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Abstract 

  
Spreadsheets are often the preferred 

computational tool used by engineers, despite 
the capabilities of packages like Matlab, 
Mathcad, and TKSolver. This paper solves 
piping system problems using the simultaneous 
nonlinear equation solution capability of Excel 
and a Visual Basic function to calculate friction 
factors. A unified approach presented in an 
earlier paper by one of the co-authors is used to 
generate the nonlinear equations to be solved. 
Examples very similar to those solved in the 
earlier paper are solved successfully in this one. 

 
Introduction 

 
In a recent paper, Hodge (2006) presented a 

unified approach to solving piping system 
problems that used the nonlinear equation 
solution capability of Mathcad. The approach 
can be summarized as 
• Writing equations to be solved resulting 

from 
o conservation of mass 
o the fluid mechanics energy equation 
o recognition that the total head 
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= at a point is unique and 

that the change in total head between 
two points in a fluid system is 
independent of the path taken between 
the points 

• Generating a well-posed system of equations 
 

• Indentifying the variables in the equations 
• Solving the equations using the nonlinear 

equation solution capability of Mathcad (or 
other computational software packages such 
as Matlab or TK Solver). 

 
Surveys of practicing engineers often show 

that Excel is their preferred computational tool, 
despite the power  offered by software package 
such as Mathcad, Matlab, and TK Solver. 
However, many are unaware of Excel's equation 
solution capability. This paper uses Excel and 
its equation solver add-in to implement the same 
approach. In addition, pipe sizing problems not 
addressed in the Hodge paper are presented 
here. 

   
Analysis 

 
For the typical pump/piping system illustrated 

in Figure 1, the energy equation can be written 
between stations A and B as 
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or, in terms of volumetric flow rate Q  
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where Ac is the cross-sectional flow area at the 
station. The pump head H is the work per unit 
weight added by the pump, and γ is the weight 

24  COMPUTERS IN EDUCATION JOURNAL 



 

density of the fluid, i.e., weight, not mass, per 
unit volume. The head loss hL is written as 
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where  f is the Darcy-Weisbach friction factor, 
and ΣK is the sum of the minor loss coefficients. 
f is calculated using Churchill's expression 
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where the Reynolds number Re is written in 
terms of flow rate Q as 
 

νπ
=

ν
=

D
Q4DV

Re avg ,  (5) 

 
ε/D is the relative roughness, and ν = μ/ρ is the 
kinematic viscosity. 

  
Churchill's expression is used because it can 

be applied for laminar and turbulent flow and in 
the transition zone between the two. It can also 
be easily programmed as a Visual Basic 
function ffactor(Re, rr), where rr = ε/D. This 
function can be called by Excel to calculate f as 
needed. The code is given in the appendix. 

 

Figure 1.  Series piping system. 

Examples 
 
In this paper, the same examples presented by 

Hodge(2006) will be worked via an Excel 
spreadsheet with the factor(Re, rr) function 
having been created in a Visual Basic module. 

 
Series Examples 

 
Example 1 - Calculate Pump Head Required 
with Flow Specified and Piping System 
Described - Category 1: 

 
Water is pumped at Q = 50 gpm from one 

large open tank to another where the surface 
level is ΔZ = 30 ft above the supply tank. The 
pipe is 1.5 in. schedule 80, 115-ft long, with two 
45o elbows (K = 0.35), three 90o elbows (K = 
1.4), and a fully-open globe valve (K = 10). The 
pipe entrance and discharge both extend into the 
tank as schematically illustrated in Figure 2, 
giving loss coefficients of K = 0.8 and 1.0, 
respectively. Find the pump head and power 
required. 

 

Figure 2.  Piping System – Example 1-3. 
 
 
An annotated Excel solution to this problem is 

contained in Table.1.  In cells B1:B8 and 
B11:B15 input values, with the appropriate 
units, are given.  The minor loss coefficients are 
summed in cell B9.  The Reynolds number and 
relative roughness are calculated in cells B17 
and B18, and the friction factor obtained from 
the VB function ffactor(Re, rr) given in the 
appendix is in cell B19.  The major and minor 
losses (in ft) are generated in cell B21 using Eq. 
(3) 
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Example 2 - Calculate Resulting Flow with 
Pump Head Given and Piping System Described 
- Category 2: 
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 The remaining terms in the energy equation 

[Eq. (2)] are computed in cells B23:B27.  
Finally, the pump head required is calculated in 
cell B29 using the energy equation cast as  

For the same piping system as in Example 1, 
the pump head is 105 ft. What is resulting flow 
rate and power? 
  

