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Abstract 

 
 The purpose of this study is to analyze 

newspaper circulation volume data using time 
series analysis and develop an appropriate 
model used in the prediction of newspaper 
circulation volume. We focus on the prediction 
by studying the circulation data, modeling, and 
diagnostic checking so that short-term 
newspaper circulation can be predicted with 
reasonable accuracy. In this paper, the New 
York Times is chosen as our case study. The 
time series analysis techniques are used in our 
modeling; in particular, we focus on the 
autoregressive integrated moving average 
(ARIMA) model due to the non-stationary 
property of the data obtained. The models 
established are verified via residual analysis. 
Finally, based on the models developed, we 
present our prediction results together with 
some discussion. Our study indicates the 
potential and effectiveness of using the time 
series modeling in the prediction of newspaper 
circulation.  
 

Introduction 
 
Newspaper circulation is the number of 

newspapers a particular newspaper bureau 
distributes in an average day. This number 
includes both newspaper subscriptions and 
papers bought at newsstands. Subscription 
numbers are largely dependent on the 
population of a certain region and the 
newspaper’s reputation (whether it is well-
known or not). These two factors do not change 
drastically and, accordingly, the portion of 
newspaper circulation that is dependent on 
subscriptions does not change drastically, either. 
As a result, most of the fluctuations that are 
present in the circulation data are caused by 

changes in newsstand sales. Newsstand sales are 
dependent on the news that is covered in a 
particular issue, the weather (accessibility to 
newsstands), and economic factors. Newspaper 
circulation is often divided into two parts: daily 
circulation and Sunday circulation. Daily 
circulation is typically less than Sunday 
circulation because Sunday editions tend to have 
more sections and have coverage of the previous 
week’s events, whereas daily editions only 
cover the previous day’s events. Newspaper 
circulation tends to follow a seasonal cycle. The 
average circulation of the 6 months ending in 
March is always higher than the average of the 6 
months of a year, ending in September. Reasons 
for this could be that many people leave to go 
on vacation during summers (weather being a 
major factor), and thus, causes people to 
suspend their subscriptions or stop buying from 
newsstands.  

 
This paper focuses on the newspaper 

circulation prediction problem by studying the 
available circulation data, modeling, and 
diagnostic checking so that the short-term 
circulation volume can be reasonably predicted. 
Both daily circulation and Sunday circulation 
were considered in this study. To explore the 
feasibility and effectiveness of the proposed 
method, the New York Times is used as our 
case study. Since the circulation data can be 
considered as a collection of observations made 
sequentially in time and treated as a realization 
of a stochastic process, the newspaper 
circulation volume modeling with the time 
series techniques is used. Particularly, we focus 
on using the autoregressive integrated moving 
average (ARIMA) model due to the non-
stationary property of the data we obtained. 
Time series prediction is challenging work due 
to many uncertainties. However, the analysis of 
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historical data can provide valuable insight and 
is essential for developing an appropriate model 
to predict near-term circulation volume. This 
paper presents the modeling and prediction 
results. Also our study indicates the potential 
and effectiveness of using the time series 
modeling process in the prediction of newspaper 
circulation. Furthermore, the modeling approach 
presented here can be easily modified and used 
in short-term newspaper circulation prediction 
for other urban areas.  
 

The  Circulation  Data 
 
The New York Times is the nation’s third 

largest newspaper in terms of circulation, 
behind USA Today and the Wall Street Journal. 
It is owned by the New York Times Media 
Company, which owns and publishes 40 other 
newspapers worldwide, as well as many other 
media outlets. The daily and Sunday circulation 
data of the New York Times that was reported 
to the Audit Bureau of Circulations during the 
period 1998-2005 can be found in [1, 2] and 
they are shown in Fig. 1 and 2, respectively (i.e., 
a graph showing the observations against time). 
Note that in these two figures, each data point 
represents the average of the previous 6 months’ 
data ending on the month shown in the graph. 
Analysis of this data through time series 
analysis can allow one to properly model the 
observed data and be able to make a prediction 
of future values. Newspaper circulation, for 
instance, can be treated as a marketing time 
series because it deals with sales figures over 
time. Time series analysis is used in many 
different areas (e.g., economics, finance, 
physical sciences, etc.). In economics, it can be 
used to predict unemployment figures by using 
past figures. In finance, it can be used to predict 
future prices of a stock, so a company or an 
individual can consider whether to buy, sell, or 
hold a stock. In the physical sciences, time 
series analysis can be used to make a hypothesis 
on future temperature trends, such as global 
warming. These are only a few of the many uses 
of time series modeling and prediction. The 
fundamental goal of time series analysis is to 
understand the mechanism that generates the 

observed data and, in turn, forecast future values 
of the series. 
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Fig. 1: Time plot of the daily circulation data. 
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Fig. 2:  Time plot of the Sunday circulation data. 
 
