlier state. A lot of the code that everyone wrote was hacked out instead of following a
proper design procedure.

Figure 1: MSOE Computer Engineering Computer Programming Related Curriculum.

Freshman Year Fall Winter Spring

GE-110 Introduction to Engineering Concepts 2-2-3
CS-1010 Computer Programming 2-2-3
CS-1020 Software Design I 2-2-3

Sophomore Year

CS-1030 Software Design II 2-2-3
CS-2851 Data Structures 2-2-3
CS-280 Embedded Systems Software 3-2-4
EE-210 Electronic Devices and Computer Interfacing 3-3-4

Junior Year

CS-321 Computer Graphics 3-3-4
CS-381

Engineering Systems Analysis With Numerical
Methods 3-2-4

CS-384 Design of Operating Systems 3-2-4
CS-393 Computer Architecture I 3-2-4
CS-391 Embedded Computer System Design 3-3-4

Senior Year

http://resources.msoe.edu/cdb/course.php?course=GE%20%20%20110
http://resources.msoe.edu/cdb/course.php?course=CS%20%20%201010
http://resources.msoe.edu/cdb/course.php?course=CS%20%20%201020
http://resources.msoe.edu/cdb/course.php?course=CS%20%20%201030
http://resources.msoe.edu/cdb/course.php?course=CS%20%20%202851
http://resources.msoe.edu/cdb/course.php?course=CS%20%20%20280
http://resources.msoe.edu/cdb/course.php?course=EE%20%20%20210
http://resources.msoe.edu/cdb/course.php?course=CS%20%20%20321
http://resources.msoe.edu/cdb/course.php?course=CS%20%20%20381
http://resources.msoe.edu/cdb/course.php?course=CS%20%20%20384
http://resources.msoe.edu/cdb/course.php?course=CS%20%20%20393
http://resources.msoe.edu/cdb/course.php?course=CS%20%20%20391
http://resources.msoe.edu/cdb/course.php?course=CS%20%20%20489
http://resources.msoe.edu/cdb/course.php?course=CS%20%20%20495
http://resources.msoe.edu/cdb/course.php?course=CS%20%20%20400
http://resources.msoe.edu/cdb/course.php?course=CS%20%20%20401

COMPUTERS IN EDUCATION JOURNAL 15

Figure 4: Initial SE2890 Course Outcomes.

Figure 3: MSOE Computer Engineering Computer Programming Related Curriculum.
Courses (Version 3.0)

Freshman Year

 Fall Winter Spring
SE-1010 Software Development I 2-2-3
SE-1020 Software Development II 2-2-3
CS-2851 Data Structures 2-2-3

Sophomore Year

CE-2800 Embedded Systems I 3-3-4
CE-2810 Embedded Systems II 2-2-3
SE-2890 Software Engineering Practices 2-2-3

Junior Year

 CS-3212 Computer Graphics 2-3-3
CS-3841 Design of Operating Systems 3-2-4
CE-3910 Embedded Systems III 3-2-4

Senior Year

 CE-4000 Senior Design Project I 2-2-3
CE-4920 Embedded Systems IV 2-2-3
CE-4010 Senior Design Project II 2-2-3

Catalog Description:
This course presents an introduction to the team-based cyclical development of software for non-SE majors.
Computer-aided software engineering (CASE) tools are used to support the development process, which is built
around the objected-oriented (OO) paradigm and will reinforce understanding of the Unified Modeling
Language (UML). Students participate in a team project to analyze, design, implement and test a complete
software system.
Course Outcomes:

1. describe the software engineering life cycle
2. analyze and generate simple use cases
3. apply object-oriented analysis techniques to small projects and represent them using UML
4. apply object-oriented design techniques to small projects and represent them using UML
5. describe the purpose of and apply basic design patterns
6. analyze and document software system requirements using OOA techniques
7. design and implement software systems using OOD techniques
8. generate clear, consistent, and reasonably complete documentation of a software system
9. be able to use computer-aided software engineering (CASE) tools
10. develop basic software test plans and reports
11. work effectively as part of a team
12. apply simple quality project monitoring techniques
13. describe the purpose and goals of the SEI Capability Maturity Model

