
SPICE MODELING OF ALU

Saeid Moslehpour, Ph.D., Srikrishna Karatalpu
Department of Electrical & Computer Engineering

University of Hartford

Abstract

The microprocessor, also known as the Central

Processing Unit (CPU), is the most essential
part of a computer, and is a complete
computation engine that is fabricated on a single
chip. An Arithmetic and Logic Unit (ALU) is
the heart of all microprocessors. The ALU is a
combinational circuit that performs a number of
different arithmetic and logical operations. In
this changing world of electronics, the demand
for faster and more compact ALUs is growing
by the minute. The complexity and compact size
of the ALU make it even more critical from the
design point of view to test it in conjunction
with pre-design parts before manufacturing.
This paper is an attempt to achieve the above
objective using CAD and SPICE simulation
software. The main purpose of the project is to
realize a method for importing a layout drawn in
Tanner L-edit, simulated in T-Spice into PSpice
referred, to as “software talking”. To do so, an
eight-instruction set CMOS ALU is laid out in
Tanner L-edit and the extracted net-list is then
simulated in T-Spice. An ALU equivalent
design is then modeled in PSpice for further
testing with pre-manufactured parts of the
PSpice library. This project helps students
understand the construction of an ALU.

Introduction

Students have difficulty in understanding and

comprehending the construction of an ALU.
We have designed a project to help students
comprehend the construction of an ALU from
gate down to the semiconductor level.

In this ALU design a top-down approach has

been used and is clearly explained with the help
of a block diagram in Figure 1. The top-level
module consists of a four-bit ALU essentially
performing eight important functions. The eight

functions performed are ADDITION,
SUBTRACTION, AND, NAND, OR, NOR, XOR
and XNOR. Each of the above functions is
performed on two four-bit inputs. The functions
performed are bitwise operations. The bitwise
output is then multiplexed out using an 8X1
multiplexer. Each of the single-bit building
blocks are cascaded together to form a four-bit
ALU [1].

The eight-instruction set of the ALU is briefly

described below.

1. ADDITION: This function is performed
by a Ripple-Adder. The output of the
adder consists of four sum bits and a
single carry-out bit.

2. SUBTRACTION: This function is

performed by a Ripple-Adder. The second
input is complimented using two’s
complement. The output of the adder
consists of four sum bits and a single
carry-out bit.

3. NAND: The NAND gate is a universal

gate. The output of a NAND gate is high if
any one of the inputs is low. The NAND
gate can be used to construct a number of
logic operations.

4. AND: The AND gate is a basic gate. The

output of a AND gate is high only if both
the inputs are high (i.e. the output of a
AND gate is high when both the inputs are
high). The AND gate can be constructed in
CMOS by inverting the NAND gate.

5. NOR: The NOR gate is a universal gate.

The output of a NOR gate is low if any
one of the inputs is high (i.e. the output of
a NOR gate is high when both the inputs

COMPUTERS IN EDUCATION JOURNAL 23

are low). The NOR gate can be used to
construct various logic operations.

6. OR: The OR gate is a universal gate. The

output of an OR gate is low. Only if both
of the inputs are low (i.e. the output of an
OR gate is high any one of the inputs are
high). The OR gate can be constructed in
CMOS by inverting the NOR gate.

7. XOR: The XOR gate can be constructed a

combination of NAND and NOR gates.
The output of the XOR gate is low when
inputs are the same (0,0) or (1,1).

8. XNOR: This is constructed by inverting

the XOR gate.

Each of the functions is performed on single-

bit inputs, i.e., the functions performed are
bitwise operations. The design is laid out in
Tanner L-edit using 0.6 micron technology.
The layout is then extracted using an ML12_5
model file. The extracted net-list is then
simulated using T-Spice.

The CMOS NOR gate is derived examining
the K-MAP. The “0” dictates the AND
structure, constructed using two NMOS in
parallel. The “1” dictates the OR structure,
constructed using two P-MOS connected in
series.

Figure 1: Four-Bit ALU Block Diagram.

