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Abstract 

 
Computer modeling is an important skill for 

engineering and science students to acquire. 
Monte Carlo simulations of two dimensional 
polymers provide an opportunity for students to 
develop their computer skills while deepening 
their knowledge of the behavior of such 
materials.  

  
Introduction 

 
In a previous publication in this journal, 

Varriale II and Bishop [1] used a Monte Carlo 
growth method to simulate two dimensional 
linear and star polymers. They computed 
polymer properties such as the mean-square 
radius of gyration, <S2>, the g-ratio and the 
mean asphericity, <A>, of both linear and star 
polymers and found excellent agreement with 
theoretical values. In this paper their methods 
are extended to investigate H-combs. These are 
the simplest polymers containing two junctions. 

Their structure has a central branch connecting 
the two junctions, each of which has two other 
branches connected to it. Thus, there are a total 
of five branches; one internal and four external 
(see Figure 1). Two dimensional H-comb 
polymers were also studied by Gorry and 
Bishop [2] employing a different Monte Carlo 
technique: the Pivot algorithm. 

 
In Figure 1, E and F mark the two junctions 

and C, D, G, and H the branch ends of the H-
comb;  A and B mark the ends of the linear 
chain. 

 
Method 

 
The simulations investigated linear and H-

comb polymers with the same total number of 
units. The programs have been written using a 
semi-object oriented approach. All the logic for 
individual polymer samples has been separated 
from the output and display logic. However, a 

 

 
 

                    Figure 1A:   H-comb polymer.                    Figure 1B:    Linear Polyme. 
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complete separation of all attributes would not 
be beneficial in the simulation process since the 
overhead of constructing and traversing all those 
objects would considerably lengthen the 
simulation times. Therefore, a single sample 
class holding all of the information for a given 
configuration of each polymer has been written. 

     
Two dimensional polymers are constructed on 

an integer coordinate system and the different 
types of polymers follow the same basic rules. 
Given the numbers N and M, the simulation is 
performed by creating M independent samples 
each containing N units (beads). Samples are 
constructed by starting the first bead at the 
origin (0, 0). Subsequent beads are placed by 
randomly selecting one of four possible 
directions: North, South, East or West. Each 
bead is placed one unit apart from the 
previously placed bead.  In this study of ideal 
polymers, a location that has already been used 
by another bead is allowed to be chosen so that 
beads can overlap. After each polymer is 
completely constructed, or after all N beads 
have been added, a number of properties are 
calculated for that configuration.  

 
To expand this project in order to investigate 

H-comb polymers, a number of changes had to 
be made to the sample logic. Since this type of 
polymer is no longer linear, growth has to occur 
on separate branches of the configuration. 
Branches are selected in a particular order and 
grown evenly.  A coordinate data type has been 
implemented to keep track of the heads, or most 
recently added bead of each of the branches, so 
that they could be grown independently. An H-
comb is constructed by first growing a three 
branch star polymer, i.e. a polymer with three 
random branches attached to a common 
junction. Then two more branches are added to 
one of the star branch ends.  
 

The main routine uses all the calculated 
information to collect averages across many 
samples. Since the polymer generation process 
provides independent samples, the mean and 
standard deviation of the mean can be computed 

from simple equations [3]. All the data items are 
saved on external files. 
 

One important property of H-comb polymers 
is their shape which can be determined from the 
matrix representation of the radius of gyration  
          ↔ 
tensor, T.  This 2 by 2 tensor is given by 

 
                               N                                                                    
     T11(k)  = (1/N) ∑ (Xi(k) − XCMi(k)) 2 

                              i=1                                  (1a)  
 
     T12(k)  =  T21(k) = 
 
          N 

  (1/N)  ∑ (Xi(k) - XCMi(k)) (Yi(k) − YCMi(k))                

          i=1 
                                                                      (1b)    

                                                                                                                  
                                 N  

      T22(k)  = (1/N) ∑ (Yi(k) − YCMi(k)) 2   
                                i=1                                 (1c)    

                                                      
 
Here, Xi(k) and Yi(k) are the x and y 

components of the location of the i-th bead in 
the k-th sample and XCMi(k) and YCMi(k) are 
the x and y components of the center of mass: 

 
                                        N 
          XCMi(k)  =  (1/N) ∑ Xi(k)          
       i=1 
                                                                       (2a) 
         N   
          YCMi(k)  =  (1/N)  ∑ Yi(k)        
                                         i=1                        (2b)    
                                                                                                                            
                            ↔ 

The eigenvalues of T, λ1 and λ2, are the 
components of the radius of gyration along the 
principal orthogonal axes [4]. The λ values of 
each configuration can be ordered by 
magnitude. One can envision [5] the polymer as 
enclosed in an elliptical envelope with semi-
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major axis λ1 and semi-minor axis λ2. Rudnick 
and Gaspari [4] defined the asphericity of the k-
th sample of a configuration in two dimensions 
as 

 
              A(k)  =    (λ1 − λ2) 2 / ( λ1 +  λ2) 2 
                                                                           (3) 

 
The asphericity ranges from a value of 0, when 

λ1 = λ2 and the polymer has the shape of a 
perfect circle, to 1, when λ2 = 0 and the polymer 
has the shape of a straight rod. 