http://resources.msoe.edu/cdb/course.php?course=SE%20%20%201010
http://resources.msoe.edu/cdb/course.php?course=SE%20%20%201020
http://resources.msoe.edu/cdb/course.php?course=CS%20%20%202851
http://resources.msoe.edu/cdb/course.php?course=CE%20%20%202800
http://resources.msoe.edu/cdb/course.php?course=CE%20%20%202810
http://resources.msoe.edu/cdb/course.php?course=SE%20%20%202890
http://resources.msoe.edu/cdb/course.php?course=CS%20%20%203212
http://resources.msoe.edu/cdb/course.php?course=CS%20%20%203841
http://resources.msoe.edu/cdb/course.php?course=CE%20%20%203910
http://resources.msoe.edu/cdb/course.php?course=CE%20%20%204000
http://resources.msoe.edu/cdb/course.php?course=CE%20%20%204920
http://resources.msoe.edu/cdb/course.php?course=CE%20%20%204010
http://resources.msoe.edu/cdb/course.php?course=CE%20%20%204950
http://resources.msoe.edu/cdb/course.php?course=CE%20%20%204020
http://resources.msoe.edu/cdb/course.php?course=CE%20%20%204960

16 COMPUTERS IN EDUCATION JOURNAL

With the initial offering of the course (Spring

2008), there were many problems noted, ranging
from course content to prerequisite material.

One of the most surprising observations was

the difficulty students had with fundamental
object-oriented programming. During their
freshman year, they had taken three courses
using Java (SE1010, SE1020, and CS2851).
However, it had been nearly a year since the
students had used any programming language
other than assembly or C. Thus, there were
significant retention issues with the Java
programming language, making it very difficult
for students to be successful. Many students
required additional tutoring in the fundamentals
of the Java programming language, and even
then, their success was marginal.

Students also had great difficulty becoming

engaged in the lab project. While the project
itself did not represent an unrealistic software
engineering task, it also was not a project that

engaged the students and made them really want
to learn the material, especially given that they
had been given a tool to use with the first two
labs which essentially met the requirements for
the final project. Because the lab project was
built in two cycles, it was also very difficult to
provide the students with meaningful feedback
in a timely enough fashion for them to integrate
that feedback into the development of the next
cycle.

Exit surveys from the course also indicated

problems with the revised course. For each
outcome, students were asked on a Likert scale
to answer whether the student had obtained an
understanding in the given outcome and whether
the course material had helped them to obtain
this understanding. Overall, students felt that
they were weak in outcomes 5, 9, 12, and 13.
Furthermore, the students felt that the course as
structured only helped to learn the material
related to outcome #2. Written comments from
students also indicated problems from the

Table 1: SE2890 Initial Course Syllabus.

Week Day 1 Lecture Day 2 Lecture Lab Assignment(s)

1 Introduction
The Software Crisis

Use Cases Java Refresher and Data
Collection

Team Member Resume

2

Requirements
Domain Models

System Behavior
Sequence Diagrams
Contracts

OO CASE Tool and Effort
Estimation

Lab 1 Report

3

Interaction Diagrams Assigning Responsibilities Project, Cycle 1:
Analysis

Lab 2 Report

4

Designing Solutions Design Class Diagrams Project, Cycle 1: Design Cycle 1 Analysis
Document

5

Architectural Issues Implementation Techniques Implementation
Project, Cycle 1: Design
cont.

Status Memo

6

Midterm Exam Code Reviews Checklists
Code Review Procedure
Sample Checklist

CASE Tool Demo:
Project, Cycle 1:
Implementation & Test

Cycle 1 Design
Document

7 Project: Code Review Testing
Configuration Management

Project, Cycle 1:
Implementation & Test
cont.

Status Memo

8

Test Case Exercise Generalization Project, Cycle 2:
Analysis & Design

Cycle 1 Final Report
Peer Evaluation Role
Summary

9

Additional Design
Patterns

Software Metrics Estimation Project, Cycle 2:
Analysis & Design cont.

Cycle 2 Analysis &
Design Report

10

SEI CMMI Web Site Review for Final Exam Project, Cycle 2:
Implementation & Test

Final Project Report
Peer Evaluation Role
Summary

COMPUTERS IN EDUCATION JOURNAL 17

course as well. Many indicated they did not feel
there was a flow to the course, and many
strongly felt that the course was very rushed.
Other students also felt that they were at a
significant disadvantage in that pre-requisite
courses had not covered the material they were
expected to know at the beginning of the course.

