
COMPARISON OF BACKFILLING ALGORITHMS FOR
JOB SCHEDULING IN DISTRIBUTED-MEMORY

PARALLEL SYSTEMS

Hassan Rajaei and Mohammad B. Dadfar

Department of Computer Science
Bowling Green State University

Bowling Green, Ohio 43403

Abstract

In this paper, we compare the performance of
backfilling scheduling algorithms using
multiple-queue and look-ahead with the basic
aggressive strategy on a multiprocessor system.
Schedulers employing backfilling strategies in
distributed-memory parallel system have been
found to improve system utilization and job
response time by allowing smaller jobs from
back of the waiting queue to execute before the
larger jobs which have arrived earlier.
Backfilling algorithms also overcome the
problem of starvation and waste of processing
resources exhibited by algorithms like shortest
job first and longest job first. We implemented
the backfilling scheduling algorithms with basic
aggressive, multiple-queue, and with look-ahead
strategy. We compare their performance and
investigate the conditions for increasing the
utilization and decreasing the fragmentation of
the system resources.

The look-ahead backfilling scheduling

algorithm attempts to find the best packing
possible given the current composition of the
queue, thus maximizing the utilization at every
scheduling step. It reduces the mean response
time of all jobs. We simulate the selected
schemes and evaluate the performance of the
scheduling disciplines.

Introduction

We installed a Beowulf cluster[1,2] with 16

computing nodes in one of our instructional
labs, which has provided a high performance
computing environment for our courses. In our
previous paper[3], we focused on a single queue
of jobs and discussed three scheduling

algorithms in the framework of variable
partitioning: Non-FCFS, Aggressive Backfilling
[4,5], and Conservative Backfilling[5, 6, 7].

In this paper we focus on the comparison of

backfilling scheduling algorithms using
multiple-queue[4], look-ahead[8, 9], and basic
aggressive strategy. Our cluster computing lab
provides an excellent environment for student
projects in several of our courses including
Operating Systems, Data Communication, and
Distributed Programming. This paper reports
the results of second phase on job scheduling
studies in multiprocessor environment.

Schedulers employing backfilling algorithms

in the Distributed-Memory Parallel System have
been found to improve system utilization and
job response time by allowing smaller jobs from
the back of the waiting queue to execute before
the larger jobs that have arrived earlier. By
arranging jobs in a specific order, we reduce
internal fragmentation and improve the
utilization of the system. Backfilling algorithms
also help overcome the problem of starvation
and waste of processing resources exhibited by
algorithms like Shortest Job First (SJF).
Conservative and aggressive backfilling
algorithms usually use a single queue and ignore
user priority[1]. Utilization of the system
resources depends on how the jobs are packaged
and the order of their execution. We have
implemented the backfilling scheduling
algorithms using multiple-queue and dynamic
algorithms using two look-ahead strategies. We
compare their performance and investigate the
conditions for increasing the utilization and
decreasing the fragmentation of the system
resources.

22 COMPUTERS IN EDUCATION JOURNAL

The multiple-queue backfilling scheduling
algorithm[4] is based on the aggressive
backfilling strategy; it continuously monitors
the system for the incoming jobs and organizes
them in different waiting queues. There are four
waiting queues to separate short jobs from long
ones. When new jobs arrive, the scheduler
rearranges the jobs according to their estimated
execution time. The system is divided into
variable partitions that have an equal number of
processors. However, if a processor is idle in
one partition, it can be used by the jobs in
another partition. Consequently, the partition
boundaries of the system are dynamic.

The look-ahead backfilling scheduling

algorithm[8,9] attempts to find an optimal
configuration for the multiple queues. It tries to
maximize the utilization at every scheduling
step, thereby reducing the mean response time.
The jobs are divided into two parts: running and
waiting. The jobs that are waiting may be either
in the waiting queue or in the selected queue,
awaiting execution. All jobs have two
attributes: size (number of requested processors
or computing nodes) and estimated computing
time. The system free capacity is defined as the
number of idle processors currently not assigned
to any jobs. The main task of this algorithm is
to select jobs from the waiting queue and assign
available processors to them to maximize
utilization.

In the following sections, we briefly describe

each of these algorithms. Then we discuss the
implementation issues and the simulation
results. Future work and concluding remarks
appear in the final sections.