The device is then modeled in Orcad PSpice.
Spice A/D is a simulation program that models
the behavior of a circuit containing any mix of
analog and digital devices. Used with Orcad
Capture for design entry, PSpice A/D can be

imagined as a software-based breadboard circuit
that can be used to test and refine design before
ever touching a piece of hardware[2]. The
PSpice modeling involves writing an equivalent
code in Verilog used by the PSpice editor in
modeling different electronic devices. The
resultant propagation delay of the ALU has been
modeled.

CMOS Design Methodology

Inverter

The inverter consists of an NMOS and a
PMOS switch connected in series. The
PSWITCH is connected from the VDD to the
output and input for conduction when the input
voltage is low. The NSWITCH is connected
from the GND to the output and the input for
conduction when the input voltage is high.

NAND Gate

The CMOS NAND gate is derived examining
the K-MAP. The “0” dictates the AND
structure, constructed using two NMOS in
parallel. The “1” dictates the OR structure,
constructed using two P-MOS connected in
Series.

AND Gate

The CMOS AND gate is designed by inverting
the CMOS NAND gate. The output of AND is
high only when both the inputs are high.

NOR Gate

OR Gate

 The CMOS OR gate has been designed by

inverting the CMOS NOR gate. The output of

24 COMPUTERS IN EDUCATION JOURNAL

OR is high only when both or any one of the
inputs is high.
XOR Gate

The Exclusive-OR, or XOR function can be
described verbally as, "Either A or B, but not
both.” The output of an XOR gate is high only
when any one of the inputs is low. A XOR gate
can be designed by a combination of NAND and
OR gates.

XNOR Gate

The gate is designed by inverting the XOR
gate .The output of the XNOR gate is high when
both the inputs are the same (0,0) or (1,1).

Full-Adder

The full-adder circuit adds three one-bit binary
numbers (C, A and B) and outputs two one-bit
binary numbers, a sum (S) and a carry (C).The
full-adder is usually a component in a cascade
of adders, which add 8, 16, 32, etc. binary
numbers. The output of XOR gate is called
SUM, while the output of the AND gate is the
CARRY. The AND gate produces a high output
only when both inputs are high. The XOR gate
produces a high output if either input, but not
both, is high. The ‘”C” input for an ADDER is
always made low.

Subtractor

Binary subtraction is performed by adding the
two’s complement of the number to be
subtracted. Two’s complement of a number can
be achieved by inverting the number and adding
one to it. This is achieved by inverting each bit
of the number to be subtracted and adding “1”
by means of the carry-in. The carry-in of a
Subtractor must be “1.”

Multiplexer

 A multiplexer is a combinatorial circuit that is
given a certain number (usually a power of two)
of data inputs; let us say 2n, and n address
inputs used as a binary number to select one of

the data inputs. The multiplexer has a single
output, which has the same value as the selected
data input. The present design is an 8x1. The
Multiplexer has been used for each single bit out
depending on which input is needed to be sent
out. This also ensures a faster ALU as the
functions are performed as soon as the input is
fed to the ALU.

The 3 control signals (S2, S1, S0) determine

the desired output as shown below:

000 ADDITION
001 AND
010 NAND
011 OR
100 NOR
101 XOR
110 XNOR
111 SUBTRACTION

Four-Bit ALU

The single-bit ALUs are cascaded together to

form a four-bit ALU shown in Figure 2.

Figure 2. Four-bit ALU block diagram.

COMPUTERS IN EDUCATION JOURNAL 25

PSpice Design Methodology

OrCAD personal productivity tools have a

long history of addressing demands. The
powerful, tightly integrated PCB design suites
include design capture, librarian tools, a PCB
editor, an auto/interactive router, and an
optional analog and mixed-signal simulator. The
affordable, high-performance OrCAD product
line is easily scalable with the full complement
of Cadence Allegro PCB solutions. The
OrCAD product line is owned by Cadence
Design Systems, Inc.