The First Revision of the New Course

Based on student comments and outcome

assessments from the first course offering, a
significant redesign of the course was
approached. Each outcome was carefully
reviewed and compared against the needs of
computer engineering students as well as
checked for overlap with existing courses.
From this, the initial listing of 13 course
outcomes was reduced to 11 course outcomes,
as is shown in Figure 5. These outcomes
reflected an increased emphasis on the practices
necessary for software engineering and a slight
de-emphasis on the specific object-oriented

analysis and object-oriented design techniques
from the initial offering. An increased emphasis
on the verification of software was added, as
well as outcomes related to effective
communications. Based on feedback from the
final offering of CS489, it was also felt that a
strong emphasis in the area of requirements
review and development was necessary.

The course syllabus was also redesigned so

that material was presented in a slightly less
intense format as well as in a linear fashion.
The revised syllabus is shown in Table 2. Key
supporting concepts (such as reviews and
configuration management) were moved earlier
in the course in order that students would be
able to use this material throughout the course.
And, while certain topics were kept in the
syllabus, they were cast in a more applicable
fashion. For example, the initial course covered
8 design patterns in a single lecture while the
new course focused on two design patterns in
the same amount of time. This additional

Figure 5: Modified Course Outcomes and Catalog Description for SE2890.

Catalog Description:
This course provides an introduction to the discipline of software engineering for Non-majors. Students will be
exposed to the practices employed in determining requirements for the software which is to be developed. From
the requirements specification, problem domain analysis will lead to a high level design. After review, the high
level design will be used to create detailed designs and implement the software on a desktop machine. These
activities will be reinforced through a team project and culminating with group oral presentations.

Course Outcomes:

1. Recognize the risks of software failure and appreciate the importance of a disciplined software
development approach.

2. Compare and contrast distinct models for software development.
3. Employ rudimentary configuration management tools and processes across a software development

project
4. Verify through the practice of review that specified requirements are accurate, unambiguous, complete

and consistent
5. Apply UML modeling tools to represent all phases of a software engineering project
6. Conduct efficient and effective software reviews, and measure the effectiveness of those reviews
7. Perform rudimentary software testing using both manual and automated mechanisms
8. Demonstrate independent learning to accomplish tasks for which all of the details may not have been

taught in previous courses.
9. Work effectively in a team environment on a short-term software development project
10. Communicate design and implementation judgment to others through a team-based oral presentation
11. Demonstrate effective written and oral communications skills

18 COMPUTERS IN EDUCATION JOURNAL

emphasis allowed more time for the students to
see the development and application of the
design patterns. Project tracking was left last in
the course in order that the actual data collected
by the students could be presented back to the
students as a retrospective on their projects. The
redesigned syllabus also incorporated Just-In-
Time teaching, where students actively learned
during lecture the materials that would be
needed for the lab project.

Table 2: SE2890 Modified Course Curriculum.

Team selection was also modified. In the

previous offering, students had written a resume
of their experience and submitted it to the
instructor for team assignments. This was
problematic in that it did not allow the instructor
to take into account student schedules and other
factors. Thus, for the second offering, the
CATME[3] system was selected to manage
team formation and handle team assessment.

The largest change between the first and

second offering was in the area of the lab. For
this course, the lab sequence was completely
rewritten. Whereas the first offering attempted
to do two cycles over the course of 8 weeks
(yielding approximately 6 lab hours for the
second cycle), the lab was recast to be a single
cycle of a larger project. This meant that a

greater amount of time dedicated to each cycle,
and therefore, more time to do a quality
deliverable. This modified lab sequence is
shown in Table 3.

A second change was that requiring students to

use the GForge project management system.
GForge was chosen for the students to use
because this was the required tool for students to
use during their senior design capstone course,
and it was felt that teaching them how to use the
tool at this level would help them when they
became seniors.

A third significant change between the first

offering of the course and the second offering
involved a shift in domain for the lab project.
For the lab project, students were responsible
for constructing software which would control
an RC car, shown in Figure 6, via a wireless
USB interface. Students were provided with an
interface file and device driver, but were
responsible for all other aspects of the design
and implementation of the vehicular control
system. This involved the construction of a
GUI, construction of multiple state machines to
control vehicular operation, and integrating the
device driver into their project.

