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Abstract 
 
The microprocessor, also known as the Central 

Processing Unit (CPU), is the most essential 
part of a computer, and is a complete 
computation engine that is fabricated on a single 
chip. An Arithmetic and Logic Unit (ALU) is 
the heart of all microprocessors. The ALU is a 
combinational circuit that performs a number of 
different arithmetic and logical operations. In 
this changing world of electronics, the demand 
for faster and more compact ALUs is growing 
by the minute. The complexity and compact size 
of the ALU make it even more critical from the 
design point of view to test it in conjunction 
with pre-design parts before manufacturing.  
This paper is an attempt to achieve the above 
objective using CAD and SPICE simulation 
software. The main purpose of the project is to 
realize a method for importing a layout drawn in 
Tanner L-edit, simulated in T-Spice into PSpice 
referred, to as “software talking”. To do so, an 
eight-instruction set CMOS ALU is laid out in 
Tanner L-edit and the extracted net-list is then 
simulated in T-Spice. An ALU equivalent 
design is then modeled in PSpice for further 
testing with pre-manufactured parts of the 
PSpice library.  This project helps students 
understand the construction of an ALU. 

 
Introduction 

 
Students have difficulty in understanding and 

comprehending the construction of an ALU.  
We have designed a project to help students 
comprehend the construction of an ALU from 
gate down to the semiconductor level. 

 
In this ALU design a top-down approach has 

been used and is clearly explained with the help 
of a block diagram in Figure 1. The top-level 
module consists of a four-bit ALU essentially 
performing eight important functions. The eight 

functions performed are ADDITION, 
SUBTRACTION, AND, NAND, OR, NOR, XOR 
and XNOR. Each of the above functions is 
performed on two four-bit inputs. The functions 
performed are bitwise operations. The bitwise 
output is then multiplexed out using an 8X1 
multiplexer. Each of the single-bit building 
blocks are cascaded together to form a four-bit 
ALU [1].  

 
The eight-instruction set of the ALU is briefly 

described below. 
 

1. ADDITION: This function is performed 
by a Ripple-Adder. The output of the 
adder consists of four sum bits and a 
single carry-out bit. 

 
2. SUBTRACTION: This function is 

performed by a Ripple-Adder. The second 
input is complimented using two’s 
complement. The output of the adder 
consists of four sum bits and a single 
carry-out bit. 

 
3. NAND: The NAND gate is a universal 

gate. The output of a NAND gate is high if 
any one of the inputs is low. The NAND 
gate can be used to construct a number of 
logic operations. 

 
4. AND: The AND gate is a basic gate. The 

output of a AND gate is high only if both 
the inputs are high (i.e. the output of a 
AND gate is high when both the inputs are 
high). The AND gate can be constructed in 
CMOS by inverting the NAND gate. 

 
5. NOR: The NOR gate is a universal gate. 

The output of a NOR gate is low if any 
one of the inputs is high (i.e. the output of 
a NOR gate is high when both the inputs 
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are low). The NOR gate can be used to 
construct various logic operations. 

 
6. OR: The OR gate is a universal gate. The 

output of an OR gate is low. Only if both 
of the inputs are low (i.e. the output of an 
OR gate is high any one of the inputs are 
high). The OR gate can be constructed in 
CMOS by inverting the NOR gate. 

 
7. XOR: The XOR gate can be constructed a 

combination of NAND and NOR gates. 
The output of the XOR gate is low when 
inputs are the same (0,0) or (1,1). 

 
8. XNOR: This is constructed by inverting 

the XOR gate. 
 
Each of the functions is performed on single-

bit inputs, i.e., the functions performed are 
bitwise operations. The design is laid out in 
Tanner L-edit using 0.6 micron technology. 
The layout is then extracted using an ML12_5 
model file. The extracted net-list is then 
simulated using T-Spice.  

 

The CMOS NOR gate is derived examining 
the K-MAP. The “0” dictates the AND 
structure, constructed using two NMOS in 
parallel. The “1” dictates the OR structure, 
constructed using two P-MOS connected in 
series. 

Figure 1: Four-Bit ALU Block Diagram. 
 

