
PROGRAMMING THE PALM TUNGSTEN
SECOND IN A SERIES

Edwin G. Wiggins

Webb Institute

Introduction

The first article in this series[1] describes the
creation of a simple applet for the Palm
Tungsten in the programming language
PocketC. That applet was a Palm Database
(pdb) file. It would run only within the PocketC
environment.

When an applet is intended for wide

distribution, it is better to create a stand-alone
version of the program. Such a version can be
executed by users who do not have PocketC.

This article describes a new applet, one that

finds roots of a polynomial by means of a
successive approximation algorithm. It also
demonstrates the process for creating stand-
alone applets, called prc files.

Mathematical Background

The algorithm used in this applet is commonly

referred to as the Newton-Raphson method. A
good discussion of this method can be found at

http://mathworld.wolfram.com/NewtonsMethod
.html.

The essential idea is to make an initial guess at

the root, draw a tangent to the function at this
point, and extrapolate until the tangent crosses
the x axis. This intersection is taken as a new
guess at the root, and the process is repeated. In
symbolic terms, the process is written as

 1
() .
'()

n
n n

n

f xx x
f x+ = −

Since, by definition, a root is a point where the
value of the function is zero, success in finding
the root is measured by the value of the
function. It should be noted that there are two
potential problems here. The first is the
possibility that the algorithm may arrive at a
point where the derivative is zero. It is
important to intercept this possibility before the
applet attempts to divide by this derivative.

The second problem is more subtle. Some

functions are very flat near a root. Thus the
value of the function may be very close to zero
at a significant distance away from the root. In
this case, the algorithm may report a root that is
not accurate. For example, the polynomial
x4+4x3+6x2+4x+1, which is (x+1)4, has a
quadruple root at x=-1. The function is very flat
near this root. At x=-1.05, the value of the
polynomial is 6.25x10-6.

Some polynomials of second order and higher

have no real roots. An example is x2+1. This
algorithm finds only real roots, so it will find no
roots for such functions. When a polynomial
has more than one real root, the initial guess will
determine which real root is found. Although
the algorithm is likely to find the real root
nearest the initial guess, this is not always the
case.

The Applet in PocketC

As in the previous article, the program code is

presented in segments below. Each segment is
discussed in turn. The code itself is heavily
commented to make it almost self-explanatory.

Following several lines of comments (anything

preceded with a double slash), the code begins
with the commands required to create a stand-
alone applet.

24 COMPUTERS IN EDUCATION JOURNAL

http://mathworld.wolfram.com/NewtonsMethod.html
http://mathworld.wolfram.com/NewtonsMethod.html

// Polyroots
// Finds roots of a polynomial up to 4th order
// 2/11/05

@cid "pol!"; // registration code
@ver "1.0"; // version number
@category "Engineering"; // Palm applet category where icon should appear
@name "PolyRoot"; // program name to appear under icon
@dbname "Polyroots"; // name of pdb file
@licon1 "polybig.bmp"; // large monochrome icon
@licon8 "polybig.bmp"; // large color icon
@sicon1 "polysmall.bmp"; // small monochrome icon

These lines need careful explanation. Line 1

(@cid "pol!";) contains the four character
registration code for the program. This code
may be obtained at no cost from the PalmOne
developer site. Line 2 identifies the version of
the program as assigned by the program’s
creator.

Palm PDAs come with several predefined

categories (System, Main, Utilities …), and the
user is free to create other categories that serve
useful purposes. Assigning applets to particular
categories can simplify the process of locating
them. The author has created a category called
Engineering. The command (@category
"Engineering";) in line 3 specifies that this
applet should be assigned to that category.
When the main screen is displayed, the user
may select a category from the drop-down list at
the upper right. The default choice (All)
displays all icons. If the Engineering category
is selected, only programs assigned to that
category will have their icons displayed.

Lines 4 and 5 contain the name to be displayed

under the icon and the name of the pdb file from
which the prc file was created. The next three
lines contain references to the icons for the
program. Two icons are mandatory: licon1 and
sicon1. These are monochrome icons (indicated
by the 1). Large icons must be bitmap files that
are 32 pixels square. Small icons must be
bitmap files that are 15 pixels wide by 9 pixels
high. The command @licon8 "polybig.bmp";
points to a color icon. This command is
optional, but color icons are much more

attractive than monochrome ones. When both a
monochrome and a color icon are defined, my
Palm Tungsten automatically chooses to display
the color icon.