A fourth change involved how the lab time

was managed. In the previous offering, the
instructor returned assignments in a routine
fashion after grading had been completed. This
unfortunately did not give the required
immediate feedback to the team. To avoid this
problem, the instructor of the class held a design
review of the submitted artifact with each team

Week Lecture Topic
1 1 Introduction to Software Failure
1 2 Software Development Processes
2 1 Requirements and Use Cases
2 2 Requirements and Use Cases
3 1 Introduction to Software reviews
3 2 Configuration Management
4 1 Object Domain Analysis
4 2 Object Domain Analysis
5 1 Defining Object Behavior
5 2 Defining Object Behavior
6 1 Design and Design Patterns
6 2 Midterm Exam
7 1 Detailed Design
7 2 Implementing State Charts in Source Code
8 1 Software Testing
8 2 Software Testing
9 1 Code Reviews
9 2 Code Reviews
10 1 Project Tracking and Analysis
10 2 Course Evaluation and Final Review

 Table 3: SE2890 Modified Lab Sequence.

Week Topic
1 Java Programming Review
2 UML Case Tools and Class Design
3 Requirements analysis and SRS Review
4 Object Domain Analysis Development
5 Defining Object Behavior
6 High Level Design
7 Detailed Design
8 Implementation
9 Testing
10 Project Oral Presentations / RC Car Olympics

COMPUTERS IN EDUCATION JOURNAL 19

during a portion of the lab session. In this
review, the instructor would go through the
submitted artifact with the team and provide
oral feedback and critique. Traditionally
grading against the grading rubric then occurred
at a later time. However, by doing it in this
manner, teams could immediately fix glaring
problems with submitted artifacts.

The last major change between the first and

second offering of the course was an increased
emphasis on oral communications. This was
driven by two factors. In the previous course,
one instructor had used an oral final exam to
assess the communication skills of individual
students. While for this particular instructor it
worked effectively, it was generally not
condoned by the students or campus
administration. Secondly, feedback from the
capstone course indicated that students had
significant problems giving technical
presentations. Thus, the oral presentation was
added as a conclusion to the lab project. This
was approximately ½ of the time of the last lab
session. The other half of the lab session was
devoted to the RC Car Olympics. In the RC Car
Olympics, teams competed against each other
attempting to complete various tasks with their
developed system. Three main events were
held, the RC Car Slalom race, RC Car Parallel
parking, and the 10 foot drive. While the
competition was mainly for the fun of the
students, in some cases, it was possible to show

different levels of performance based upon
design decisions made earlier in the course. For
example, one team which used a slow polling
approach to steering had significant difficulty
completing the slalom event, while a second
team which did an exemplary job managing
their distance measurement system was able to
measure the distance traveled by their car to
within ½ inch.

Student perspective from the revised course.

While the revised course (Spring 2009)
received better evaluations than the initial
version, there still were some areas of concern.
Given the new lab project, students needed to
have a few additional fundamental skills in the
Java programming language that were not
taught in earlier courses. Another common
thread in student comments was that, given the
nature of the lab, it was very difficult to
parallelize the design and implementation, as all
of the team members really needed access to the
RC car to test their individual contributions.
The quality of the RC car also was a problem, as
all of the RC cars used the same wireless
communications channel. Thus when two teams
were working in lab side by side, whichever
team activated their car first controlled both
cars. (In deference to the RC car manufacturer,
the RC car was never intended to be used as
anything more than a novelty item.)

Overall, the class felt that waiting until week

#8 to commence implementation was too late,
and only providing a single week for
implementation was also problematic. A certain
set of students felt that the first two labs were
not necessary, because aside from some limited
metrics analysis they were reviewing
fundamental programming skills. However,
other students vehemently felt that these were
very important, as the on track CE students had
not taken any Java courses since the previous
year. Students still commented that the course
was too rushed to be successful, and because of
this, it was very hard to understand the material.

Figure 6: RC Car used by the students for lab.

20 COMPUTERS IN EDUCATION JOURNAL

Quantitative assessment data from the final
course surveys is provided in Table 4. Overall,
the areas of greatest concern were those which
warranted scores less than 3.0, namely “I felt
that the workload for this course was
appropriate given the course credit” and “I
would recommend this course to CE student’s
even if it was not a required course in the
curriculum.” While “I learned a lot from this
lab” rated below 3 for both of the two initial

labs, this score was downplayed slightly based
upon the written feedback from the students for
the reasons stated previously. One other side
note that should be included is there was a great
amount of discontent over a schedule change
made to the course the week before it was
offered, requiring approximately 50% of
students to change lecture times for the course.
This may have negatively biased some of the
responses.