 

Time  Series  Models 
 
A time series is a collection of observations 

made sequentially in time. Any quantity 
recorded over time yields a time series. A time 
series model for the observed data, say {xt}, is a 
specification of the joint distributions of a 
sequence of random variables {Xt} of which 
{xt} is postulated to be a realization. The term 
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time series can mean both the data and the 
process of which it is a realization. The 
fundamental aim of time series analysis is to 
understand the underlying mechanism that 
generates the observed data and, in turn, to 
forecast future values of the series. In this 
section, we briefly review the commonly used 
time series models. An excellent introduction to 
time series models can be found in [3]. 

 
Time series modeling assumes that the value 

of the series at time t (i.e., Xt) depends only on 
its previous values and on a random noise. 
Therefore, if this dependence of Xt on the 
previous p values is linear, then Xt can be 
represented by Xt = Φ1Xt-1 + Φ2Xt-2  +…+ ΦpXt-p 
+ Zt, where Φ = (Φ1, Φ2, …, Φp) are the model 
parameters called the autoregressive (AR) 
coefficients and Zt is the disturbance at time t. 
The process {Zt} is usually modeled as an 
independent and identically distributed (iid) 
white noise with zero mean and variance σ2. 
That is, E[Zt] = 0, E[Zt

2] = σ2 for all t, and 
E[ZtZs] = 0 if t ≠ s, where E[.] means the 
expectation. The process {Xt} is said to be a 
moving average process of order q if Xt can be 
written as Xt = Zt + θ1Zt -1 + θ2Zt-2 + … + θqZt-q, 
where θ = (θ1, θ2, …, θq) are the moving average 
(MA) coefficients. In the above, p and q are the 
orders of AR(p) model and MA(q) model, 
respectively. By combining the AR and MA 
parts, we get a mixed autoregressive moving 
average (ARMA) process of order (p, q). That is, 
Xt - Φ1Xt-1 - Φ2Xt-2 -….. - ΦpXt-p = Zt + θ1Zt-1 + 
θ2Zt-2 + … + θqZt-q, and this defines the 
ARMA(p,q) model. By introducing the back 
shift operator B, i.e., BiXt = Xt-i, then the ARMA 
(p, q) model can be simplified as Φ(B) Xt = θ(B) 
Zt ,where Φ(B) = 1 – Φ1B – Φ2B2 - … – ΦpBp 
and θ(B) = 1 – θ1B – θ2B2 -… – θqBq.   Even 
though in practice most time series we faced are 
non-stationary, the stationary ARMA model can 
still be generalized to incorporate a special class 
of non-stationary time series models. For 
instance, if the observed time series is non-
stationary, we can difference the series with Xt 
replaced by (1-B)d Xt where (1-B) Xt = Xt - Xt-1, 
(1-B)2 Xt = (1-B) Xt-1 = Xt - 2Xt-1 + Xt-2, etc. 
This operation is called differencing the time 

series. The ARMA model then becomes (1-B)d 
Φ(B) Xt = θ(B) Zt, which is called the 
autoregressive integrated moving average 
(ARIMA) model and expressed as ARIMA(p, d, 
q). In other words, any ARIMA(p, d, q) series 
can be transformed into an ARMA(p, q) series 
by differencing it d times and, thus, the analysis 
of an ARIMA process does not pose any 
difficulty as long as we know the number of 
times to difference the series. Clearly, the 
ARIMA process constitutes of three parts, an 
autoregressive part (AR), a differencing part (I), 
and a moving average part (MA). The 
differencing part is used to convert a non-
stationary series into a stationary series. It 
removes the trend from the data.  