This problem requires an iterative solution to 
the energy equation. It is solved in the form LAB2
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−    The power (delivered to the fluid) is computed 

in cell B30.  This is a Category I piping problem 
than can be solved without iteration.  As 
indicated in cells B29 and B30, the increase in 
head of the pump is 78.8 ft, and the power 
delivered to the fluid is 0.966 hp. 

       (8) 
 
by varying Q until the left side is driven to zero. 
A  spreadsheet is a  convenient  way to calculate  

 
 

 
Table 1 - Example 1 
  A B C 

1 Q - gpm 50.00  flow in gpm, given 
2 Q - cfs 0.111  = B1/(60⋅7.48), flow in cfs 
3 D - in. 1.500  pipe diameter, in., given 
4 D - ft 0.1250  = B3/12, pipe diameter, ft 
5 L - ft 117  pipe length, given 
6 ε - ft 1.50E-04  pipe roughness, given 
7 Kother 6.70  ΣK for fittings, other than valve, given 
8 Kvalve 10.00  K for valve, given 
9 ΣK 16.70  = Kother +  Kvalve 
10    
11 ρ - lbm/ft^3 62.41  fluid density, given 
12 μ - lbm/ft-s 6.58E-04  fluid dynamic viscosity, given 
13 ν - ft^2/s 1.05E-05  = μ/ρ, kinematic viscosity 
14 γ - lbf/ft^3 62.41  fluid weight density, given 
15 g - ft/s^2 32.17  gravitational acceleration 
16    
17 Re 1.08E+05  = 4Q/πDν, Reynolds number 
18 rr 1.20E-03  = ε/D, relative roughness 
19 f 0.0229  = factor(Re, rr), friction factor from VB function 
20 fL/D 21.4   
21 hL - ft 48.8  =[fL/D + ΣK]⋅[8Q2/(π2gD4)], head loss 
22    
23 (ZB - ZA) - ft 30  elevation difference, given 
24 PA - psfg 0  pressure at A, given 
25 AcA - ft^2 1.00E+06  cross-sectional flow area at A; use large value 
26 PB - psfg 0  pressure at B, given 
27 AcB - ft^2 1.00E+06  cross-sectional flow area at B; use large value 
28    

29 H - ft 78.8 
 = (PB - PA)/γ + (ZB - ZA) + hL + (Q2/2g)(1/AcB

2 - 1/AcA
2) 

pump head required, from energy equation 
30 Power - hp 0.996  =  γlbf/ft^3⋅Hft⋅Qcfs/550 
31    

 



 

and assemble all of the terms that make up the 
left side into a single cell. Excel's solver then 
drives that cell to zero by varying the cell 
containing Q.  The function ffactor(Re, rr) 
allows f and then hL to be calculated as Q 
changes during the solver's iteration process. 
AcA and AcB are given very large values that 
make V1 and V2 ≈ 0. Similar to Example 1, 

Table 2 shows the spreadsheet setup after 
solution. Cell B30 contains the left side of the 
energy equation [Eq, (8)], the parts of which are 
calculated above it using given values and an 
initial guess for the flow Q in cell B1. After 
solution, the results are Q = 62.27 gpm and 
fluid power P = 1.65 hp in cells B30 and B32.  

 
 