Table 4: Quantitative survey data from the revised offerings of SE2890.

Data collected using a 5 point Likert scale, with 5 representing “Strongly Agreeing” with the statement and 1
represent “Strongly disagreeing” with the statement. The 4/5 percent represents the percentage of respondents
who agreed with the statement. Cells marked in red received evaluations of less than a 3 on a 5 point scale.

A
ve

ra
ge

M
ed

ia
n

St
de

v

4/
5

pe
rc

en
t

A
ve

ra
ge

M
ed

ia
n

St
de

v

4/
5

pe
rc

en
t

A
ve

ra
ge

M
ed

ia
n

St
de

v

4/
5

pe
rc

en
t

A
ve

ra
ge

M
ed

ia
n

4/
5

Pe
rc

en
ta

ge

Sample Size 18 19 17
This lab was an excellent tool for teaching the material I
needed at the time. 3.28 3.50 0.89 50% 3.79 4.00 0.71 78% 3.65 4.00 0.86 71% 3.66 3.94 71%
I learned a lot from this lab. 2.67 2.00 0.97 28% 3.21 3.00 0.98 39% 3.29 3.00 0.85 47% 3.18 2.87 41%
This lab should be continued for future students 3.17 3.00 0.86 33% 3.63 4.00 0.83 67% 4.12 4.00 0.33 100% 3.79 3.87 78%
This lab was an excellent tool for teaching the material I
needed at the time. 3.17 3.00 0.99 39% 3.63 4.00 0.83 72% 3.65 4.00 1.00 71% 3.58 3.87 67%
I learned a lot from this lab. 2.89 3.00 0.96 22% 3.26 3.00 0.99 50% 3.53 4.00 0.87 59% 3.34 3.46 51%
This lab should be continued for future students 3.22 3.00 0.88 39% 3.37 3.00 0.90 50% 3.88 4.00 0.70 82% 3.58 3.46 63%
This lab was an excellent tool fo teaching the material I
needed at the time. 3.00 3.00 1.08 39% 4.16 4.00 0.76 94% 3.88 4.00 1.05 76% 3.89 3.87 79%
I learned a lot from this lab. 3.22 3.00 0.94 39% 3.89 4.00 0.74 83% 4.18 4.00 0.53 94% 3.94 3.87 83%
I felt that Gforge greatly helped to complete this project. 3.39 4.00 1.33 67% 3.32 3.00 1.20 50% 2.47 3.00 1.12 18% 2.94 3.13 37%
I felt that the workload for this lab was appropriate given the
course credit. 2.83 3.00 0.99 28% 3.53 4.00 0.90 61% 3.53 4.00 0.51 53% 3.44 3.87 53%
I enjoyed working in groups and this should be continued. 4.00 4.00 0.69 89% 4.21 4.00 0.79 83% 3.94 4.00 0.83 76% 4.06 4.00 81%
This lab sequence should be continued for future students 3.28 3.00 0.89 44% 3.74 4.00 0.81 83% 3.94 4.00 0.83 76% 3.77 3.87 75%
At at least one point in this course, I found the course to be
mentally challenging 3.18 0.00 0.00 0% 3.78 4.00 1.06 72% 3.82 4.00 0.73 76% 3.72 3.49 65%
I learned from the course, and I believe I will do better on my
senior design project because of this course. 3.22 3.00 0.88 44% 3.89 4.00 0.83 72% 3.94 4.00 0.56 82% 3.83 3.87 73%
This course would be better sited as a senior level course 2.11 2.00 0.90 11%
I felt that there was too much time spent on software process
instead of value adding activities. 3.39 3.50 0.98 50% 3.72 4.00 0.75 56% 3.47 3.00 1.01 35% 3.57 3.48 46%
I felt that this course was rushed in the amount of content
included versus the amount of lecture time provided. 3.33 3.00 1.19 39% 3.06 3.00 1.06 33% 2.94 3.00 0.97 24% 3.04 3.00 30%
I would recommend this course to CE students even if it was
not a requuired course in the curriculum 2.50 2.50 0.99 17% 2.78 3.00 1.00 22% 3.24 4.00 1.09 59% 2.95 3.39 38%

2011 Overall

Ba
si

c
M

at
h

O
pe

ra
ti

on
s

A
 B

an
ki

ng

Te
st

 S
ys

te
m

Th
e

Co
ur

se
 in

 G
en

er
al

Th
e

La
b

Pr
oj

ec
t

2009 2010

COMPUTERS IN EDUCATION JOURNAL 21

Course Revisions for the 2010 Offering

Based on course comments, a few minor
changes to the course content were made for the
second running of the revised course (Spring
2010), and these changes resulted in improved
assessment scores, also shown in Table 4. In
terms of the lab, small “proof of concept”
implementation steps were started earlier in the
sequence. The lab time allocated to design was
reduced by one lab period, allowing an
additional lab period for implementation.