 
The overall size of a polymer is characterized 

by its radius of gyration and, in the special case 
of a linear chain, by its end-to-end distance. The 
squared radius of gyration of the k-th sample, 
S2(k), is equal to the trace, the sum of the 
diagonal elements of the radius of gyration 
tensor, 

 
                           S2(k) =  λ1 +  λ2  
                                                                         (4) 

 
and the squared end-to-end distance of the k-th 
sample of linear chains, R2(k), is 

 
          R2(k)  =   (XN − X1) 2  +  (YN − Y1) 2   
                                                                         (5) 

 
Here N and 1 refer to the last and first bead, 

respectively.   
 
 It is well-known [6] that for large polymers, 

both <R2> and <S2> follow scaling laws.  
 

                          <R2>  =  C1 (N − 1) 2ν    
                                                                       (6a) 

 and               
                          <S2>  =  C2 (N − 1) 2ν   
                                                                      (6b) 

 
The coefficients, C1 and C2, are model 

dependent amplitudes but the exponent, 2ν, is 
universal and equal to 1.0 for ideal polymers. It 

is also well-known [6] that C2 / C1 = 1/6 for 
long ideal linear chains. 

 
A useful parameter for comparing the 

compactness of linear and branched polymers is 
the g-ratio which is defined as the ratio of the 
radii of gyration: 

 
           g  =  <S2> branched  /  <S2> linear  
                                                                         (7) 

 
Casassa and Berry [7] obtained a general 

equation for the g-ratio of uniform, ideal comb 
polymers with f three-functional junctions 
regularly spaced along the backbone: 

 
   g = r − r2 (1 – r) / (f + 1) + 2 r (1 – r) 2 / f  + 
        (3f – 2) (1 – r) 3 / f2                                 (8) 
 

Here, r is the ratio of the number of units in the 
comb backbone to the total number of units in 
the polymer. In the case of H-combs (see Figure 
1), r = 3/5 and f = 2, so g = 0.712. 

 
Results 

 
The simulation has been developed by using 

the Visual Studio C++ compiler on a PC. First, 
the dependence of average properties on the 
number of samples was investigated by 
examining polymers containing N = 100 beads. 
Runs generated 100, 1000, and 10000 samples. 
The data are contained in Table I. Note that 
there are no data for <R2> in the case of H-
combs since there is no overall end-to-end 
distance 

 
    In Table I the number in parenthesis denotes 
one standard deviation in the last displayed digit 
so that for example, <λ1> = 13.28(98) means 
that <λ1> = 13.28 ± 0.98. As expected, the error 
decreases as the square root of the number of 
samples since the error in a property value 
decreases by a factor of about ten when using 
10000 samples compared to the error value 
when using 100 samples. Also since there is 
only a slight difference in the property values 
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between 1000 and 10000 samples, 10000 
samples should be sufficient for accuracies of 
about 1%. 

 

Then, fixing the number of samples at 10000, 
the variation of the property values with the 
number of beads was studied. These results are 
contained in Tables IIA and IIB.  

 
Table I: Effect of the Number of Samples, M, for Linear and H-comb Polymers. 

 
  Linear    H-comb  

Property 100 1000 10000  100 1000 10000 
<λ1> 13.28(98)  14.03(32) 14.06(10)    8.28(46)  9.56(18)  9.44(6) 

<λ2> 2.89(16)    2.80(5) 2.81(2)    2.55(14)    2.63(4)  2.64(1) 

<S2> 16.17(105)  16.83(33) 16.86(11)  10.83(52)  12.18(20)  12.08(6) 
<A>   0.375(22)    0.401(8)   0.396(2)      0.286(21) 0.308(7)   0.305(2) 
<R2> 97.04(859)  98.98(299) 100.48(101)     

 
 

Table IIA: Effect of the Number of Beads, N, for linear chains. 
 

Property 100 200 400 800 
<λ1> 14.06(10) 27.72(20) 55.84(43) 112.08(89) 

<λ2> 2.81(2) 5.66(3)    11.34(6)   22.62(14) 

<R2> 100.48(101) 200.28(203) 411.17(438) 813.12(813) 

<S2> 16.86(11) 33.38(21) 67.18(45) 134.70(93) 
<A>    0.396(2)   0.386(2)   0.386(2)   0.390(2) 

 
Table IIB: Effect of the Number of Beads, N, for H-combs. 