Multiple-Queue Backfilling

Scheduling Algorithm

This algorithm is based on the aggressive

backfilling strategy. It continuously monitors
the incoming jobs and rearranges them into
different waiting queues. Rearrangement is
necessary to reduce fragmentation of
the resources and improve the utilization[4].
We define several waiting queues to separate

the short jobs from the long ones. The
scheduler organizes the jobs according to their
estimated execution time.

The system is divided into variable partitions

and processors are equally distributed among
the partitions. However, if a processor is idle in
one partition then it can be used by a job in
another partition. In effect, depending upon the
work load of the jobs in the partitions, the
processors are exchanged from one partition to
another. In our simulation the algorithm uses
four waiting queues instead of four actual
partitions. Initially, each queue has equal
number of processors assigned to it. We assume
te represents the estimated execution time of a
job and pi represents the partition number where
i = 1, 2, 3, 4. The jobs are classified into
partitions p1, p2, p3 and p4 based on their
execution times:

p1 : 0 < te <= 100
p2 : 100 < te <= 1,000
p3 : 1,000 < te <= 10,0000
p4 : 10,000 < te

In our implementation, the Multiple-Queue

Simulator is derived from the base class
Simulator. When it receives input jobs it
categorizes them into different waiting queues
say P1, P2, P3 and P4 (Figure 1). The queues
hold jobs based on their estimated execution
time from 0 to 100, 101 to 1,000, and 1,001 to
10,000 and above 10,000 respectively. We use
the MPI programming package[10], and have
the first node considered as a Master and the
rest as the Worker nodes. The scheduler
program runs in the master node. It divides the
computing nodes into groups of 4, 4, 4 and 3 for
the queues P1, P2, P3 and P4 respectively (the
master node does not participate in the
computation).

Consider one of the queues in Figure 1, for

example P1. It holds jobs with execution times
ranging from 0 to 100. Their order is based on
their estimated execution time and then the
arrival time in case of ties. The scheduler starts

COMPUTERS IN EDUCATION JOURNAL 23

Write PBS script

P1

Figure 1: Overview of Multiple Queue Backfilling Scheduler simulator.

Figure 2: Overview of the Look-ahead Backfilling Scheduler simulator.

Base Class: Simulator

Multiple
Queue
Simulator

P2

P3

P4

Execute Queue

Nodes

Lobby for Free Nodes

Schedule

Schedule

Schedule
Job
File

Schedule

Event Queue
Base Class: Simulator Create dynamic

matrix

Waiting Queue Look-
ahead
Simulator

Select Jobs
from matrix Job

file

Send selected jobs to
running queue

Nodes

24 COMPUTERS IN EDUCATION JOURNAL

checking the number of computing nodes
requested by the first job. If there are enough
free processors designated for queue P1, then it
records the PBS (Portable Batch Scheduler)[6]
script and starts running that job. Otherwise,
the job is sent to another queue called Lobby for
Free Nodes where it waits for the free nodes
before it can execute. If there is a job at this
queue (Lobby for Free Nodes) the scheduler
searches for free nodes from other queues (P2,
P3, P4) in order to check if the requested number
of computing nodes could be granted. If the
answer is yes, then resources will be allocated
to that job to start execution. Otherwise, the job
is transferred to Ready Queue (not shown in the
figure). The scheduler uses the aggressive
method to reserve for the required number of
nodes for that job. The same process is
followed for jobs in the other partitions.

Look-Ahead Backfilling
Scheduling Algorithm

This algorithm tries to find the best packing

possible for current composition of the queue,
thus maximizing the utilization at every
scheduling step. The jobs are divided into two
parts: running and waiting. The jobs that are
waiting may be either in the Waiting Queue or
in the Selected Queue. The jobs in the Selected
Queue are chosen for execution. All the jobs
have two attributes: size (number of requested
processors) and estimated computing time
remaining. The main task of this algorithm is to
select jobs from the Waiting Queue with the
extra look-ahead information, and thus
improving the system utilization.

In Figure 2, a look-ahead scheduler is derived
from the base class Simulator. It receives the
incoming jobs from the job file specified by the
user. When the scheduler starts, the simulation
time is set to 0 and is increased incrementally by
1 after each iteration. Incoming jobs are filed in
the Event Queue according to their arrival time.
The arrival time of the jobs in the Event Queue
is compared with the CPU time. If they are
equal, the jobs are moved to the Waiting Queue.
Jobs in this queue are ordered by estimated
execution time. Considering only the jobs in the

Waiting Queue, the scheduler builds a matrix of
size (|WQ|+1) × (n+1) where WQ is the Waiting
Queue and n is the number of free processors in
the system. Each cell of the matrix contains an
integer value called util that holds the maximum
achievable utilization at this time and a Boolean
flag called selected that is set to true if it is
chosen for execution. Select Queue selects all
the jobs from Waiting Queue with the selected
flag set to true. The utilization is calculated
according to the number of computing nodes
they have requested and what is currently
available. The selected jobs will receive the
number of requested nodes and thus start
executing their tasks.