Icons can be created with Microsoft Paint, but

it is awkward to work with very small images
there. Even when a 32x32 icon is zoomed up to
the maximum size (800%) it is too small for
easy work. The author uses IconCooleditor to
produce the large color icons. This program
insists on square icons, so it works fine for
32x32, but it does not work for the small (15x9)
icons. Those are done with Microsoft Paint.
Since only the large color icon appears on the
Palm Tungsten screen, the quality of the small
icon is not critical.

Next, all variables that will appear in the code

are declared.

main() {

// Declare variables

 // Coefficients of the polynomial, beginning with
 the constant term
 float a; // constant term
 float b; // coefficient of x
 float c; // coefficient of x^2
 float d; // coefficient of x^3
 float e; // coefficient of x^4
 int order; // the order of the polynomial

 float function; // The value of the polynomial
 float derivfunction; // The value of its
 derivative

 float x; // The current estimate of the root

COMPUTERS IN EDUCATION JOURNAL 25

 float x0; // Initial guess of root
 float dx; // Change in x

 int sentry; // "sentry" is used to prevent
 infinite loops

Then the input values are obtained from the

user. First, the applet asks for the order of the
polynomial and checks to make sure it is four or
less.

// Get input
 clear();

 title("Polyroots");
 order= (int) gets (" Enter polynomial
 order [1 to 4]"); // order of polynomial

 // error trap in case user enters an order
 higher than 4

 if (order >4) {
 puts ("\n\n" + "Order MUST be <= 4");
 // polynomial orders greater than 4 are
 not permitted
 wait();
 exit();
 } // end error trap

The “if” statements in the code below make

sure that the user is only asked for coefficients
that are appropriate to the order of the
polynomial. If a lower order term is not
present, the user should enter zero. However,
the program assumes zero values for all
variables unless other values are explicitly
entered.

 // ask for coefficients of polynomial

 a= (float) gets("Constant term? ");
 b= (float) gets("Coefficient of x? ");

 if (order > 1) {
 c= (float) gets("Coefficient of x^2? ");
 } // end if

 if (order > 2) {
 d= (float) gets("Coefficient of x^3? ");
 } // end if

 if (order > 3) {
 e= (float) gets("Coefficient of x^4? ");
 } // end if

Finally, the user is asked for an initial estimate
of the root. If there are multiple roots, this
choice will determine which one is found. The
value of the initial guess is preserved as x0, and
that value is included in the output.

x= (float) gets("Estimate of root? ");
// Get the initial estimate of root
x0=x; // remember the initial estimate

The sentry variable is set equal to 1 in the code

below, and the function value is set to 10.

A “while” structure is used to test for

convergence and to limit the number of
iterations. Because PocketC appears to lack an
absolute value function, the convergence test is
done by squaring the function value and taking
the square root. The convergence tolerance (1e-
5 below) must be chosen carefully. If it is too
small, the internal accuracy of the machine itself
may be insufficient to give convergence. As
noted above the polynomial x4+4x3+6x2+4x+1
is expected to present a problem in this regard.
With this convergence tolerance, the applet
reports a root at -0.9440 with a function value of
9.835x10-6. Unfortunately, smaller tolerances
result in failure to converge.

The test for remaining inside the “while”

structure has two parts. Logical AND is
represented by &&. Thus the loop will continue
until either the function value falls below 1x10-5
or the number of iterations reaches 100.

// Perform calculations

 sentry=1; // set initial value of "sentry"
 function=10; // set initial value of
 "function"

 while (sqrt(function*function) > 1e-5
 && sentry <= 100) { // iterate until root
 is found or 100 iterations have been
 performed

Both the function and its derivative are

evaluated at the current value of x.