The device is then modeled in Orcad PSpice. 
Spice A/D is a simulation program that models 
the behavior of a circuit containing any mix of 
analog and digital devices. Used with Orcad 
Capture for  design entry, PSpice A/D  can be 

imagined as a software-based breadboard circuit 
that can be used to test and refine design before 
ever touching a piece of hardware[2]. The 
PSpice modeling involves writing an equivalent 
code in Verilog used by the PSpice editor in 
modeling different electronic devices. The 
resultant propagation delay of the ALU has been 
modeled. 

 
CMOS  Design  Methodology 

 
Inverter 
 

The inverter consists of an NMOS and a 
PMOS switch connected in series. The 
PSWITCH is connected from the VDD to the 
output and input for conduction when the input 
voltage is low. The NSWITCH is connected 
from the GND to the output and the input for 
conduction when the input voltage is high. 

 
NAND Gate 
 

The CMOS NAND gate is derived examining 
the K-MAP. The “0” dictates the AND 
structure, constructed using two NMOS in 
parallel. The “1” dictates the OR structure, 
constructed using two P-MOS connected in 
Series.  
 
AND Gate 
 

The CMOS AND gate is designed by inverting 
the CMOS NAND gate. The output of AND is 
high only when both the inputs are high. 
 
NOR Gate 
 

 
OR Gate 

 
 The CMOS OR gate has been designed by 

inverting the CMOS NOR gate. The output of 
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OR is high only when both or any one of the 
inputs is high.  
XOR Gate 
 

The Exclusive-OR, or XOR function can be 
described verbally as, "Either A or B, but not 
both.” The output of an XOR gate is high only 
when any one of the inputs is low.  A XOR gate 
can be designed by a combination of NAND and 
OR gates. 
 
XNOR Gate 
 

The gate is designed by inverting the XOR 
gate .The output of the XNOR gate is high when 
both the inputs are the same (0,0) or (1,1).  
 
Full-Adder 
 

The full-adder circuit adds three one-bit binary 
numbers (C, A and B) and outputs two one-bit 
binary numbers, a sum (S) and a carry (C).The 
full-adder is usually a component in a cascade 
of adders, which add 8, 16, 32, etc. binary 
numbers.  The output of XOR gate is called 
SUM, while the output of the AND gate is the 
CARRY. The AND gate produces a high output 
only when both inputs are high. The XOR gate 
produces a high output if either input, but not 
both, is high. The ‘”C” input for an ADDER is 
always made low. 
 
Subtractor 
 

Binary subtraction is performed by adding the 
two’s complement of the number to be 
subtracted. Two’s complement of a number can 
be achieved by inverting the number and adding 
one to it. This is achieved by inverting each bit 
of the number to be subtracted and adding “1” 
by means of the carry-in. The carry-in of a 
Subtractor must be “1.” 
 
Multiplexer 
 

 A multiplexer is a combinatorial circuit that is 
given a certain number (usually a power of two)  
of data inputs; let us say 2n, and n address 
inputs used as a binary number to select one of 

the data inputs. The multiplexer has a single 
output, which has the same value as the selected 
data input. The present design is an 8x1. The 
Multiplexer has been used for each single bit out 
depending on which input is needed to be sent 
out. This also ensures a faster ALU as the 
functions are performed as soon as the input is 
fed to the ALU. 

 
The 3 control signals (S2, S1, S0) determine 

the desired output as shown below: 
 

000 ADDITION 
001 AND 
010 NAND 
011 OR 
100 NOR 
101 XOR 
110 XNOR 
111 SUBTRACTION  

 
Four-Bit  ALU 

 
The single-bit ALUs are cascaded together to 

form a four-bit ALU shown in Figure 2. 
 
 

Figure 2. Four-bit ALU block diagram. 
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PSpice  Design  Methodology 
 
OrCAD personal productivity tools have a 

long history of addressing demands. The 
powerful, tightly integrated PCB design suites 
include design capture, librarian tools, a PCB 
editor, an auto/interactive router, and an 
optional analog and mixed-signal simulator. The 
affordable, high-performance OrCAD product 
line is easily scalable with the full complement 
of Cadence Allegro PCB solutions.  The 
OrCAD product line is owned by Cadence 
Design Systems, Inc.  

 
Modeling  Primitives 

 
 Primitives are primarily used in sub-circuits to 

model complete devices. Stimulus devices are 
used in the circuit to provide input for other 
digital devices during the simulation. Digital 
primitives are low-level devices whose main use 
is modeling off-the-shelf parts, often in 
combination with each other [3].  