 
Property 100 200 400 800 

<λ1> 9.44(6) 18.71(11)   36.99(23) 74.73(47) 

<λ2> 2.64(1) 5.15(3) 10.19(5) 20.61(10) 

<S2>    12.08(6) 23.87(12)   47.18(25) 95.34(50) 
<A>   0.305(2)   0.310(2)     0.311(2)   0.308(2) 

 
 

It is clear from the radius of gyration data in 
the Tables that H-combs are more compact than 
linear chains with the same number of beads and 
that the shape of the H-combs is more 
symmetrical than the linear chains. The <S2> 
and <R2> data in the Tables were fit by a 
weighted nonlinear least-squares program [3] to 
determine the exponent in the scaling laws, 
Eqs.6a and 6b. It was found that 2ν in the linear 

chain case was 1.00 ± 0.01 for <S2> and 1.00 ± 
0.01 for <R2> and that 2ν = 0.99 ± 0.01 for 
<S2> in H-combs. These values are all 
consistent with the theoretical value of 1.00. 

 
The computer results in the Tables are for 

finite N whereas the theories are for infinite N. 
Another scaling law for any property P is 
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                     P   =   P∞ (1 − K / NΔ)   
                                                                         (9)                                 

 
Here P∞ is the value of P for infinite N, K is a 

constant, and Δ is the finite scaling exponent. In 
the ideal polymer regime Δ has a value of 1.0. 
The P∞ value can thus be found by fitting a 
weighted least-squares line [3] in 1/N to each set 
of data in the Tables. 

 
The error in ratio calculations, such as the g-

ratio, which involves the division of separately 
averaged quantities, has been determined from 
the standard equation [3] relating the error in a 
ratio to the errors in the numerator and in the 
denominator. First, the various ratio values and 
their errors were determined. Then the best 
linear fit was extrapolated in 1/N to 0 (e.g. N → 
∞). The final extrapolated property values are 
presented in Table III along with known exact 
results. Most of the simulation values reported 
in Table III are well within two standard 
deviations of the mean or in the 95% confidence 
interval. Even in the worst case, the average 
asphericity for linear chains has about a 2% - 
3% difference from the exact value. 

 
Gorry and Bishop [2] also simulated ideal 

linear and H-comb polymers in two dimensions. 
Their work was not restricted to a fixed lattice. 
In their model the initial polymer configuration 

was constructed by linking together tangent 
circular beads with a diameter of one.  A random 
number was used to select one of the beads as a 
pivot and another random number was 
employed to generate a random angle between 
0° and 360°. All the beads further along the 
branch of the pivot bead were rotated by this 
angle. In this model successive samples are not 
independent and it was necessary to both 
discard the beginning phase of the simulation 
and to collect data at sufficiently large intervals.  
Gory and Bishop found for H-combs that the 
extrapolated g-ratio and asphericity had values 
of 0.713 ± 0.002 and  0.310 ± 0.001, 
respectively. These results are in fine agreement 
with both the exact and the simulation values 
reported in Table III. 

 
Conclusion 

 
We have investigated two dimensional ideal 

linear and H-comb polymers using a Monte 
Carlo growth method. The radius of gyration, g-
ratio, and asphericity have been computed. 
There is fine agreement with both exact results 
and other simulations. The data reveal that H-
combs are more symmetrical than linear chains. 
Modeling projects such as the one described 
here provide a clear demonstration of some 
aspects of polymers and thus strongly enhance 
student understanding and intuition. 

 
 
 

 
 

 
 

Table III: Comparison of Results for Linear and H-comb Polymers. 
  

 Linear  H-comb 
Property Extrapolated Exact  Extrapolated Exact 
<λ1>/<S2>        0.830(7) 0.833[a]     0.785(5) 0.784[d] 
<A>        0.385(2) 0.396[b]     0.311(2) 0.309[d] 
g-ratio           0.704(5) 0.712[e] 
C2/C1        0.164(2) 0.167[c]    

 
[a] reference 8  [b] reference  9 [c] reference 6 [d] reference 10  [e] reference 7 

 
       



30  COMPUTERS IN EDUCATION JOURNAL 

Appendix:  The Manhattan  College 
Undergraduate  Research  Program 

 
Manhattan College has a long tradition of 

involving undergraduates in research and was 
one of the original members of the Oberlin 50. 
This is a group of undergraduate institutions 
whose students have produced many PhDs in 
engineering and science.  At Manhattan College, 
students can elect to take an independent study 
course for three credits during the academic 
year.  In addition, the College provides grant 
support to the students for ten weeks of work 
during the summer. I have personally recruited 
the students from my junior level course in 
Systems Programming. Previously published 
articles in this journal by Manhattan College 
student co-authors are a very effective 
recruitment tool.  The students have also 
presented their results at a variety of 
undergraduate research conferences including 
the Hudson River Undergraduate Mathematics 
Conference and the Spuyten Duyvil 
Undergraduate Mathematics Conference. 
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