Table 2 - Example 2 
  A B C 
1 Q - gpm 62.27  flow in gpm, variable 
2 Q - cfs 0.139  = B1/(60⋅7.48), flow in cfs 
3 D - in. 1.500  pipe diameter, in., given 
4 D - ft 0.1250  = B3/12, pipe diameter, ft 
5 L - ft 117  pipe length, given 
6 ε - ft 1.50E-04  pipe roughness, given 
7 Kother 6.70  ΣK for fittings, other than valve, given 
8 Kvalve 10.00  K for valve, given 
9 ΣK 16.70  = Kother +  Kvalve 
10    
11 ρ - lbm/ft^3 62.41  fluid density, given 
12 μ - lbm/ft-s 6.58E-04  fluid dynamic viscosity, given 
13 ν - ft^2/s 1.05E-05  = μ/ρ, kinematic viscosity 
14 γ - lbf/ft^3 62.41  fluid weight density, given 
15 g - ft/s^2 32.17  gravitational acceleration 
16    
17 Re 1.34E+05  = 4Q/πDν, Reynolds number 
18 rr 1.20E-03  = ε/D, relative roughness 
19 f 0.0225  = ffactor(Re, rr), friction factor from VB function 
20 fL/D 21.1   
21 hL - ft 75.0  =[fL/D + ΣK]⋅[8Q2/(π2gD4)], head loss 
22    
23 (ZB - ZA) - ft 30  elevation difference, given 
24 PA - psfg 0  pressure at A, given 
25 AcA - ft^2 1.00E+06  cross-sectional flow area at A; use large value 
26 PB - psfg 0  pressure at B, given 
27 AcB - ft^2 1.00E+06  cross-sectional flow area at B; use large value 
28    
29 H - ft 105  pump head, given 

30 
Energy           

uation 0.00E+00 
 = (PB - PA)/γ + (ZB - ZA) + hL + (Q2/2g)(1/AcB

2 - 1/AcA
2) - H 

energy equation, target cell driven to zero by changing Q above 
31     
32 Power - hp 1.65  = γlbf/ft^3⋅Hft⋅Qcfs/550 
33    

 
Example 3 - Calculate Required Diameter with 
Flow and Available Pump Head Given - 
Category 3: 

 
For the same piping system as in Example 1, 

the available pump head is 105 ft, and the 
desired flow is 90 gpm. What standard pipe 
diameter is needed, and what does K for the 
globe valve need to be using this pipe diameter? 

This type problem was not addressed in Hodge 
(2006). 

  
This type of problem requires a two-step 

solution. First, the exact pipe diameter needed to 
produce the desired flow will be determined. 
The next largest standard pipe size is then 
chosen. Using this pipe size will result in a flow 
rate greater than that specified, so a valve must 
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be partially closed, increasing the valve K above 
that for a fully-open valve. The second step in 
the solution is to solve for the value of K 
required to achieve the desired flow rate. 

  
The first step in the solution is presented in 

Table 3a. The energy equation is solved by 
allowing the cell containing pipe diameter (B3) 
to vary until the energy equation  
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is driven to zero. The result, as shown in Table 
3a, is that a 1.756- inch pipe diameter is 
required. The next highest schedule 80 pipe size 
is 2 inch, with an inside diameter of 1.939 inch. 
In the second step, presented in Table 3b, the 
diameter is fixed at 1.939 in. while Kvalve is 
varied until the energy equation is driven to 
zero. The result is Kvalve = 28.32 with the fluid 
power P = 2.39 hp. 

 
 

 
 
 
 
 

Table 3a - Example 3, Step 1 
  A B C 
1 Q - gpm 90  flow in gpm, given 
2 Q - cfs 0.201  = B1/(60⋅7.48), flow in cfs 
3 D - in. 1.756  pipe diameter, in., variable 
4 D - ft 0.1463  = B3/12, pipe diameter, ft 
5 L - ft 117  pipe length, given 
6 ε - ft 1.50E-04  pipe roughness, given 
7 Kother 6.70  ΣK for fittings, other than valve, given 
8 Kvalve 10.00  K for valve, given 
9 ΣK 16.70  = Kother +  Kvalve 
10    
11 ρ - lbm/ft^3 62.41  fluid density, given 
12 μ - lbm/ft-s 6.58E-04  fluid dynamic viscosity, given 
13 ν - ft^2/s 1.05E-05  = μ/ρ, kinematic viscosity 
14 γ - lbf/ft^3 62.41  fluid weight density, given 
15 g - ft/s^2 32.17  gravitational acceleration 
16    
17 Re 1.66E+05  = 4Q/πDν, Reynolds number 
18 rr 1.03E-03  = ε/D, relative roughness 
19 f 0.0215  = ffactor(Re, rr), friction factor from VB function 
20 fL/D 17.2   
21 hL - ft 75.0  =[fL/D + ΣK]⋅[8Q2/(π2gD4)], head loss 
22    
23 (ZB - ZA) - ft 30  elevation difference, given 
24 PA - psfg 0  pressure at A, given 
25 AcA - ft^2 1.00E+06  cross-sectional flow area at A; use large value 
26 PB - psfg 0  pressure at B, given 
27 AcB - ft^2 1.00E+06  cross-sectional flow area at B; use large value 
28   