Modeling Primitives

 Primitives are primarily used in sub-circuits to

model complete devices. Stimulus devices are
used in the circuit to provide input for other
digital devices during the simulation. Digital
primitives are low-level devices whose main use
is modeling off-the-shelf parts, often in
combination with each other [3].

Behavioral primitives

The model simulator offers three primitives to

aid in the modeling of complex digital devices:

• The Logic Expression
• The Pin-to-Pin Delay
• The Constraint Checker primitives

These devices are distinct from other

primitives in that they allow data-sheet
descriptions to be specified more directly,
allowing a one-to-one correspondence using the
function diagrams and timing specifications.

The Logic Expression primitive, LOGICEXP,

uses free-format logic expressions to describe
the behavior of the functional device.

The Pin-To-Pin Delay primitive, PINDLY,

describes propagation delays using sets of rules
based on the activity on the device inputs. Each
of the stimulus behavior parts is described in
detail below.

• Device format :

U<name> LOGICEXP (<no. of inputs>, <no .of
outputs>)
+<digital power node> <digital ground node>
+<input node1><input node n>
+<output node 1><output node n>
+<timing model name>
+<I/O model name>
+ [IO_LEVEL=<value>]
+ [MNTYMXDLY=<value>]
+LOGIC:
+ <logic assignment>*

• Timing Device Format :

MODEL <timing model name>
UGATE [model parameters

• Arguments and options :

LOGIC Marks the beginning of a sequence
of one or more logic assignments. A logic
assignment can have one of the two following
forms:

<Output node>= {<logic expression>}
<Temporary value>= {<logic expression>}

An assignment to an output node causes the

result of the logic expression to be scheduled on
that output pin. Each output node must have
exactly one assignment.[7] Any target of an
assignment which is not specified as one of the
nodes attached to the device defines a temporary
variable. Once assigned, the temporary values
can be used inside a subsequent logic
expression. They are provided to reduce the
complexity and improve the readability of the
model. The rules for node names apply to
temporary value names.

Logic Expression Operators

A “C-like” infix-notation expression returns

one of the five digital logic levels. Like all other
expressions, logic expressions within must be
surrounded by curly braces “{ }.” They can span

26 COMPUTERS IN EDUCATION JOURNAL

one or more lines using the “+” for continuation
character in the first column position [4].

The logic operators are listed below from

highest-to-lowest precedence
~ Unary not
& and
^ Exclusive OR
| OR

PSpice Model Editor

The Model Editor is used either to generate a

new model or edit an existing model to create a
new model. To generate a new model the
method below has to be followed. For better
understanding each is further reinforced with the
help of a screen shot.

Using the File menu
From the File menu in the Model Editor, choose
New.
Using the model menu from the model menu
chose copy from.

Figure 3. Screen shot of model editor when copy
from is selected.

Select the any Model from the source library.
Click OK. A screen shot of this step has been
shown in Figure 3.
Manually type in the behavioral or digital
primitives of the device to be modeled.
Save the file as “.lib.” A screen shot of this step
is shown in Figure 4.

Figure 4. Screen shot of model editor with new

model creation.

Exporting the Model to Capture Library

The Model Editor is used to import the model

into Capture. To generate a new model in
Capture the method below has to be followed.

• Using the File Menu

a. From the File menu in Model Editor,
choose export to capture part library.
b. Show the path for importing from
PSpice to Capture library by selecting the
browse tab under title Enter output part
library. A screen shot of this step is shown
in Figure 5.

Figure 5. Screen shot of import /export tool bar
in model editor.

COMPUTERS IN EDUCATION JOURNAL 27

U1

MY_ALU

A0_I
1

A1_I
2

A2_I
3

A3_I
4

B0_I
5

B1_I6

B2_I7

B3_I8

S0_I9

S1_I10

S2_I
11

SC_I
12

CN_I
13

F0_O
14

F1_O
15

F2_O 16

F3_O 17

COUT_O 18

SOUT_O 19

Figure 6. MY_alu pin layout.

Figure 6. shows the schematic view of ALU in

Capture after importation.