One problem that again showed up was the
difficulty students had learning new concepts
that were necessary to complete the project. In
specific, students commented that they had great
trouble teaching themselves the concept of
threading in Java. The students also had further
quality problems with the vehicle.

Course Revisions for the 2011 Offering

For the Spring 2011 offering, the course

received more significant changes. Due to the
discontinuation of the RC car, the lab project
had to be completely changed. This allowed a
move to the LeJOS platform and Lego
Mindstorm robots. This platform offered a
tested environment as well as the ability to write
and execute Java code on the NXT controller.

The risk in making this change is that the

scope of the lab project grew slightly, as the
students now needed to write software for both
the robot and the PC whereas previously only
software for the PC needed to be developed. In
making this change, the lecture content was
revised slightly to include brief coverage of Java
threading, as this skill was even more important
with the Mindstorm robots than it had been with
the RC car. This modified lecture and lab
sequence is shown in Tables 5 and 6.

Student Perspectives for the 2011 Offering

Overall, there was a slight decrease in some
assessment scores between the 2010 and the
2011 course offering. This is most likely attrib-

Table 5: SE2890 Modified Course
Curriculum for the 2011 Offering.

Week Lecture Topic
1 1 Introduction to Software Failure
1 2 Software Development Processes
2 1 Requirements and Use Cases
2 2 Requirements and Use Cases
3 1 Introduction to Software reviews
3 2 Configuration Management
4 1 Object Domain Analysis
4 2 Object Domain Analysis
5 1 Defining Object Behavior
5 2 Defining Object Behavior
6 1 Midterm Exam
6 2 Design and Design Patterns
7 1 Detailed Design and Java Threading
7 2 Implementing State Charts in Source

Code
8 1 Code Reviews
8 2 Software Testing
9 1 Software Testing
9 2 Project Tracking and Analysis
10 1 Applications to Embedded Systems
10 2 Course Evaluation and Final Review

Table 6: Modified Lab sequence for

the 2011 course offering.

Week Topic
1 Java Programming Review
2 UML Case Tools and Class Design
3 Requirements Specification and Use Case

Construction
4 Use Case and Requirements Peer Review
5 Object Domain Analysis Development
6 Project Design
7 Implementation – Week #1
8 Code Review and Implementation – Week #2
9 Testing
10 Project Oral Presentations and Robot

Olympics

utable to technical problems with the LeJOS
system and the newly deployed Windows 7 64
bit images on the student’s laptops. In essence,
in order to make the robots work on the
students’ machine, there were a lot of very
detailed installation instructions that needed
to be followed exactly or problems would occur.
Students also had problems with the instructor
provided proxy code. Under certain

22 COMPUTERS IN EDUCATION JOURNAL

circumstances, it would simply lock up,
requiring the students to reboot. Unfortunately,
this could not be duplicated on the instructor’s
machine. (Note: Subsequent to the completion
of the class, a new version of the LeJOS
environment was released which fixed many of
the issues. This new release, however, was
received during final exam week and could not
be applied by the students to their projects.)

Figure 7: Sample student comments from the
2011 course survey. Note that the response rate

for written comments was 100%.

In general, students were really engaged in the
lab project, more so than in previous years. A
few students actually became slightly overly
engaged to the detriment of other courses.
There also was a significant improvement in the
percent of students who would recommend the
course to other students even if it was not a
required course. The one area of concern the
student surveys would post was related to the
configuration management system, as the
majority of the students did not feel this tool
helped them to complete their project. Part of
this is attributable to a few major system
outages at very inopportune times through the

quarter. A second reason this may have
developed is a move by the IT department to
place the GForge server behind a campus
firewall, making it very difficult for off campus
students to access the configuration
management server.

