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Abstract 

Excel does not have a logistic regression 
function. We must use the solver to numerically 
solve for the coefficient that maximizes the 
likelihood function. We need to able to create a 
table of results to determine how well our model 
works. We also want to illustrate a potential 
problem that can be found with any solver. We 
present formulas and a methodology to perform 
logistic regression in Excel and get the outputs 
required to build tabular results similar to other 
statistical packages. 
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Introduction 

 
In data analysis, logistic regression 

(sometimes called the logistic model or logit 
model) is a type of regression analysis used for 
predicting the outcome of a binary dependent 
variable (a variable which can take only two 
possible outcomes, e.g. "yes" vs. "no" or 
"success" vs. "failure") based on one or more 
predictor variables. Logistic regression attempts 
to model the probability of a "yes/success" 
outcome using a linear function of the 
predictors. Specifically, the log-odds of success 
(the logit of the probability) is fit to the 
predictors using linear regression. Logistic 
regression is one type of discrete choice model, 
which in general predict categorical dependent 
variables — either binary or multi-way. 

 
Like other forms of regression analysis, 

logistic regression makes use of one or more 
predictor variables that may be either 
continuous or categorical. Also, like other linear 

regression models, the expected value (average 
value) of the response variable is fit to the 
predictors — the expected value of a Bernoulli 
distribution is simply the probability of success. 
Unlike ordinary linear regression, however, 
logistic regression is used for predicting binary 
outcomes (Bernoulli trials) rather than 
continuous outcomes, and models a 
transformation of the expected value as a linear 
function of the predictors, rather than the 
expected value itself. 

 
For example, logistic regression might be used 

to predict whether a patient has a given disease 
(e.g. diabetes), based on observed characteristics 
of the patient (age, gender, body mass index, 
results of various blood tests, etc.). Another 
example might be to predict whether a voter will 
vote Democratic or Republican, based on age, 
income, gender, race, state of residence, votes in 
previous elections, etc. Logistic regression is 
used extensively in numerous disciplines: the 
medical and social sciences fields, natural 
language processing, marketing applications 
such as prediction of a customer's propensity to 
purchase a product or cease a subscription, etc. 
Yes, even in the military, logistic regression has  
utility as we will see. 

 
The model for just one predictor is 
 

Yi=
B0

1+B1eB2Xi
+εi 

 
where the error terms are independent and 
identically distributed (iid) as  normal  random 
variables with constant variance. 
 

For more than one predictor we use the model 
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𝑌𝑖= 
e(b0 + Σbixi)

1 + e(b0 + Σbixi)
 

What  is  Logistic  Regression? 
 
Logistic Regression calculates the probability 

of the event occurring, such as the purchase of a 
product. In general, the object being predicted in 
a regression equation is represented by the 
dependent variable or output variable and is 
usually labeled as the Y variable in the 
Regression equation. In the case of Logistic 
Regression, this “Y” is binary. In other words, 
the output or dependent variable can only take 
the values of 1 or 0. The predicted event either 
occurs or it doesn’t occur – your prospect either 
will buy or won’t buy. Occasionally this type of 
output variable is also referred to as a Dummy 
Dependent Variable. 

 
Output  Desired 

 
We assume we would like to obtain as much 

output as possible, but at a minimum we want: 
 
Estimates of the coefficients, their standard 

errors, t* statistics, P-values, and some analysis 
of fit between the full model and a not-full 
model that includes -2 ln likelihood and chi-
squared tests. 
 
An  Example  of  Logistic  Regression  

 
To simplify the analysis in Excel, we create a 

maximum ln likelihood function for the logit 
expression: 

 
ln L(Bi)= ΣYi(B0+ΣBiXi) -Σln(1+exp(B0+ΣBiXi)) 
 
I know this looks intimidating but it is not. We 

can build the functions and optimize in EXCEL 
using this function. 

 
Example 1. We have the following data where 

the response, Y, is a binomial from Bernoulli 
trials—like yes or no. In this case it is a success, 
1, or a failure, 0. 

