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Abstract 

 
We have developed open-sourced interactive 

browser-based simulations that model realistic 
core engineering systems. Our simulations use 
JavaScript and HTML-5 to insure that the code 
is platform-agnostic and functional on all 
devices with a modern browser, avoiding some 
of the dissemination hurdles with educational 
Java applets or mobile apps. For each use of the 
simulations, we track student mouse movements 
and clicks, keyboard events, event times, 
screencast use, correlation with hands-on design 
project success, and more, leading to a large 
database that may be mined for pedagogical 
insights. 

 
We have had remarkable success using these 

simulations while coupling them to 
collaborative, open-ended, hands-on design 
projects within the setting of a freshman design 
laboratory. In this course, students individually 
conduct experiments with the simulations before 
they come together as teams to design and build 
a process or product that relies on related core 
engineering theory. 

 
Pre- and post-course surveys and tests were 

used to assess the teaching potential and 
students’ evaluation of the simulations as course 
materials. Resulting student evaluations are far 
more positive than those found in a comparable 
engineering course using traditional pedagogy 
and static text-book assignments. Student 
learning was demonstrably improved along with 
student confidence in a variety of engineering 
skills. Our findings suggest that the simulations 
facilitate hands-on active and collaborative 
learning earlier in our students’ academic career 
by making complicated engineering theory more 
accessible. 

The resulting database of simulation usage 
data has been effective in detecting and 
responding to usage patterns of successful and 
unsuccessful students, allowing for iterative 
development of educational material. For 
example, ensemble averages of mouse location 
for successful and unsuccessful attempts in a 
spectrophotometer simulation revealed that 
unsuccessful students did not understand the 
need to properly calibrate. Student study habits 
and problem solving strategies also are evident 
in such data. Finally, we have found usage 
tracking data to be effective in improving user 
experience; for example, we detected attempts 
to interact with non-interactive elements of the 
simulation, prompting us to add interactive 
functionality to these elements.  

 
By collecting real-time data on how students 

complete their homework, including both 
correct and incorrect attempts, we are able to 
both refocus our in-class discussions to address 
quantified weaknesses and add automated 
instructional supports in simulations to address 
errors at the moment they are detected. We 
believe, using such data, we will be able to 
bring some of the benefits of in-person active 
and collaborative learning to online simulations. 

 
Introduction 

 
It has been shown that online learning 

techniques may result in better student 
performance than face-to-face interactions [1]. 
Additionally, research has shown that young 
students are able to learn material equally well 
from both hands-on projects and realistic 
simulations of the same projects [2,3]. No 
significant difference has been found in the 
quality of long-term knowledge of scientific 
concepts learned in these two ways [4]. It has 
also been shown that using interactive 
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simulations to augment traditional lecture-based 
learning in an introductory physics course 
helped improve student understanding of key 
material and reduced their preconceived 
misconceptions [5].  

 
Educational data mining is an emerging area 

of research, focused on the computational 
analysis of educational data in order to gain 
insights on student learning [6]. Educational 
data mining on large volumes of logged student 
usage data has been used systematically to 
analyze student learning outcomes [7]. After 
analyzing the learning styles and habits of 
online users, automatic yet personalized 
supports can be offered to students; users have 
found this model to be effective [8]. 

 
We have recently implemented a freshman-

level chemical engineering laboratory course, 
which incorporates traditional lecture-based 
material, hands-on projects, and interactive 
simulations. Our interactive simulations collect 
detailed student usage data, supporting the use 
of educational data mining. Our post-class 
evaluations found that students enjoyed this 
teaching style and felt that they learned a great 
deal more, significantly preferring this course 
over a traditional lecture-based course covering 
much of the same material [9]. On pre- and 
post-tests, students performed better in every 
question, by 24% on average. 
 

Methods 
 

We have developed interactive simulations 
designed to realistically model laboratory 
experimentation [10]. These simulations cover a 
wide variety of engineering concepts, including 
heat, mass, and momentum transfer, electrical 
circuits, process control, thermodynamics, 
reaction kinetics, and microbial growth. 
Because these simulations enable students to see 
in real-time how the alteration of system 
parameters affects the rest of the system, they 
are valuable for aiding students in developing 
their engineering intuition.  

 

Using these simulations, students are assigned 
to determine an unknown parameter in the 
system; in order to do so, they must alter 
properties and observe how the simulated 
system changes. For example, we model a 
spectrophotometer in one simulation, depicted 
in Figure 1, where students are able to alter the 
chemical species, concentration, light intensity, 
wavelength, and so on. Students are tasked with 
determining unknown reaction rate constants; in 
order to do so, they must calibrate the 
spectrophotometer, set reasonable starting 
concentrations, run the simulation for sufficient 
time, and then use the resulting data to 
determine the reaction rate constant. However, 
the steps required to successfully solve for an 
unknown property can often be accomplished in 
a variety of ways, similar to laboratory 
experimentation; the simulations are open-
ended, allowing students to use whichever 
method they wish.  