29 H - ft 
   
1.05E+02  pump head, given 

30 
Energy           
quation 

   
0.00E+00 

 = (PB - PA)/γ + (ZB - ZA) + hL + (Q2/2g)(1/AcB
2 - 1/AcA

2) - H 
energy equation, target cell driven to zero by changing D above 

31     
32 Power - hp    2.39  = γlbf/ft^3⋅Hft⋅Qcfs/550 
33    
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Table 3b - Example 3, Step 2 
  A B C 
1 Q - gpm 90  flow in gpm, given 
2 Q - cfs 0.201  = B1/(60⋅7.48), flow in cfs 
3 D - in. 1.939  pipe diameter, in., ID of 2 in. sch 80 pipe 
4 D - ft 0.1616  = B3/12, pipe diameter, ft 
5 L - ft 117  pipe length, given 
6 ε - ft 1.50E-04  pipe roughness, given 
7 Kother 6.70  ΣK for fittings, other than valve, given 
8 Kvalve 28.32  K for valve, variable 
9 ΣK 35.02  = Kother +  Kvalve 
10    
11 ρ - lbm/ft^3 62.41  fluid density, given 
12 μ - lbm/ft-s 6.58E-04  fluid dynamic viscosity, given 
13 ν - ft^2/s 1.05E-05  = μ/ρ, kinematic viscosity 
14 γ - lbf/ft^3 62.41  fluid weight density, given 
15 g - ft/s^2 32.17  gravitational acceleration 
16    
17 Re 1.50E+05  = 4Q/πDν, Reynolds number 
18 rr 9.28E-04  = ε/D, relative roughness 
19 f 0.0213  = ffactor(Re, rr), friction factor from VB function 
20 fL/D 15.4   
21 hL - ft 75.0  =[fL/D + ΣK]⋅[8Q2/(π2gD4)], head loss 
22    
23 (ZB - ZA) - ft 30  elevation difference, given 
24 PA - psfg 0  pressure at A, given 
25 AcA - ft^2 1.00E+06  cross-sectional flow area at A; use large value 
26 PB - psfg 0  pressure at B, given 
27 AcB - ft^2 1.00E+06  cross-sectional flow area at B; use large value 
28    
29 H - ft 1.05E+02  pump head, given 

30 
Energy        

Equation 0.00E+00
 = (PB - PA)/γ + (ZB - ZA) + hL + (Q2/2g)(1/AcB

2 - 1/AcA
2) - H 

energy equation, target cell driven to zero by changing Kvalve  
31     
32 Power - hp 2.39  = γlbf/ft^3⋅Hft⋅Qcfs/550 
33    

 
 

Parallel  Example 
 

Example 4 - Parallel Pipes with Specified Total 
Flow 

 
Water flows through three large pipes in 

parallel as illustrated in Figure 3. The minor 
losses are neglected. For a total flow rate of 12 
cfs, find the flow rate in each pipe and the head 
loss between A and B. Data for each pipe are 
contained in Table 4a. 

 
The solution is presented in Table 4b. Values 

for Q1 and Q2 in pipes 1 and 2 are assumed and 
placed in cells B6 and B7. From conservation of 
mass, Q3 = Qtot - Q1 - Q2, the flow rate in line 3 
is   calculated   in   cell   B8.   Q3   will    change  

 
automatically during the iteration process as Q1 
and Q2 are varied. The friction factors f1, f2, and 
f3 [computed using ffactor(Re, rr)] and the head 
losses hL1, hL2, hL3 are calculated based on 
values of Q1 and Q2 that are being varied during 
the iteration process. Excel's solver changes Q1 
and Q2 to force the differences hL1 - hL2 and hL2 
- hL3 to zero. The results are Q1 = 3.54 cfs, Q2 = 
1.80 cfs, and Q3 = 6.66 cfs. The head loss 
between A and B is 19.38 ft.  
 