Configuring New Model Library

After the part has been generated for a
new/customized model library, the model
library must be made available to the design.
The model library containing custom simulation
models is added to the project simulation
profile.

1. In Capture, open Analog or Mixed-Circuit

project.
2. From the PSpice menu choose Edit

Simulation Profile.
3. Select the Configuration Files tab.
4. In the Category list box, select Library.
5. In the Filename text box, specify the

location of the model library.
6. To make the library available to all

designs, click Add as Global. If you want
the library to be used only in the current
design, select Add to Design and close the
Simulation Settings dialog box. A screen
shot of this step has been shown in Figure
7.

Figure 7. Screen shot of model wizard new

simulation profile.

Note: Instead of editing a simulation profile,

you can also create a new simulation profile. To
do so, choose New Simulation Profile from the
PSpice menu in Capture.

The above technique can be further explained

by modeling an ALU in PSpice. The ALU
designed below has been modeled keeping in
mind the design structure of the “74181”[5].

The top module consists of a four-bit ALU.

The four bit ALU designed consists of eight
instruction sets. The eight functions performed
are ADDITION, SUBTRACTION, AND, NAND,
OR, NOR, XOR and XNOR [6]. Each of the
above function is performed on two four-bit
inputs. The functions performed are bit-wise
operations as shown in Figure 8.

Each of the bitwise outputs is multiplexed out

using 8X1 multiplexer shown in figure 8.Four
single-bit building blocks are cascaded together
to form a four-bit ALU.

28 COMPUTERS IN EDUCATION JOURNAL

Figure 8. Single- Bit ALU Block Diagram.

 Figure 9: CMOS Four-Bit ALU Layout.

Figure 10. shows the inputs of Table 1 in Figure 9. shows the CMOS ALU Layout and

Results. T-Spice.

Figure 11. shows the outputs of Table 1 in T-

Spice.
ALU Measurements

 1. TOTAL NO. OF DEVICES : 982 MOS
Figure 12. shows the ALU in PSpice Capture

and Figure 13. shows the outputs of Table 1. in
PSpice

2. APPROXIMATE AREA OF THE ALU
1431385.2 square microns

3. RISE TIME :10.13 nanoseconds
 4. FALLTIME : 20.08 nanoseconds

5. TPLH : 11.53 nanoseconds
6. TPHL : 13.37 nanoseconds

 7. PROPAGATION DELAY: 12.45
nanoseconds

 8. SKEW: 48.

COMPUTERS IN EDUCATION JOURNAL 29

Table 1. Instruction Set Functional.

A
INPUT

B INPUT FUNCTION
(CONTROL

SIGNAL)

OUTPUT

1010 0100 ADD(000) 1110
1010 0100 AND(001) 0000
1010 0100 NAND(010) 1111
1010 0100 OR(011) 1110
1010 0100 NOR(100) 0111
1010 0100 XOR(101) 1110
1010 0100 XNOR(110) 0001
1010 0100 SUB(111) 0110

Figure 10. T-Spice Four-bit input.

30 COMPUTERS IN EDUCATION JOURNAL

Figure 11. T-Spice Four-Bit Output.