Implementation and Interfaces

Some segments of codes are similar for both of

the scheduling algorithms. Consequently, in our
implementation we use a base class called
Simulator, which contains all similar functions.
From this base class, the three needed types of
scheduler are derived. This method is
illustrated in Figure 3 with the Basic
Aggressive, Multiple-Queue, and Look-ahead.

Methods of Multiple Queues

Our implementation uses two methods for

multiple queues: schedule and run.

a. schedule()

This method schedules the incoming jobs

arriving in the system at different times.
Depending on the estimated execution time, the
schedule method sends the jobs into queue P1,
P2, P3 or P4 as described previously. These are
the waiting queues of the multiprocessor
system, where the jobs are awaiting for the
execution.

b. run()

When the scheduler determines that resources

are available for the first job in a ready queue, it
moves the job to the Execute Queue. The
method run executes all the incoming jobs in
the Execute Queue.

COMPUTERS IN EDUCATION JOURNAL 25

Base Class: Simulator

Multiple-Queue Basic Aggressive Look-ahead

Figure 3: The class hierarchy of the simulators.

Methods of Look-ahead Backfilling

The following methods are used for the

implementation of the look-ahead backfilling
algorithm:

a. fillMatrix()

This method creates a dynamic matrix

containing the jobs that are in the Waiting
Queue. The size of the matrix is (|WQ|+1) ×
(n+1). It continuously refreshes this matrix as
the jobs in the Waiting Queue are changed.

b. selectJobs()

This method selects jobs from Waiting Queue.

It checks the value of util and the selected value
of the jobs in the matrix to select a job for
execution. It stores all selected jobs in another
queue.

c. addToRQ()

This method sends all the jobs that are in the

Select Queue to another queue called Running
Queue, where the jobs are executed.

d. refreshWQ()

When the jobs in the Select Queue are sent to

the Running Queue, this method refreshes the
matrix by re-calculating the util value of the
remaining jobs.

Common Methods
In addition, there is a common method used by

all algorithms: getNumOfFreeProc().
The schedulers call this method to find the
available number of free processors.

Simulation Examples, Results and Analysis

Examples: We evaluated the performance of
three algorithms: basic aggressive backfilling
algorithm, multiple queue backfilling, and look-
ahead backfilling algorithm. The system had 30
jobs which were scheduled in the order shown
in Table 1.

Results and Analysis

The results are shown in Figure 4. Note that

the waiting time of the jobs in the Multiple
Queue is more than the waiting time in the
Look-ahead backfilling algorithms. The waiting
time of the jobs in the basic aggressive is very
small compared to the other two.

If we look at the line graph of each algorithm

(Figure 4) separately, it seems that all three
algorithms have one thing in common; the
execution of jobs does not depend on their
arrival time. The jobs arriving late may execute
before the other jobs that arrive before them.
Thus, the algorithms are not fair and do not
preserve the First Come First Serve principle.
In the case of look-ahead, the waiting time
depends upon the utilization value of the job at

26 COMPUTERS IN EDUCATION JOURNAL

Table 1: Job scheduling order to the system for the three algorithms.

Job ID
Arrival
Time

Estimated
Time

Nodes
Requested

1 4 10 1
2 5 20 1
3 2 50 3
4 1 54 2
5 8 50 4
6 7 86 2
7 10 71 3
8 12 82 4
9 11 91 2
10 4 215 2
11 2 210 1
12 1 220 1
13 6 250 3
14 10 254 2
15 11 250 4
16 12 286 2
17 15 271 3
18 16 282 4
19 4 291 2
20 1 215 2
21 6 1310 1
22 5 1320 1
23 8 1350 3
24 9 1354 2
25 10 1350 4
26 12 1386 2
27 14 1371 3
28 7 1382 4
29 4 1391 2
30 5 1391 2

COMPUTERS IN EDUCATION JOURNAL 27

Fig 4: Arrival Time Vs Wait Time

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 5 6 7 8 9 10 11 12 14 15 16
Arrival Time

W
ai

t T
im

e

Basic Aggressive
Lookahead
Multiple Queue

Figure 4: Arrival Time versus Wait Time of the three algorithms.

that particular instant of time. The utilization
value of each job is calculated by checking the
number of requested processors and the number
of available computing nodes at that time.