Q 
1 
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3 

A 

B 

Fi

 
 
 
 

gure 3. Parallel piping system.
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Table 4b - Example 4 Results 

Table 4a - Example 4 Data 
 

pipe D - m. ε - ft L - m
1 12 0.001 3000 
2 8 0.0001 2000 
3 16 0.0008 4000 

 A B C D E F G H I J K 
1  62.41 ρ - lbm/ft^3, density       

2  6.58E-04 μ - lbm/ft-s, viscosity       

3  32.17 g - ft/s^2        

4            

5 Pipe Q - cfs D - ft L - ft ε - ft rr Re f ΣK hL- ft  

6 1 3.54 1.0 3000 1E-03 1.0E-03 427585 0.0205 0 19.38  

7 2 1.80 0.667 2000 1E-04 1.5E-04 325183 0.0157 0 19.38 0.00E+00 

8 3 6.66 1.333 4000 8E-04 6.0E-04 603667 0.0182 0 19.38 0.00E+00 

9 total 12.00          

10 

 

Q1,Q2 
variables 
Q3 = Qtot - 
Q1 - Q2 

given given given = ε/D  = 4Qρ/ 
πDμ 

= ffactor 
(Re, rr) 

given ** K7 = hL2 - hL1 
K8 = hL3 - hL2 
target cells,   
driven to zero by 
changing Q1, Q2

11 ** =[fL/D + ΣK]⋅[8Q2/(π2gD4)], head loss in each pipe 
 

 
 

Network  Example 
 

Example 5 - Parallel Pipes with Specified Total 
Flow 

 
Consider the piping network illustrated in 

Figure 4. Find the flow rate in each line.  
Information on each line is presented in Table 
5a. 

 

 
This network consists of 2 loops, 5 lines, and 4 

nodes. The following two requirements permit 
networks such as these to solved: 

 
1. Conservation of mass at a node. 
 
2. Uniqueness of pressure at any point in a 

closed loop since for any loop, the sum of 
the changes in head for each line of the loop 
must   be  zero.   (For  example  for  Loop  1, 

 

 
 
going from node A to node B to node C and 
back to node A, the net change in head must 
be zero. So, ΔHtot, A→B + ΔHtot, B→C + ΔHtot, 

C→A = 0.) 
 
A modified form of the Hardy-Cross method 

(1936) describes a procedure to satisfy these 
requirements. 

 
 
 
 
 
 
 
 
 
 
 Figure 4. Piping network.
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1. Flow rates are assumed in each line that 
satisfy mass conservation at each node, but 
not necessarily uniqueness of pressure. The 
assumed flow rate in each line is denoted as 
QIJ,ASSUMED, where I is the loop number and 
J is the line number. The sign of each flow 
rate is determined by an assumed loop flow 
rate direction (clockwise flow is taken to be 
positive in this example). If the flow rate in 
line 1 (connecting A and C) in Figure 4 is in 
the direction indicated, Q11 is negative and 
Q21 is positive, but the magnitudes are the 
same.  The number of independently 
assumed flow rates required is Nlines - Nnodes 
+ 1. With this number of independently 
assumed flow rates, the remaining flow rates 
can be determined using conservation of 
mass at each node. In the network of Figure 
?, Nlines = 5, Nnodes = 4; so two flow rate 
guesses are required.  

 
2. Write each flow as QIJ = QIJ,ASSUMED + ΔQI - 

ΔQADJOINING LOOP, where ΔQI is the loop 
flow rate correction factor. For example, Q13 
as just Q13, ASSUMED + ΔQ1 since there is no 
adjoining loop. Q11 is Q11,ASSUMED + ΔQ1 - 
ΔQ2 since line 1 is in both loop 1 and the 
adjoining loop 2. For loop 2, Q21 = 
Q21,ASSUMED + ΔQ2 - ΔQ1. 

 
3. Calculate the sum of the head changes 

around each loop and force these sums to 
zero by changing the ΔQI  value for each 
loop. In this example, in the absence of 

pumps or turbines, the head change is due 
only to major and minor losses. A positive 
flow rate in a line yields a positive change in 
head, and a flow rate in the negative 
direction yields a negative change in head.  
This is accomplished by using the absolute 
value sign such that hLIJ = RJ QIJ |QIJ|, where 

 
 

               ( )
4
J

2J
J

JJ
J gD

8K
D
Lf

R
π

•⎥
⎦

⎤
⎢
⎣

⎡
+= ∑             (10) 

 
Then, the sum of the head losses around a 
loop I is 
 

              IJIJ
J

J
J

IJL, QQR0h ∑∑ ==                (11) 

 
A similar expression can be written for each 
loop.  The unknowns are the ΔQI values for 
each loop since each QIJ is written as QIJ = 
QIJ,ASSUMED + ΔQI - ΔQADJOINING LOOP. 