For the 2011 offering, there also were fewer

students having problems with the first two
individual labs. This can be traced to a change
in the introductory curriculum made in the
freshman year. Based on poor assessment data
from follow on classes, the three introductory
programming courses received a 50% increase
in lecture contact time, going from 2 to 3 lecture
hours per week. This additional contact time
vastly improved student’s retention and
understanding of the core programming
material.

The 2011 offering marked the first year that

the instructor received significant complaints
about the assigned teams. While the number of
negative comments was small, the complaints
were generally traceable to a few students who
were technically unprepared for the class and
did not put forth effort to be successful.
Unfortunately, this manifested itself negatively
in the team experience for two different teams.

Observations and Conclusions

Having taught this course multiple times, there

are many observations that can be made about
teaching a design course at this level.

First off, for a course such as this to be

successful at the sophomore level, the student
comprehension and outcome obtainment for the
prerequisite courses is essential. A software
engineering course focuses on the approaches
necessary to solve a problem, and as such, it
cannot be successful if students do not have the
basic fundamental skills necessary to solve the
given problems. In this course, the first two
labs are written to teach the students a little bit
about time estimation and tracking. But, more
importantly, they also serve as prerequisite
assessments, for the students that have difficulty

• Good introduction to planning software and
breaking up programming among people.

• Fun to be able to work on a new platform.
Also my first massively multi-threaded
systems development (was fun)

• I have already applied the processes from
class to my own personal process.

• Learned a lot about SE process and plan on
applying it to future projects

• I liked slowly building up towards
implementation and the design process.

• I liked learning the process.
• The overall project was good for exercising

the skills learned.
• Good project I enjoyed it.
• (What did you like best about the class) the

Mindstorm project.
• Learning process in an easy, fun way.
• Students should be able to choose their own

groups.
• Bad group and didn’t like svn.

COMPUTERS IN EDUCATION JOURNAL 23

successfully completing the first two labs will
most likely have significant problems with the
team exercise. By having those labs up front, it
serves as a mechanism for alerting the instructor
to the students who will need more significant
guidance later on in the course. Related to this
notion, it is vital that the prerequisite course
requirements be both correct and rigorously
enforced.

Second, while there are distinct advantages to

moving a design course forward in the
curriculum, when implementing the course, it is
important to remember that there may be
significant skills that the students will either
need to be taught based upon the assigned
projects or the projects may need to be tailored
to avoid these knowledge deficiencies. In this
particular class, threading is a prime example of
this problem. The initial lab sequence was
constructed without threading in mind, as
threading was not traditionally taught until the
operating systems course in the Junior year.
However, because threading is ubiquitous with
modern software development in Java, either the
students needed to learn the material on their
own (which was tried in the 2009 and 2010
course offerings) or the students need to have
brief coverage of the material within the course
(as was done in the 2011 offering). Doing too
much of this may disrupt the ability of the class
to meet the core outcomes, while doing too little
may inhibit student’s success.

Third, it is also very risky to try and teach to

sophomores the same amount of material and at
the same depth as is taught to the seniors.
Because of their greater experience with
learning, senior students do not need the level of
repetition and rigor needed to be successful with
sophomore students. To learn the same amount
of material requires more contact and effort on
the part of the instructor at a sophomore level
than it will at a senior level. This especially
plays out in this course in the reduction in lab
contact time from 3 to 2 hours. With a lab size
of 20 or more students, 2 hours provides the
instructor with approximately 5 minutes per
week to work with each student during the

introductory labs and approximately 25 minutes
to work with each team per week once the team
project commences. This reduction is clearly
problematic. The lecture time reduction also
poses issues, for if a given lecture is canceled or
otherwise unable to be held, it is very
challenging to get back on schedule with only 2
lecture hours per week. This issue definitely
contributes to the students “whirlwind”
comments about the course.

Figure 8: Sample senior exit survey
 comments regarding SE2890.

Fourth, in offering the course to sophomores,

it is important that the project be engaging, even
if the project starts to be more contrived in order
to be engaging. In the case of this specific
course, the first set of students was not
interested in the line of code counting tool
because to them it was an unexciting
experience. However, subsequent classes were
more engaged by the prospect of doing a
software engineering project with an RC Car or
Lego Mindstorm robots, and this led to greater
achievement in the course itself. This means
that more care must be taken when selecting the
project in order to ensure that it meets both the
scope and technical skills of the students.