 
Behavioral  primitives 

 
The model simulator offers three primitives to 

aid in the modeling of complex digital devices: 
 
• The Logic Expression  
• The Pin-to-Pin Delay 
• The Constraint Checker primitives 

 
These devices are distinct from other 

primitives in that they allow data-sheet 
descriptions to be specified more directly, 
allowing a one-to-one correspondence using the 
function diagrams and timing specifications.  

 
The Logic Expression primitive, LOGICEXP, 

uses free-format logic expressions to describe 
the behavior of the functional device.  

 
The Pin-To-Pin Delay primitive, PINDLY, 

describes propagation delays using sets of rules 
based on the activity on the device inputs. Each 
of the stimulus behavior parts is described in 
detail below. 

 

• Device format : 
 
U<name> LOGICEXP (<no. of inputs>, <no .of 
outputs>)  
+<digital power node> <digital ground node> 
+<input node1><input node n> 
+<output node 1><output node n> 
+<timing model name> 
+<I/O model name> 
+ [IO_LEVEL=<value>]  
+ [MNTYMXDLY=<value>]  
+LOGIC:  
+ <logic assignment>* 

 
• Timing Device Format : 

    
MODEL <timing model name>  
UGATE [model parameters 
 

• Arguments and options : 
 

LOGIC Marks the beginning of a sequence 
of one or more logic assignments. A logic 
assignment can have one of the two following 
forms: 

 
<Output node>= {<logic expression>} 
<Temporary value>= {<logic expression>} 
 
An assignment to an output node causes the 

result of the logic expression to be scheduled on 
that output pin. Each output node must have 
exactly one assignment.[7]  Any target of an 
assignment which is not specified as one of the 
nodes attached to the device defines a temporary 
variable. Once assigned, the temporary values 
can be used inside a subsequent logic 
expression. They are provided to reduce the 
complexity and improve the readability of the 
model. The rules for node names apply to 
temporary value names. 
 

Logic  Expression  Operators 
 
A “C-like” infix-notation expression returns 

one of the five digital logic levels. Like all other 
expressions, logic expressions within must be 
surrounded by curly braces “{ }.” They can span 
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one or more lines using the “+” for continuation 
character in the first column position [4].  

 
The logic operators are listed below from 

highest-to-lowest precedence 
~ Unary not 
& and 
^ Exclusive OR 
| OR 

 
PSpice  Model  Editor 

 
The Model Editor is used either to generate a 

new model or edit an existing model to create a 
new model. To generate a new model the 
method below has to be followed. For better 
understanding each is further reinforced with the 
help of a screen shot. 

 
Using the File menu 
From the File menu in the Model Editor, choose 
New. 
Using the model menu from the model menu 
chose copy from. 
 

 
 
Figure 3. Screen shot of model editor when copy 
from is selected. 

 
Select the any Model from the source library. 
Click OK. A screen shot of this step has been 
shown in Figure 3. 
Manually type in the behavioral or digital 
primitives of the device to be modeled. 
Save the file as “.lib.” A screen shot of this step 
is shown in Figure 4. 

 

 
 
Figure 4. Screen shot of model editor with new 

model creation. 
 
Exporting  the  Model  to  Capture  Library 

 
The Model Editor is used to import the model 

into Capture. To generate a new model in 
Capture the method below has to be followed. 

 
• Using the File Menu 

 
a. From the File menu in Model Editor, 
choose export to capture part library. 
b. Show the path for importing from 
PSpice to Capture library by selecting the 
browse tab under title Enter output part 
library. A screen shot of this step is shown 
in Figure 5. 

 

 
 
Figure 5. Screen shot of import /export tool bar 
in model editor. 
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Figure 6. MY_alu pin layout. 
 
Figure 6. shows the schematic view of ALU in 

Capture after importation. 
 

Configuring  New  Model  Library 
 

After the part has been generated for a 
new/customized model library, the model 
library must be made available to the design. 
The model library containing custom simulation 
models is added to the project simulation 
profile. 