 
So, for the two-loop network of Figure 4 there 

are two equations and two unknowns, ΔQ1 and 
ΔQ2. The solution is presented in Table 5b. 
Assumed values for QIJs that conserve mass at 
each node are placed in cells D6:D8 and 
D11:D13. The flow rates in cells E6:E8 and 
E11:E13 are adjusted automatically during the 
iteration process as ΔQ1 and ΔQ2 are varied. The 
friction factors and head losses in each line are 
calculated based on values of QIJ in cells E6:E8 
and E11:E13 that are being varied during the 
iteration process. Excel's solver forces both 
values of ∑

J
IJL,h  to zero by changing ΔQ1 and 

ΔQ2. 
 

Results  and  Conclusions 
 
The purpose of this paper is to demonstrate 

how to use Hodge's (2006) unified approach to 
generate one or more equations to form a well-
posed system and then to use Excel's solver 
capability to solve the resulting equations. As in 
the Hodge paper, the same principles were used 
to generate the equations instead of devising a 
different iteration scheme for each type of

Table 5a - Example 5 Data 
 

line D - in. ε - ft L - ft

1 12 
0.0001

5 2000 

2 8 
0.0001

5 2000 

3 6 
0.0001

5 7000 

4 8 
0.0001

5 4000 

5 8 
0.0001

5 2000 
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Table 5b - Example 5 Results 
 

 A B C D E F G H I J K 
1  62.41 ρ - lbm/ft^3        
2  6.58E-04 μ - lbm/ft-s        
3  32.17 g - ft/s^2        
4            
5 Loo

p ΔQI 

lin
e QIJ, ASSUMED QIJ - cfs* 

D - 
in. ε - ft f L - ft RIJ** hL, IJ*** 

6 
1 -0.9604 1 -0.8 -1.8636 12 0.00015 

0.016
5 

200
0 0.8316 -2.8883 

7 
  2 0.2 -0.7604 8 0.00015 

0.018
2 

200
0 6.9686 -4.0295 

8 
  3 1.2 0.2396 6 0.00015 

0.021
4 

700
0 120.5250 6.9179 

9          ****sum hL 0.0000 
1

0            
1

1 2 0.1032 4 -1 -0.8968 8 0.00015 
0.017

8 
400

0 13.6150 -10.9497 
1

2   5 1 1.1032 8 0.00015 
0.017

3 
200

0 6.6236 8.0613 
1

3   1 0.8 1.8636 12 0.00015 
0.016

5 
200

0 0.8316 2.8883 
1

4          ****sum hL 0.0000 
1

5            
1

6 *     = QIJ,ASSUMED + ΔQI - ΔQADJOINING LOOP 
1

7 **   = [fL/D + ΣK]⋅[8/(π2gD4)] 
1

8 ***  = RIJ⋅QIJ⋅|QIJ| 
 **** K9 = sum(K6:K8); K14 = sum(K11:K13). Both driven to zero by changing ΔQ1 and ΔQ2. 

 
 

piping problem as in commonly done in many 
fluid mechanics textbooks. In many cases, such 
iteration schemes were created to solve non-
linear problems by “hand” with only a few 
iterations. Modern computational tools that  
perform iterative solutions easily allow a more 
intuitive formulation based on fundamental 
principles. 

 
Engineering students become comfortable with 

spreadsheets early in their academic experience. 
At the University of Arkansas, spreadsheets are 
used extensively to solve problems in all 
thermal science classes. For example, in MEEG 
4483 Thermal Systems Analysis and Design, 
students are pleased to find that spreadsheets 
can also be used to solve complex piping system 
problems. 
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Appendix 

 
 
Visual Basic Code for Churchill Friction Factor 
 
Function ffactor(Re, rr) 
A = (2.457 * (Log(1 / ((7 / Re) ^ 0.9 + (0.27 * rr))))) ^ 16 
B = (37530 / Re) ^ 16 
f = 8 * (((8 / Re) ^ 12 + (1 / ((A + B) ^ 1.5))) ^ (1 / 12)) 
ffactor = f 
End Function 
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