Requested Nodes versus Waiting Time

Figure 5 shows the waiting time of a job based

on the number of compute nodes it needs. In
the basic aggressive algorithm, jobs that request
more nodes wait longer than jobs that request
fewer nodes. For multiple queues, the jobs
requesting fewer nodes are executed before the
jobs requesting more nodes in that queue. This
figure suggests that the look-ahead backfilling
algorithm provides better utilization. Further,
jobs in Multiple Queue algorithm wait longer
than the jobs in the other two backfilling
algorithms.

Estimated Time versus Waiting Time

Figure 6 shows the waiting time of jobs based

on their estimated time of execution. Normally,
jobs with shorter estimated time are executed
before jobs with larger estimated times.
However, our results suggest that the look-

ahead algorithm does not execute the jobs
according to the estimated time of completion.
In all three cases presented in our studies
Multiple Queue exhibits longer waiting time
and look-ahead appears as a better choice.

Future Work

There are several potential extensions to this

work. The problem of starvation in the basic
look-ahead scheduling algorithm needs closer
examination. The algorithm creates a subset of
selected jobs from the matrix. The selected job
is based on the number of requested computing
nodes and nodes currently available. If a job
requires more nodes, there is a possibility that
the job might starve. Consequently, there
should be an aging mechanism to track how
long a job waits and how to make all the nodes
available for those jobs that require a large
number of nodes[8].

A second avenue is to explore Gang

scheduling and co-scheduling. In the case of
Gang scheduling, the tasks can be grouped into
a gang and concurrently scheduled on

28 COMPUTERS IN EDUCATION JOURNAL

Fig 5: Nodes Vs Wait Time

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4Nodes Requested

W
ai

t T
im

e

Basic Aggressive
Lookahead
Multiple Queue

Figure 5: Nodes Requested versus Waiting Time.

Fig 6: Estimated Time Vs Wait Time

0

1000

2000

3000

4000

5000

6000

7000

10 50 54 82 91 215 250 254 282 291 1320 1350 1371 1386

Estimated Time

W
ai

t T
im

e

Basic Aggressive
Lookahead
Multiple Queue

Figure 6: Estimated Time versus Waiting Time.

COMPUTERS IN EDUCATION JOURNAL 29

distinct processors[11, 12]. Each gang may
execute in different time slot as a time sharing
system. This is in contrast to batch scheduling
algorithms which are non-preemptive. In case
of co-scheduling, a job does not execute until it
receives a special message from the master
node.

Concluding Remarks

The Look-ahead algorithm is simple and does

not divide the system into variable partitions.
The algorithm proposes an easy way to
reschedule the incoming jobs according to their
utilization value at that time. Our results
suggest that look-ahead scheduling performs
better than the other two. In general this
algorithm has better performance when the
number of processors requested by a job is
small.

In the Multiple-Queue algorithm, when the

jobs require more processors than available in
their partitions, the scheduler needs to check for
the free processors. Performance improves as
more processors become available. In our
experiments, we have not tested this algorithm
on clusters with more than 16 processors.
However, we predict that it can perform better
than look-ahead for larger clusters.

Acknowledgements

We would like to thank Ms. Kavitha

Alagusundaram, Ms. Roshita Mukhia, and Mr.
Pankaj Joshi for their excellent work and
commitment. We would like to thank Dr.
Raymon Kresman for his invaluable comments
which improved the quality of this paper.

Bibliography

1. Gropp, William, Lusk, Ewing and Sterling,
Thomas, Beowulf Cluster Computing with
Linux, Second Edition, ISBN 0-262-69292-
9, 2003.

2. Ehammer, Max, Roeck, Harald, and Rajaei,
Hassan, “User Guide for the Beowulf P4
Cluster“ Department of Computer Science,
Bowling Green State University, Bowling
Green, OH 43403,USA, July 2004.

3. Rajaei, Hassan and Dadfar, Mohammad,

“Job Scheduling in Cluster Computing: A
Student Project”, ASEE 2005 Annual
Conference, 3620-03.

4. Lawson, Barry G., Smirni, Evgenia,

”Multiple-queue Backfilling Scheduling with
Priorities and Reservations for Parallel
Systems” Department of Computer Science,
College of William and Mary Williamsburg,
VA 23187-8795, USA.