 
1. In Capture, open Analog or Mixed-Circuit 

project. 
2. From the PSpice menu choose Edit 

Simulation Profile. 
3. Select the Configuration Files tab. 
4. In the Category list box, select Library. 
5. In the Filename text box, specify the 

location of the model library. 
6. To make the library available to all 

designs, click Add as Global. If you want 
the library to be used only in the current 
design, select Add to Design and close the 
Simulation Settings dialog box. A screen 
shot of this step has been shown in Figure 
7. 

 
 
Figure 7. Screen shot of model wizard new 

simulation profile. 
 
Note: Instead of editing a simulation profile, 

you can also create a new simulation profile. To 
do so, choose New Simulation Profile from the 
PSpice menu in Capture. 

 
The above technique can be further explained 

by modeling an ALU in PSpice. The ALU 
designed below has been modeled keeping in 
mind the design structure of the “74181”[5].   

 
The top module consists of a four-bit ALU. 

The four bit ALU designed consists of eight 
instruction sets. The eight functions performed 
are ADDITION, SUBTRACTION, AND, NAND, 
OR, NOR, XOR and XNOR [6]. Each of the 
above function is performed on two four-bit 
inputs.  The functions performed are bit-wise 
operations as shown in Figure 8. 

 
Each of the bitwise outputs is multiplexed out 

using 8X1 multiplexer shown in figure 8.Four 
single-bit building blocks are cascaded together 
to form a four-bit ALU.  
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Figure 8. Single- Bit ALU Block Diagram. 
 
 
 
 
 Figure 9: CMOS Four-Bit ALU Layout.   
  
  

  
Figure 10. shows  the  inputs  of  Table  1  in  Figure 9. shows the CMOS ALU Layout and 

Results. T-Spice. 
  
Figure 11. shows the outputs of Table 1 in T-

Spice. 
ALU  Measurements 

 
 1. TOTAL NO. OF DEVICES : 982  MOS 
Figure 12. shows the ALU in PSpice Capture 

and Figure 13. shows the outputs of  Table 1. in 
PSpice 

2. APPROXIMATE AREA OF THE ALU 
1431385.2 square microns 

3. RISE TIME :10.13 nanoseconds 
 4. FALLTIME : 20.08 nanoseconds  

5. TPLH : 11.53 nanoseconds  
6. TPHL : 13.37 nanoseconds  

 7. PROPAGATION DELAY: 12.45 
nanoseconds  

 8. SKEW: 48. 
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Table 1. Instruction Set Functional. 
 

A 
INPUT 

B INPUT FUNCTION 
(CONTROL 

SIGNAL) 

OUTPUT 

1010 0100 ADD(000) 1110 
1010 0100 AND(001) 0000 
1010 0100 NAND(010) 1111 
1010 0100 OR(011) 1110 
1010 0100 NOR(100) 0111 
1010 0100 XOR(101) 1110 
1010 0100 XNOR(110) 0001 
1010 0100 SUB(111) 0110 

 
 

 
 

Figure 10.  T-Spice Four-bit input. 
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Figure 11. T-Spice Four-Bit Output. 
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PSpice  Model  Editor  Code 
 

.SUBCKT my_alu A0_I A1_I A2_I A3_I B0_I B1_I B2_I 
+ B3_I S0_I S1_I S2_I SC_I CN_I 
+ F0_O F1_O F2_O F3_O COUT_O SOUT_O 
+ OPTIONAL: DPWR=$G_DPWR DGND=$G_DGND 
+ PARAMS: MNTYMXDLY=0 IO_LEVEL=0 
Umy_aluLOG LOGICEXP (13, 6) DPWR DGND 
+ A0_I A1_I A2_I A3_I B0_I B1_I B2_I 
+ B3_I S0_I S1_I S2_I SC_I CN_I 
+ F0_O F1_O F2_O F3_O COUT_O SOUT_O 
+ D0_GATE IO_STD 
+ IO_LEVEL= {IO_LEVEL} 
+ LOGIC: 
+   A0   = {A0_I} 
+   A1   = {A1_I} 
+   A2   = {A2_I} 
+   A3   = {A3_I} 
+   B0   = {B0_I} 
+   B1   = {B1_I} 
+   B2   = {B2_I} 
+   B3   = {B3_I} 
+   S0   = {S0_I} 
+   S1   = {S1_I} 
+   S2   = {S2_I} 
+   CN   = {CN_I} 
+   SC   = {SC_I} 
* 
* Intermediate terms: 
* 
*LOGIC OUTPUT OF F0  
+ 
I01={((~S2&~S1&~S0)&((A0^B0)^CN))|((~S2&~S1&S0)&(A0&B0))|((~S2&S1&~S0)&~(A0&B0))|(
(~S2&S1&S0)&(A0|B0))} 