COMPUTERS IN EDUCATION JOURNAL 31

PSpice Model Editor Code

.SUBCKT my_alu A0_I A1_I A2_I A3_I B0_I B1_I B2_I
+ B3_I S0_I S1_I S2_I SC_I CN_I
+ F0_O F1_O F2_O F3_O COUT_O SOUT_O
+ OPTIONAL: DPWR=$G_DPWR DGND=$G_DGND
+ PARAMS: MNTYMXDLY=0 IO_LEVEL=0
Umy_aluLOG LOGICEXP (13, 6) DPWR DGND
+ A0_I A1_I A2_I A3_I B0_I B1_I B2_I
+ B3_I S0_I S1_I S2_I SC_I CN_I
+ F0_O F1_O F2_O F3_O COUT_O SOUT_O
+ D0_GATE IO_STD
+ IO_LEVEL= {IO_LEVEL}
+ LOGIC:
+ A0 = {A0_I}
+ A1 = {A1_I}
+ A2 = {A2_I}
+ A3 = {A3_I}
+ B0 = {B0_I}
+ B1 = {B1_I}
+ B2 = {B2_I}
+ B3 = {B3_I}
+ S0 = {S0_I}
+ S1 = {S1_I}
+ S2 = {S2_I}
+ CN = {CN_I}
+ SC = {SC_I}
*
* Intermediate terms:
*
*LOGIC OUTPUT OF F0
+
I01={((~S2&~S1&~S0)&((A0^B0)^CN))|((~S2&~S1&S0)&(A0&B0))|((~S2&S1&~S0)&~(A0&B0))|(
(~S2&S1&S0)&(A0|B0))}

+
I02={((S2&~S1&~S0)&~(A0|B0))|((S2&~S1&S0)&(A0^B0))|((S2&S1&~S0)&~(A0^B0))|((S2&S1&S
0)&(A0^~B0^SC))}

+ F0_O= {(I02|I01)}
*LOGIC OUTPUT OF F1
+ I11 = {(A0&B0)| (B0&CN)| (CN&A0)}
+ I12 = {(A0&~B0)| (~B0&SC)| (SC&A0)}
+I13={((~S2&~S1&~S0)&((A1^B1)^I11))|((~S2&~S1&S0)&(A1&B1))|((~S2&S1&~S0)&~(A1&B1

))|((~S2&S1&S0)&(A1|B1))}
+I14={(S2&~S1&~S0&~(A1|B1))|((S2&~S1&S0)&(A1^B1))|((S2&S1&~S0)&~(A1^B1))|((S2&S1&

S0)&(A1^~B1^I12))}
+ F1_O = {I14|I13}
*LOGIC OUTPUT OF F2
+ I21 = {(A1&B1)| (B1&I11)| (I11&A1)}
+ I22 = {(A1&~B1)| (~B1&I12)| (I12&A1)}

32 COMPUTERS IN EDUCATION JOURNAL

+I23={((~S2&~S1&~S0)&(A2^B2^I21))|((~S2&~S1&S0)&(A2&B2))|((~S2&S1&~S0)&~(A2&B2))|
((~S2&S1&S0)&(A2|B2))}

+I24={((S2&~S1&~S0)&~(A2|B2))|((S2&~S1&S0)&(A2^B2))|((S2&S1&~S0)&~(A2^B2))|((S2&S1
&S0)&(A2^~B2^I22))}

+ F2_O = {I24|I23}
*LOGIC OUTPUT OF F3
+ I31 = {(A2&B2)| (B2&I21)| (I21&A2)}
+ I32 = {(A2&~B2)| (~B2&I22)| (I22&A2)}
+I33=((~S2&~S1&~S0)&(A3^B3^I31))|((~S2&~S1&S0)&(A3&B3))|((~S2&S1&~S0)&~(A3&B3))|(

(~S2&S1&S0)&(A3|B3))}
+I34={((S2&~S1&~S0)&~(A3|B3))|((S2&~S1&S0)&(A3^B3))|((S2&S1&~S0)&~(A3^B3))|((S2&S1

&S0)&(A3^~B3^I32))}

PSpice ALU Wiring

U1

MY_ALU

A0_I
1

A1_I
2

A2_I3

A3_I
4

B0_I
5

B1_I
6

B2_I7

B3_I
8

S0_I
9

S1_I10

S2_I
11

SC_I
12

CN_I 13

F0_O
14

F1_O
15

F2_O
16

F3_O 17

COUT_O
18

SOUT_O
19

D
P

W
R

20

DGND
21

A0

1
0

0

A1
A2

1

A3

1

B0

1

B1

1

B2

0

B3

S0 S1 S2
B[3-0]

1
0

S[3-0]

S4
DSTM1

S4
DSTM2

S4
DSTM3

V

V
V

HI
LO F0

0

F1

0

F2

0

F3

0

COUT

1
0

5.000V

V1

5V

0

A[3-0]

SOUT

Figure 12. ALU in PSpice Capture.