26 COMPUTERS IN EDUCATION JOURNAL

function=a+b*(x)+c*(x*x)+d*(x*x*x)+e
 *(x*x*x*x); // evaluate the function
 //note that this is a+b*x+c*x^2+d*x^3+e*x^4

 derivfunction=b+2*c*(x)+3*d*(x*x)+4*
 e*(x*x*x); // evaluate its derivative
 //note that this is b+2*c*x+3*d*x^2+4*e*x^3

Here is an error trap in case the value of the

derivative is close to zero. In that case the
derivative is arbitrarily set equal to 0.5 to avoid
a divide by zero error.

 if (pow(derivfunction,2) < 1e-6) { //
 error trap in case derivative is near 0

 derivfunction=0.5; // if derivative is
 zero, set it to this value

 } // end divide by zero if

A new value of x is calculated in accordance

with the Newton-Raphson procedure, and the
sentry variable is incremented by one.

 dx = function/derivfunction;

 x = x - dx; // new estimate of the root

 sentry=sentry+1; // increment the sentry
 variable

 } // end function while

The final section of the code displays the
output. First, the polynomial itself is displayed
so that the user can verify that the correct
polynomial is being analyzed. The “if”
statements ensure that only appropriate terms
are displayed.

// Display output

 // Display polynomial

 puts("The polynomial is" + "\n");

 if (order==4) { // fourth order polynomial
 puts(format(a,0) + " + " + format(b,0) + "x + " +
 format(c,0) + "x^2 + " + format(d,0) + "x^3 + " +
 format(e,0) + "x^4");
 } // end if
 if (order==3) { // third order polynomial
 puts(format(a,0) + " + " + format(b,0) + "x + " +
 format(c,0) + "x^2 + " + format(d,0) + "x^3");
 } // end if

 if (order==2) { // second order polynomial
 puts(format(a,0) + " + " + format(b,0) + "x + " +
 format(c,0) + "x^2");
 } // end if

 if (order==1) { // first order polynomial
 puts(format(a,0) + " + " + format(b,0) + "x");
 } // end if

If convergence was achieved in 100 iterations

or fewer, the approximate value of the root and
the corresponding value of the polynomial are
displayed. If the order of the polynomial is
greater than 1, the user is reminded that there
may be other roots.

 // If convergence occurred display value of the
 root and final value of polynomial

 if (sentry <= 100) { // the while was terminated
 by convergence not by sentry

 puts("\n\n" + "approximate root= " +
 format(x,4)+ "\n\n" + "polynomial
 value= " + function);

 if (order > 1) {
 puts ("\n\n" + "Initial guess " +
 format(x0,0) + "\n\n" + "Other

 guesses may yield" + "\n" + "other
 real root(s).");

 } // end if

When convergence does not occur in 100
iterations, the last value of x and the
corresponding values of the function and its
derivative are displayed, and the user is
informed that there was no convergence within
100 iterations.

COMPUTERS IN EDUCATION JOURNAL 27

 } else { // if while was terminated by sentry give final values of function and
 derivative

 puts ("\n\n" + "x = " + format(x,4) + "\n" + "function = " + function +
 "\n" + "derivative = " + derivfunction);
 puts ("\n\n" + "No solution after " + sentry + " iterations." + "\n\n" +
 "There may be no real roots" + "\n" +"Program terminated.");

 } // end if

 wait();
 exit();

} // End main

Conclusion

This article demonstrates the commands

required in PocketC to produce a stand-alone
(prc) file. It further illustrates the use of a
“While” structure and the use of logical AND.
In addition to its tutorial value, this applet may
be a useful tool for engineering students. The
resulting prc file will be made available for
download at no charge. A later article in this
series will give details of where to find the files.

References

1. Wiggins, Edwin G., “Programming the Palm

Tungsten,” Computers in Education Journal,
October-December 2005, Vol. XV No.4
pages 53-57.

Biographical Information

Edwin G. Wiggins holds BS, MS, and Ph.D.

degrees in chemical, nuclear, and mechanical
engineering respectively from Purdue
University. He is the Mandell and Lester
Rosenblatt Professor of Marine Engineering at
Webb Institute in Glen Cove, NY. Ed is a past
chairman of the New York Metropolitan Section
of the Society of Naval Architects and Marine
Engineers (SNAME) and a past regional vice
president of SNAME. A Centennial Medallion
and a Distinguished Service Award recognize
his service to SNAME. As a representative of
SNAME, Ed Wiggins serves on the Engineering
Accreditation Commission of the Accreditation
Board for Engineering and Technology.

28 COMPUTERS IN EDUCATION JOURNAL