+ 
I02={((S2&~S1&~S0)&~(A0|B0))|((S2&~S1&S0)&(A0^B0))|((S2&S1&~S0)&~(A0^B0))|((S2&S1&S
0)&(A0^~B0^SC))} 

+ F0_O= {(I02|I01)} 
*LOGIC OUTPUT OF F1 
+ I11 = {(A0&B0)| (B0&CN)| (CN&A0)}  
+ I12 = {(A0&~B0)| (~B0&SC)| (SC&A0)}  
+I13={((~S2&~S1&~S0)&((A1^B1)^I11))|((~S2&~S1&S0)&(A1&B1))|((~S2&S1&~S0)&~(A1&B1

))|((~S2&S1&S0)&(A1|B1))} 
+I14={(S2&~S1&~S0&~(A1|B1))|((S2&~S1&S0)&(A1^B1))|((S2&S1&~S0)&~(A1^B1))|((S2&S1&

S0)&(A1^~B1^I12))} 
+ F1_O = {I14|I13} 
*LOGIC OUTPUT OF F2 
+ I21 = {(A1&B1)| (B1&I11)| (I11&A1)}  
+ I22 = {(A1&~B1)| (~B1&I12)| (I12&A1)} 
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+I23={((~S2&~S1&~S0)&(A2^B2^I21))|((~S2&~S1&S0)&(A2&B2))|((~S2&S1&~S0)&~(A2&B2))|
((~S2&S1&S0)&(A2|B2))} 

+I24={((S2&~S1&~S0)&~(A2|B2))|((S2&~S1&S0)&(A2^B2))|((S2&S1&~S0)&~(A2^B2))|((S2&S1
&S0)&(A2^~B2^I22))} 

+ F2_O = {I24|I23} 
*LOGIC OUTPUT OF F3 
+ I31 = {(A2&B2)| (B2&I21)| (I21&A2)}  
+ I32 = {(A2&~B2)| (~B2&I22)| (I22&A2)} 
+I33=((~S2&~S1&~S0)&(A3^B3^I31))|((~S2&~S1&S0)&(A3&B3))|((~S2&S1&~S0)&~(A3&B3))|(

(~S2&S1&S0)&(A3|B3))} 
+I34={((S2&~S1&~S0)&~(A3|B3))|((S2&~S1&S0)&(A3^B3))|((S2&S1&~S0)&~(A3^B3))|((S2&S1

&S0)&(A3^~B3^I32))} 
 
 

 
 
 
 
 
 

 
PSpice  ALU  Wiring 
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Figure 12. ALU in PSpice Capture. 
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           Time           Time
0s 2us 4us 6us 8us 10us 12us 14us 16us 18us 20us

 1 A0};;B 1001 0111 1010
 1 B0};;B 0111 0010 0001
 1 S0};;B 000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111 000 001 010 011
 1 F0};;B 0000 0001 1110 1111 0000 1110 0001 0010 1001 0010 1101 0111 1000 0101 1010 0101 1001 0000 1111 1011
     COUT
     SOUT

 
 

Figure 13. ALU simulations in PSpice. 
 
 
 
 

Conclusion 
 
To stay competitive in today's market 

engineers must take a design from engineering 
through the manufacturing process with shorter 
design cycles and faster time to market. To be 
successful, you need a set of powerful, intuitive, 
and integrated tools that work seamlessly across 
the entire design flow [6]. 

 
OrCAD personal productivity tools have a 

long history of addressing these demands and 
more. And with the technique described above 
they make Digital Designs mere child’s play. 
They help designers create and test different 
designs of their choice without even touching a 
piece of hardware. The present paper outlines a 
simple but an important method in designing 
digital devices in OrCAD Pspice. The method is 
better explained with the help of an eight-
instruction set four-input ALU. 

 
 
 
The issue of teaching digital computing is as 

old as computers; this project helps students to 
comprehend the construction of an ALU from 
gate down to semiconductor level. Electronic 
design automation (PSpice & TSpice) has 
enabled us to design an ALU that meets an 
industrial model.    
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