 
To help students better understand the 

simulations, we have developed screencasts 
with worked example problems. After 
submitting an answer, students are given 
immediate feedback on whether or not they got 
the problem correct. Additionally, the correct 
answer and a list of all of the system variables 
are displayed, allowing students to identify any 
errors they may have made. The use of these 
simulations as homework problems helps 
prevent students from cheating, as each student 
is required to determine unique randomly 
generated constants. 

 
The simulations are open-source and freely 

accessible to students and educators worldwide. 
In order to assure their ease of use, they have 
been designed to work on all major browsers, 
including Chrome, Firefox, Internet Explorer, 
and Safari, and devices including PC’s, tablets, 
and smart phones. In order to eliminate potential 
security concerns, these simulations were made 
using HTML-5, JavaScript, and PHP; this 
eliminates the need for users to download, 
install, and run executable files.  
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Currently, our simulations are primarily used 
in our freshman and senior laboratory courses. 
In the freshman laboratory course, after students 
solve for a particular system parameter, they are 
asked to design and build a real-world version 
of the apparatus depicted in the simulation and 
then execute the experiment in the lab. The 
simulations allow students to develop ideas of 
how to run their experiment at their own pace; 
additionally, because students are prepared by 
their use of the simulated system, the project 
requires fewer lab resources and less class time.  

 

Some of our simulations have been designed 
to allow students to input their real-world 
experimental data into the simulation and 
directly compare their results to theory. With 
this ability, we have tasked freshmen with 
estimating properties from their lab 
experiments, by manually altering simulation 
parameters until the simulation reasonably 
represents their data. This is an elementary 
alternative to more advanced techniques, such 
as nonlinear regression, to which freshmen have 
not been introduced. Seniors can also utilize this  

 

Figure 1: A screenshot of our spectrophotometer simulation, with the components of the 
simulation labeled. Most of our interactive simulations have a similar structure. 



32  COMPUTERS IN EDUCATION JOURNAL 

functionality to test the accuracy of the 
simulations by comparing analytical 
approximations to the simulated results. 
Additionally, senior students can determine 
empirical correction factors to enable the 
simulation to behave more realistically. 
 

Our simulations also include the capability of 
tracking students' mouse movements, clicks, and 
typing, recording the time and location of each 
event in a secure MySQL database. This allows 
us to understand how the simulations are being 
used, and helps us determine characteristics of 
successful and unsuccessful student attempts. 
With this information, we can identify and 
respond to common misconceptions of students 
by adding simulation capabilities and improving 
instructions in the form of lectures and worked 
examples. 

 
Results 

 
We have used our simulation tracking 

capabilities for two years, recording the 
interactions of 177 students, totaling over 6,000 
recorded student attempts. The first year’s data 
includes records of whether or not the 
submission was correct, the time at which it was 
submitted, and the randomized simulation 
constants that were used. The simulations also 
record circumstantial information, including the 
student’s browser, IP address, and operating 
system, which are primarily used for debugging 
the simulations. In the second year, we 
augmented our simulation tracking capabilities 
to also record all student interactions with the 
simulation, including the time and location of 
any mouse movements, clicks and field 
alterations. This data was collected for 103 of 
these students. Using this data, we can 
determine how long it takes students to 
complete different assignments, when they 
typically do their assignments, how many 
attempts they require, whether or not they are 
working on campus, and the number of and time 
between each click. 

 
With this information, insights can be made 

looking at individual student attempts. Figure 2 

shows a single student’s a) incorrect, then b) 
correct attempt on our spectrophotometer 
simulation. During their first attempt, it is 
apparent that they were trying to alter 
simulation parameters, such as the width of the 
cuvette, by clicking and dragging on the 
diagram of the system, which was not a 
supported feature. In order to make the 
simulation more intuitive, we have now added 
this functionality. We have been primarily 
looking through ensemble averaged results and 
have only looked through a handful of 
individual student attempts; however we believe 
that there are many insights that could be made 
from investigating these attempts individually.  

 
Using ensemble averaged mouse location data, 

we can see in which areas of the simulation 
students spend more time. Figure 3 shows a 
comparison of the mouse location distribution 
for correct and incorrect attempts on two 
different assignments in our freshman lab course 
using our spectrophotometer simulation. Lighter 
areas are locations in which students had their 
mouse more of the time on correct submissions 
than on incorrect submissions. The contours are 
on a truncated log scale, where slight 
differences have been truncated to a neutral 
gray. 