 
In time series analysis, it is very important to 

calculate the sample autocorrelation function 
(ACF) from the observed data of a given 
stationary process. Given n data points {X1, 
X2… Xn} in a time series, the autocorrelation 
coefficient at lag k is defined as follows:  
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where X  is the mean value and k (= 1, 2, 3 … ) 
is known as the lag (which is how many times 
the data sequence is shifted for comparison). 
Apparently, rk represents the amount of 
correlation between {Xt} and {Xt+k}, or a 
measure of the strength of the linear relationship 
between {Xt} and {Xt+k}. If rk = ± 1, the 
correlation will be linear. However, if rk = 0, 
then there is no relationship between {Xt} and 
{Xt+k}. The ACF provides a useful measure of 
the degree of dependence among the values of a 
time series at different times, and for this reason 
they play an important role when considering 
the prediction of future values of the series in 
terms of past and present values. To find an 
appropriate model for the data observed we use 
the correlograms. A correlogram is a graph 
showing the time series ACF values against the 
lag h.  From observing a correlogram sometimes 
we can get important information about the time 
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series. For example, is the series stationary? If it 
is stationary, then is it AR(p), MA(q) or 
ARMA(p, q)? What can be the order, i.e, the 
values of p and q for the series?  It is known that 
for a series that fits MA (q) model, its 
correlogram should show a sharp cut-off after h 
> q, that is, the ACF becomes zero if h > q, a 
special feature of MA processes. If the 
correlogram doesn't cut-off sharply and on the 
contrary, it decays either exponentially or 
sinusoidally or both, then it may suggest that the 
time series either an AR (p) or ARMA(p, q) 
type. In this case the correlogram doesn't 
provide much information about the order of the 
series. So, we pursue the partial correlogram 
(i.e., partial autocorrelation function PACF vs. 
lag h) to see any additional information can be 
extracted to find the proper order p. The partial 
correlation between {Xt} and {Xt-k} is the 
correlation between the two with all variables 
{Xt-1, Xt-2 … Xt-(k+1)} fixed. It can be shown that 
the partial ACF of an AR(p) process “cuts off” 
at lag p. Note that sample correlation functions 
do not always resemble the true correlation 
functions, in particular, when the number of 
data observed is small. Therefore, it should 
always be used with caution.  

 
Another type of ARMA order selection is 

based on the so-called information criteria. The 
idea is to balance the risks of under fitting (i.e., 
selecting the orders smaller than the true orders) 
and over fitting (i.e., selecting orders larger than 
true orders). This is done by minimizing a 
penalty function, and the two commonly used 
functions are: ln σ2+2(p+q)/n (i.e., the Akaike’s 
Information Criterion (AIC)) and ln σ2+(p+q) ln 
(n)/n (i.e., the Bayesian Information Criterion 
(BIC)), where σ2 is the estimated noise variance 
and n is the length of the data. For details 
regarding AIC and BIC criteria and order 
selection, please refer to any standard time 
series analysis books (e.g., [3, 4]).  
 
 
 
 
 
 

Data  Analysis  and  Modeling 
 
Based on the time plots shown in Figs. 1 and 2, 

one needs to determine what time series model 
will be appropriate. To begin, it is often 
necessary to make a non-stationary time series 
stationary, so that its statistical properties do not 
change over time. To fit a time series model to 
the data, we need to transform the raw data into 
a “well-behaved” form suitable for analyzing 
and modeling. In other words, the transformed 
data can be modeled by a zero-mean, stationary 
type of process. That is, the trend and mean 
value must be removed from the circulation data. 
The time plot helps us determine whether the 
process is stationary. If not, then the series is 
processed to make it stationary. A special type 
of filtering, which is particularly useful for 
removing a trend, is simply to difference a given 
time series until it becomes stationary. 
Differencing is an effective way to remove trend 
and seasonal components in a time series. In 
addition, it is sometimes used to change a non-
stationary time series into a stationary time 
series. Figures 3 and 4 show the zero-mean, 
differenced circulation data for the daily and 
Sunday cases. In Fig. 4, 2nd order differencing 
was necessary for the Sunday newspaper 
circulation study. Since the trend in Figs. 3 and 
4 is no longer visible and the series seems 
stationary, further differencing will be 
unnecessary. Note that the interpretation of the 
data and the model fitted are by no means 
unique; often there can be several equally valid 
interpretations consistent with the data. 
Experience and good judgment also play an 
important role in the modeling process. 
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Fig. 3:  The zero-mean, differenced daily 
circulation data. 
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Fig. 4: The zero-mean, second-order differenced 

Sunday circulation data. 
 