Item Status Number Difference
1 1 4 19.2
2 1 2 24.1
3 0 4 -7.1
4 1 3 3.9
5 0 9 4.5
6 0 6 10.6
7 0 2 -3
8 0 11 16.2
9 1 6 72.8

10 0 7 28.7
11 1 3 11.5
12 1 2 56.3
13 0 5 -0.5
14 0 3 -1.3
15 0 3 12.9
16 0 8 34.1
17 0 10 6.6
18 1 5 -2.5
19 0 13 24.2
20 0 7 2.3
21 1 3 36.9
22 0 4 -11.7
23 1 2 2.1
24 1 3 10.4
25 0 2 9.1
26 0 5 2
27 0 6 12.6
28 1 5 18
29 0 3 1.5
30 1 4 27.3
31 0 10 -8.4

 
The model we want is 
 

Yi=
e(bo+b1number+b2difference)

1+e(bo+b1number+b2difference) 
 
This is how we proceed: 
 
(1) We entered the data. 
(2) Create  heading and initial values for our 

model’s coefficients:  B0, B1, and B2. Usually 
we set them at 0. 

(3) Create the functions we need ( I do this in two 
parts). Column P1 uses  
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Yi*(B0+B1*number+B2*difference)  
and Column P uses 
 ln(1+exp(B0+B1*number+B2*difference)). 

(4) Sum columns P1 and P2. 
(5) In an unused cell take the difference of P1-

P2—this is the objective function. 
(6) Open the Solver and Maximize this cell 

containing P1-P2, by changing cells with 
B0,B1, and B2. Insure to uncheck the non-
negativity box. 

(7) Solve. 
(8) Obtain your model and use it as needed. 
(9) Repeat steps 3-8 for the model with intercept 

only. 
 
 

We have the data entered in to three columns. 
 
Next we create columns for Y*X’B and 

ln(1+exp(X’B)) using initial values for b0, b1, and b2. 
 
We sum these two columns separately and in 

another cell we take the difference in the sums. 
 
This is our objective function that we maximize by 

changing the cells  for b0,b1, and b2. By doing so we 
get the following results . 

 

 
Bo B1 B2 

 
1.421207 -0.75534 0.112205 

    
P1 Yi(B0+B1Number+B2*difference) P2 LN(1+exp(Bo+B1*number+B2*difference)
0.554174 1.008141
2.614663 2.685301

0 0.087101
-0.40722 0.510124

0 0.007629
0 0.136619
0 0.502626
0 0.006264

5.057677 5.064017
0 0.421461

0.445538 0.940526
6.227665 6.229637

0 0.085876
0 0.315775
0 1.039183
0 0.372547
0 0.004544

-2.63602 0.069196
0 0.003398
0 0.026742

3.295545 3.331923
0 0.052891

2.390253 2.477904
0.322112 0.867117

0 1.263713
0 0.112174
0 0.16824

-0.33581 0.53927
0 0.411041

1.463034 1.671294
0 0.000846

18.99161 30.41312

-11.4215
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We obtain our model, 
 
Y=exp(1.42120.7553*number+0.1122*difference)/ 
(1+exp(1.42120.7553*number+0.1122*difference)) 
 

A plot of this model is shown in Figure 1. 

 
Figure 1. Plot of the Logistic Function 

(in this case a 3D CDF). 
 

Before we accept this model, we require a 
minimum of a few diagnostics. We want to (1) 
examine the significance of each estimated 
coefficient {b0,b1,b2} and (2) compare this full 
model to an intercept only model and one term 
model to measure the chi-square differences. 

 
We start with the estimates of our full model’s 

coefficients  {b0=1.421207, b1=-0.75534, and 
b2=0.112205}. We need the following (a) 
estimates of the standard errors of these 
estimates, (b) t* which equals the estimates/se, 
and (c) P-value for  t*. 