Exit Interview Comments:
• “Team-building" classes were frustrating

and not very helpful. Another class like
SE2890 focused more on teams than
process would have been better.

• Servant Leadership classes were a bit
contrived, although they were helpful to
some extent with team process. SE2890 is
really the only other team process and
process management interaction I can
remember having (besides Senior Design,
of course)

 More emphasis on software design models and
development processes would have helped with job
seeking.

• SE-2890 was by far the most helpful team-
oriented class thus far.

• Software engineering practices was a good
start.

24 COMPUTERS IN EDUCATION JOURNAL

Fifth, when dealing with teams at the
sophomore level, the instructor must be
significantly more proactive than when dealing
with teams at the senior level. This poses an
additional load on the instructor, for while
earlier courses are tended to be viewed as easier
to teach because the material is not as complex,
teaching design at an earlier time actually
requires more involvement than if it is deferred,
and university loading calculations do not tend
to reflect this difference.

Last, with a design course like this, it is

important not only to measure the effects of the
course at completion time, but also later on in
the curriculum, as sophomore students may not
have the ability to accurately assess their own
learning needs. Figure 8 includes selected exit
interview comments related to SE2890 made by
exiting seniors during the senior debriefing.
These comments show that at least for a set of
students, they feel the course was significantly
beneficial.

Bibliography

1. Sebern. “Evolving an Undergraduate

Software Engineering Course.” ASEE
Annual Conference, Milwaukee, WI,
1997.

2. Welch "Teaching a service course in

software engineering," Frontiers In
Education Conference - Global
Engineering: Knowledge Without
Borders, Opportunities Without
Passports, 2007. FIE '07. 37th Annual ,
vol., no., pp.F4B-6-F4B-11, 10-13 Oct.
2007 doi: 10.1109/FIE.2007.4418062

3. Layton, R.A., M.L. Loughry, and M.W.

Ohland, “Design and Validation of a
Web-Based System for Assigning
Members to Teams Using Instructor-
Specified Criteria,” in press, Advances
in Engineering Education.

Biographical Information

Walter Schilling is an Assistant Professor in
the Software Engineering program at the
Milwaukee School of Engineering in
Milwaukee, Wis. He received his B.S.E.E. from
Ohio Northern University and M.S.E.S. and
Ph.D. from the University of Toledo. He
worked for Ford Motor Company and Visteon
as an embedded software engineer for several
years prior to returning for doctoral work. He
has spent time at NASA Glenn Research Center
in Cleveland, Ohio, and consulted for multiple
embedded systems companies in the Midwest.
In addition to one U.S. Patent, he has numerous
publications in refereed international
conferences and other journals. He received the
Ohio Space Grant Consortium Doctoral
Fellowship, and has received awards from the
IEEE Southeastern Michigan and IEEE Toledo
sections. He is a member of IEEE, IEEE
Computer Society, and ASEE. At MSOE, he
coordinates courses in software quality
assurance, software verification, software
engineering practices, real time systems, and
operating systems, as well as teaching
embedded systems software.

Mark J. Sebern is a Professor in the Electrical

Engineering and Computer Sciences
Department at the Milwaukee School of
Engineering (MSOE), and founding Program
Director for MSOE’s undergraduate software
engineering program. He has served as an
ABET Program Evaluator for software
engineering, computer engineering, and
computer science. He is currently a member of
the ABET Engineering Accreditation
Commission.

	Abstract
	Software Engineering is a core component of many computer engineering programs. In software engineering courses, students are taught to apply their programming and development skills to solve a larger scale problem. The resolution of this problem in...
	Unfortunately, in many cases, the software engineering course is offered late in the curriculum, typically at the senior level. This makes it difficult for students to apply the knowledge that they have learned effectively on capstone and other acade...

	Introduction
	The New Course Initial Offering
	Freshman Year Fall Winter Spring
	Sophomore Year
	Junior Year
	Senior Year
	Freshman Year
	Sophomore Year
	Junior Year
	Senior Year
	The First Revision of the New Course
	Student perspective from the revised course.

	Course Revisions for the 2010 Offering
	Course Revisions for the 2011 Offering
	Student Perspectives for the 2011 Offering
	this could not be duplicated on the instructor’s machine. (Note: Subsequent to the completion of the class, a new version of the LeJOS environment was released which fixed many of the issues. This new release, however, was received during final e...
	Observations and Conclusions
	Bibliography