 
 

To assess the degree of dependence in the time 
series data and to select a model for the data that 
reflects this, we further examine the correlation 
function of the data. Figures 5-8 show the 
correlogram and partial correlogram of the 
differenced data for both the daily and Sunday 
circulation data. By inspecting these figures, we  
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Fig. 5:  The correlogram of the data shown 
 in Fig. 3. 
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Fig. 6: The correlogram of the data shown 
 in Fig. 4. 

 
 
 
found that both ACF and PACF don’t sharply 
cut-off to zero, which indicates that the 
appropriate model should be of the ARMA (p, q) 
type. Therefore, the ARIMA (p, d, q) model 
should be used for the original raw data because 
a differencing operation was conducted (i.e., d ≠ 
0). 
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Fig. 7: The partial correlogram of the processed 
data shown in Fig. 3. 
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Fig. 8: The partial correlogram of the processed 
data shown in Fig. 4. 
 

The models were selected based on the 
minimization of the AIC information criterion 
mentioned earlier. Since the Hannan-Rissanen 
(HR) algorithm [4] is a very effective way in 
determining ARMA model parameters, we used 
this HR procedure [5] to find the parameter 
values. For the daily circulation data shown in 
Fig. 3, we found that the ARIMA (1, 1, 1) 
model with Φ1 = - 0.848434 and θ1 = 0.0971008 
seems to generate the best results with the 
minimum AIC = 20.2149 among those 
candidate models selected. Similarly, the 
appropriate  model  for   the  Sunday  circulation  

data  in Fig. 4 was found to be of ARIMA (1, 2, 
1) with Φ1 = -0.557954 and θ1 = -0.966033 with 
the corresponding AIC = 8.18584. 

 
Model  Validation 

 
After fitting a model to a given set of data, the 

model needs to be examined to see if it is indeed 
an appropriate model. If the model is a “good” 
one, then its residuals should be random and 
close to zero. There are several ways of 
checking if a model is “good”. One commonly 
used   approach    to    diagnostic    checking    is  
the examination of residues. That is, the 
residues can be treated as a time series and the 
properties and correlogram of the residues (i.e., 
the autocorrelation coefficients of the residues at 
different lag k) can be studied. Therefore, the 
residuals, which are generally defined as the 
difference between the observed and fitted 
values (error), are checked. For a good fit, the 
residual time series should be close to an iid 
zero-mean white noise. If the residues, say {y1, 
y2, …, yn}, is a realization of such an iid 
sequence, then about 95% of the sample 
autocorrelations should fall between the bound 
± 2/ n , where n represents the length of data 
points [4]. A detailed analysis of residuals from 
ARMA processes can be found in [3]. To verify 
the models given in Data Analysis and 
Modeling, we conducted residual analysis. The 
correlogram of the residuals from the ARIMA 
(1, 1, 1) model for the daily circulation data and 
the ARIMA (1, 2, 1) model for the Sunday 
circulation data are shown respectively in Figs. 
9 and 10. From these figures, one can see that 
correlation coefficients of the residue time series 
are fairly small and they fall within the bounds 
± 2/ n . Data points that fall within these 
bounds can be considered as “close to zero.” 
Thus, we have no reason to reject the hypothesis 
that the set of data constitutes a realization of a 
white noise process. Therefore, these two 
models will be used in the prediction of the 
circulation volume. Thus, by changing the form 
of the standard ARIMA equation to match the p, 
d, and q values and by plugging in the 
parameters Φ and θ, the following models, 
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where {Xt} is the circulation volume time 
series, will result. Notice that the mean value, 
which was removed earlier, is added back into 
the models on the right side. 
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Fig. 9  The correlogram of the residual  
time series. 
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Fig. 10  The correlogram of the residual  
time series. 