5. Srinivasan, S., Kettimuthu, R., Subramani,

V., and Sadayappan, P., “Characterization
of backfilling strategies for parallel job
scheduling”. IEEE International Conference
on Parallel Processing Workshops, pages
514–519, August 2002.

6. Bode, Brett, Halstead, David M., Kendall,

Ricky and Lei, Zhou “The Portable Batch
Scheduler and the Maui Scheduler on Linux
Clusters”. In Annual Technical Conference,
USENIX, June 1999.

7. Alagusundaram, Kavitha “A Comparison of

Common Processor Scheduling Algorithms
for Distributed-Memory Parallel System”,
Department of Computer Science, Bowling
Green State University, Bowling Green, OH
43403, USA, May 2004.

8. Edi Shmueli, Edi, Feitelson, Dror G.,

“Backfilling with Look-ahead to Optimize
the Packing of Parallel Jobs”, Department
of Computer Science, Haifa University,
IBM Haifa Research Lab and, School of
Computer Science & Engineering, Hebrew
University, Jerusalem respectively, Israel.

30 COMPUTERS IN EDUCATION JOURNAL

http://mitpress.mit.edu/catalog/author/default.asp?sid=29D30D78-6371-4B6D-8020-AA934DF68CCF&aid=400
http://mitpress.mit.edu/catalog/author/default.asp?sid=29D30D78-6371-4B6D-8020-AA934DF68CCF&aid=894

9. Yu, Philip S., Wolf, Joel L., Shachnai,
Hadas, "Look-ahead scheduling to support
pause-resume for video-on-demand
applications", Multimedia Computing and
Networking 1995; Arturo A. Rodriguez,
Jacek Maitan; Eds, March 1995.

10. Gropp, William, Lusk, Ewing and Sterling,

Thomas, Using MPI, Portable Parallel
Programming with Message-Passing
Interface, Second Edition, ISBN 0-262-
57132-3, 2003.

11. Feitelson, Dror G., Packing schemes for

gang scheduling. In Dror G. Feitelson and
Larry Rudolph, editors, 2ndWorkshop on
Job Scheduling Strategies for Parallel
Processing (in IPPS ’96), pages 89–110,
Honolulu, Hawaii, April 16, 1996.
Springer-Verlag. Published in Lecture
Notes in Computer Science, volume 1162.
ISBN 3-540-61864-3. Available from
http://www.cs.huji.ac.il/~feit/parsched/p-96-
6.ps.gz.

12. Jette, Moe, "Gang Scheduling Timesharing

on Parallel Computers",http://www.IIn1.
gov/asci/pse_trilab/sc98.summary.html

Biographical Information

Hassan Rajaei is an Associate Professor in the
Computer Science Department at Bowling
Green State University. His research interests
include computer simulation, distributed and
parallel simulation, performance evaluation of
communication networks, wireless
communications, distributed and parallel
processing. Dr. Rajaei received his Ph.D. from
Royal Institute of Technologies, KTH,
Stockholm, Sweden and he holds a MSEE
degree from University of Utah.

Mohammad B. Dadfar is an Associate
Professor in the Computer Science Department
at Bowling Green State University. His
research interests include Computer Extension
and Analysis of Perturbation Series, Scheduling
Algorithms, and Computers in Education. He
currently teaches undergraduate and graduate
courses in data communications, operating
systems, and computer algorithms. He is a
member of ACM and ASEE.

COMPUTERS IN EDUCATION JOURNAL 31

http://mitpress.mit.edu/catalog/author/default.asp?sid=29D30D78-6371-4B6D-8020-AA934DF68CCF&aid=400
http://mitpress.mit.edu/catalog/author/default.asp?sid=29D30D78-6371-4B6D-8020-AA934DF68CCF&aid=894
http://www.cs.huji.ac.il/~feit/parsched/p-96-6.ps.gz
http://www.cs.huji.ac.il/~feit/parsched/p-96-6.ps.gz
http://www.iinl.gov/asci/pse_trilab/sc98.summary.html

	COMPARISON OF BACKFILLING ALGORITHMS FOR
	JOB SCHEDULING IN DISTRIBUTED-MEMORY
	PARALLEL SYSTEMS
	Bowling Green State University
	Abstract

	Implementation and Interfaces
	Common Methods
	Results and Analysis
	Table 1: Job scheduling order to the system for the three a

	Bibliography