COMPUTERS IN EDUCATION JOURNAL 33

 Time Time
0s 2us 4us 6us 8us 10us 12us 14us 16us 18us 20us

 1 A0};;B 1001 0111 1010
 1 B0};;B 0111 0010 0001
 1 S0};;B 000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111 000 001 010 011
 1 F0};;B 0000 0001 1110 1111 0000 1110 0001 0010 1001 0010 1101 0111 1000 0101 1010 0101 1001 0000 1111 1011
 COUT
 SOUT

Figure 13. ALU simulations in PSpice.

Conclusion

To stay competitive in today's market

engineers must take a design from engineering
through the manufacturing process with shorter
design cycles and faster time to market. To be
successful, you need a set of powerful, intuitive,
and integrated tools that work seamlessly across
the entire design flow [6].

OrCAD personal productivity tools have a

long history of addressing these demands and
more. And with the technique described above
they make Digital Designs mere child’s play.
They help designers create and test different
designs of their choice without even touching a
piece of hardware. The present paper outlines a
simple but an important method in designing
digital devices in OrCAD Pspice. The method is
better explained with the help of an eight-
instruction set four-input ALU.

The issue of teaching digital computing is as

old as computers; this project helps students to
comprehend the construction of an ALU from
gate down to semiconductor level. Electronic
design automation (PSpice & TSpice) has
enabled us to design an ALU that meets an
industrial model.

References

1. Behrooz, Vahidiand and Jamal, Beiza, Using

PSpice in Teaching Impulse Voltage Testing
of Power Transformers to Senior
Undergraduate Students in IEEE
TRANSACTIONS ON EDUCATION,
VOL. 48, NO. 2, MAY 2005.

34 COMPUTERS IN EDUCATION JOURNAL

2. L. Puglisi, P. Ferrari, P. Tenca, and A.
Rebora, An advanced application of PSpice
modeling and simulation for design
optimization of push-pull dc/dc converter, in
Proc. 7th Inst. Elect. Eng. Int. Conf. Power
Electronics Variable Speed Drives, Genoa,
Italy, Sep. 1998, pp. 117–120.

3. William Gerard Hurley and Chi Kwan Lee

Development, Implementation, and
Assessment of a Web-Based Power
Electronics Laboratory in IEEE
TRANSACTIONS ON EDUCATION,
VOL. 48, NO. 4, NOVEMBER 2005.

4. Stephen Prigozgy, senior IEEE member.

Novel application of Spice in engineering
education in IEEE vol for education, vol 32,
No 1 Feb. 1989

5. J. M. Deskur, PSpice simulation of power

electronic and motion control systems, Proc.
IEEE Int. Symp. Industrial Electronics, pp.
195–200, Jul. 1997.

6. K. T. Chau and C. C. Chan, “A Spice

compatible model of permanent magnet dc
motor drives,” in Proc. 1995 IEEE Int. Conf.
Power Electronics and Drive Systems, vol.
1, Kowloon, Singapore, Feb. 1995, pp.477–
482.

7. OrCAD PSpice help manual.

Biographical Information

Saeid Moslehpour is an Assistant Professor in
the Electrical and Computer Engineering
Department in the College of Engineering,
Technology, and Architecture at the University
of Hartford. He holds PhD (1993) from Iowa
State University and Bachelor of Science,
Master of Science (1990), and Education
Specialist (1992) degrees from University of
Central Missouri. His research interests include
logic design, CPLDs, FPGAs and distance
learning. Email: moslehpou@hartford.edu

Srikrishna Karatalapu received his Bachelor of

Science degree in electrical engineering in
Hyderabad, India and Master of Engineering
degree from the University of Hartford in 2006.

COMPUTERS IN EDUCATION JOURNAL 35

	Behavioral primitives
	Exporting the Model to Capture Library
	Figure 6. shows the schematic view of ALU in Capture after i
	Configuring New Model Library