 
Daily Circulation Time Series Model:
 
(1-B)(1+0.848434B)Xt =1.124x106+Zt+ 

0.0971008Zt-1
 
 
 
 

Sunday Circulation Time Series Model: 
 
(1-B)2(1+0.557954B)X t= 1.677x106+Zt-

0.966033Zt-1
 

Circulation  Prediction 
 

Based on the modeling of the daily and 
Sunday circulation time series data, one can 
now use these models to make a prediction of 
future volume. That is, using the models 
developed and up-to-date circulation data, future 
circulation can be predicted. However, if future 
circulation were predicted, we would be unable 
to check it because The New York Times has 
not released the circulation data for the 6-month 
period ending in March 2006 at the time this 
paper was written. Thus, we would be unable to 
verify if the model is a good one if we used it to 
predict future data points. So, in order to have 
an actual figure to compare the predicted value 
to, we decided to use the time series models that 
we chose to predict known data points. Because 
p = 1 in both models, only one previous known 
data point is necessary for the purpose of 
prediction, even though the time series at 
current value also indirectly depends on its 
previous values (since {Xt} is dependent on {Xt-

1} and {Xt-1} is dependent on {Xt-2} and so on). 
The zero-mean, differenced circulation data Yt 
{t = 1, 2, 3…} was used together with the model 
to perform the one-step-ahead prediction. Notice 
that Yt is defined as (1-B)Xt-1.124x106 for daily 
circulation, Yt = (1-B)2 Xt-1.677x106 for Sunday 
circulation, and Xt represents the actual 
newspaper circulation volume time series. 

 
Figures 11 and 12 show the actual circulation 

data (zero-mean, differenced) Yt, (i = 1, 2, …) 
compared to predicted circulation data. The Best 
Linear Predictor algorithm in the Mathematica 
software[5] was used to calculate these 
predicted values. Clearly, the predicted results 
Yt can be converted to the actual Xt in the 
reverse operations (i.e., inverse differencing and 
addition of the mean value). From these two 
figures,  we see that the predicted values closely  
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mirror the actual values, thus, these models can 
be considered reasonably “good”, considering 
only 16 data points were used.  These models 
can be vastly improved with more data, but it 
would be difficult to obtain, as discussed below. 
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Fig. 11: Result comparison for the daily 
circulation study. 
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Fig. 12: Result comparison for the Sunday 
circulation study. 

 
(a) Possible improvement (model 

refinement). The most obvious way of 
improving this model is to use more data. With 
more data, one can find trends that may have 
lasted for longer than the eight years of data 
used. In addition, it can also be  used  to  create  
a  better  model.    For instance, with more data 

points, the bounds, which are defined as ± 2/ n , 
will be smaller and as a result, be more helpful 
in choosing the best model. 
 

However, obtaining additional data would be 
difficult and costly to do. The Audit Bureau of 
Circulations, which contains large amounts of 
circulation data, is not public and is only 
available to newspaper companies and academic 
institutions, more specifically, universities. 

 
(b) Possible sources of error. It is very difficult 

to predict future newspaper circulation with 
high accuracy because future values are only 
partially dependent on past values. One possible 
source of error is the amount of the data used. 
Since only eight years of newspaper circulation 
was used, any trends that lasted more than eight 
years cannot be determined. Because of this, it 
would be inappropriate to use this model to 
determine circulation far into the future.  

 
Some other possible causes for errors would 

be a major news development that would 
encourage more people to purchase newspapers, 
adverse weather conditions that make 
newsstands inaccessible, or economic changes. 
These should be considered as outliers. 
However, we decided not to remove these 
outliers. The small amounts of circulation data 
was one of the major drawbacks to this study 
and outlier removal would only exacerbate the 
problem.  
 

Conclusion 
 

In this paper, we study the modeling and 
prediction of the newspaper circulation data via 
the time series techniques. The obtained data is 
treated as a realization of a time series stochastic 
process. Time series analysis is then used for 
modeling of the circulation volume data. In 
particular, we focus on the ARIMA model due 
to the non-stationarity of the observed data. A 
differencing technique is used to remove the 
trend from the data. The data correlation via the 
correlogram and partial correlogram are further 
examined to determine appropriate model type. 
In addition, the Hannan-Rissanen procedure is 
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used to determine the model order and also 
estimate the model parameter values. The model 
validation is performed via the residual analysis. 
Finally, the time series models are used to 
predict circulation volume and the results are 
presented. Our study indicates that these models 
can predict newspaper circulation volume with 
reasonable accuracy. Additionally, it indicates 
the potential and effectiveness of using the time 
series modeling in the prediction of newspaper 
circulation.  
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