 
We know that the estimates for the Variance-

Covariance matrix are the inverse of the Hessian 
matrix evaluated at the estimates of {b0, b1, and 
b2}. In a logistics equation the number of terms 
in the regression model affects the Hessian 
matrix. To obtain all this we will need the 
Hessian matrix, H(X), so that we can find the 
inverse, H(X)-1, and then - H(X)-1 that is the 
variance-covariance matrix when evaluated at 
our final coefficient estimates. The main 
diagonal of this matrix are our Variances for 
each coefficient. If we take the square root of 
these coefficients then we get the se of our 
coefficients.  
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We would like to use pattern recognition and a 
simplification step to better see what is 
happening here and let 

 
π=exp(b0+b1x1+b2x2+…+bnxn). 

Let’s let  𝑃 = −∑ � 𝜋
1+𝜋

� − � 𝜋2

(1+𝜋)2
�𝑛

𝑖=1  . Then  
we can more easily write the Hessian matrix for 
n terms and its inverse as follows:    
 

 

 

We take the square root of the entries on the 
main diagonal as our estimates of the se for 
{b0,b1,…,bn). 

 
In our example we compute H and H-1. We 

compute H using the sums of the columns in the 
matrix H. To obtain H-1, we use =MINVERSE 
command in Excel. 

 

H 
   

 
3.711818969 15.00133 44.21611 

 
15.00132821 72.48339 218.9457 

 
44.21611161 218.9457 1041.944 

 
 
 
 

   

 

H^-1 
   

 
1.655778953 -0.35711 0.004774 

 
-0.35710513 0.114788 -0.00897 

    
 

0.004774266 -0.00897 0.002641 
 
We take the square root of the main diagonal 
entries {1.655778953, 0.114788, 0.002641} as 
our standard  error, se, estimates  for b0, b1, and  
b2, respectively. We find that our  estimates  are 
{ 1.286770746, 0.338803, 0.051393}. 

 
We can enter and fill in the rest of our table. 
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Analysis of regression coefficients. 
 

 

 
Coefficient Estimate from 

the Solver 
Se from the square root of 
the V-C Matrix 

Z-statistic= 
estimate/se 

P-Value from 
P(Z>|Z-statistic|) 

b0 1.421207 1.286770746 1.1044 0.2694 
b1 -0.75534 0.338803 -2.2296 0.02577 
b2 0.112205 0.051393 2.162 0.0306 

 
We see from the results in the table that the 

coefficients for b1 and b2 are significant at 
α=0.05. 

 
Let’s calculate the deviances for our model. 

We define the deviances as 
 

 

𝑑𝑒𝑣𝑖 = ±[−2[𝑌𝑖 ln(𝜋1𝑖) + �1 − 𝑌𝑖) ln(1 − 𝜋1𝑖)�]
1
2   

 
where the sign is positive when Yi>π1i and 
negative when Yi < π1i and  we define π1as 
(1+π)-1 with π as we defined earlier. 

Analysis  of  Deviations 
 

 
We find the difference is significant at α=0.05 

so we choose the full model over the constant 
model. 
 

Odds-Ratios 
 

Interpretation of B parameters in the logistic 
model. 

 
π*=B0+B1x1+…+Bnxn 
 
where 

π* 
π* 

 
B1=Change in log-odds π* for every 1 unit 

increase in x1 holding all other x’s fixed. 
 
eBi-1 = Percentage change in odds ratio π/(1−π 

)for every 1 unit increase in x1 holding all other 
x’s fixed.  

 
So, B1=-0.7553, eB1=0.47, eB1-1=-0.53. For 

each unit of x1, we estimate the odds of a fixed 
contract to decrease by 53% holding x2 fixed. 

 
For B2=0.1122,eB2=1.12,eB2-1=0.12. For each 

unit of x2, we estimate the odds of a fixed 
contract to increase by 12% holding x1 fixed. 

 
Conclusion 

 
We have presented a “how to” approach to 
logistic regression in Excel. We have given 
formulas and suggested how to put them into a 
table so that good analysis can be made. 
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