 
Figure 3 a) shows the mouse location data for 

students solving for a maximum molar 
extinction coefficient. In order to solve for this, 
students need to calibrate their 
spectrophotometer. It can be seen that the 
incorrect submissions spend less time 
calibrating, shown by the white spot on the left. 
Also, it can be seen that incorrect solutions 
spend more time altering constants just below 
that; this set of constants is not required in 
determining the correct answer. On another 
problem, shown in Figure 3 b), students are 
tasked with determining a reaction order. For 
this, students are no longer required to calibrate 
their spectrophotometer, but instead they need 
to run the reaction. For this, students will 
primarily need to use the right half of the 
simulation. It is apparent that correct 
submissions’ mouse  locations are more often in  
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Figure 2: Recorded mouse tracking data for an individual student’s a) incorrect then b) correct 
attempt, while using our spectrophotometer simulation. It is apparent that on their first attempt, 
they were trying to alter simulation parameters, such as the width of the cuvette by clicking and 
dragging. 

Figure 3: Ensemble averaged mouse location data on our spectrophotometer simulation for 
students solving for a) maximum molar extinction coefficients, and b) reaction orders. Lighter 
areas indicate where mouse locations from correct submissions were more often, while darker 
areas indicate where mouse locations from incorrect submissions were more often. Data is on a 
truncated log-scale, where grey areas indicate that the percent of correct and incorrect 
submissions were very similar. 
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this area of the simulation. Such results from 
our simulation data are used to iteratively 
improve lecture material and documentation on 
the simulation web site. In essence, with these 
tools we are able to detect and respond to 
student misconceptions in near-real-time. 

 
Our logged data may also be used to determine 

differences in students’ study habits based on 
their performance in the course. Figure 4 a) 
shows that although not very many students 
start working on their assignments days before it 
is due; those who do tend to perform well in the 
class. We can also see what time of day students 
are typically working on their assignments, as 
shown in Figure 4 b). With this, it can be seen 
that students primarily do their homework in the 
morning or evening. Higher percentile students 
seem to be more likely to work on their 
homework in the morning. Also, when they do 
their homework at night, they tend to do it 
earlier than low percentile students. High 
percentile students usually don’t work on their 
homework after midnight, while it’s not 
uncommon for others to work until 2:00 in the 
morning. This suggests that working late at 
night may be impeding student performance. 
This information may be presented to students 
to encourage healthier study habits and to 
illustrate the importance of time management; 
however, it is also possible that working late at 
night, while associated with poorer student 
performance, is not its direct cause. 

 
With our usage data, we can also work to 

eliminate inauthentic problem-solving 
strategies. For example, to detect guessing, we 
monitored behaviors such as submitting an 
answer very quickly, not clicking very many 
times, and using the previous correct answer or 
the same answer twice in a row. In the future, if 
a student's attempts exhibits several of these 
behaviors, then their submissions will be 
flagged as guessing and they will not receive 
credit, in order to encourage legitimate problem 
solving. We also determined students who are 
guessing tend to do so late at night. Between 
9:00 PM and 3:00 AM, 63% of the total guessed 

attempts occurred, whereas only 22% of 
submissions that were not characterized as 
guessing occurred during that period. Once 
again such findings may inform both faculty and 
students as to how best to use simulations for 
homework assignments. 

 
Conclusions 

 
Our simulation tracking capabilities have 

helped us identify the misconceptions and study 
habits of our students. By analyzing selected 
individual student attempts, we have improved 
the simulation user interface, adding 
functionality that students intuitively assumed to 
exist. We expect, with the tracking tools we 
have developed, that further insights could be 
achieved through comprehensive examination of 
these individual attempts.  

 
We have visualized our tracking data using 

ensemble averages, showing differences in the 
mouse location distribution between correct and 
incorrect submissions. For example, Figure 3 a) 
shows that, for a particular assignment, students 
who submitted incorrect submissions spent less 
time in the calibration section of the simulation 
and more time altering constants that are not 
required for this problem. Such common 
misunderstandings are easily detected using our 
tools, whereas it would take TA’s several hours 
to come to the same conclusions in hand-
grading hundreds of problems. Such 
misunderstandings could be remediated with an 
increased emphasis on topics, such as 
calibration, during class discussions.  

 
We can also use this data to understand trends 

in student behavior. Figure 4 a) shows that those 
who do their homework assignments earlier tend 
to be higher percentile students. Additionally, 
Figure 4 b) shows that higher percentile students 
are more likely to do their homework in the 
morning, and lower percentile students tend to 
stay up later into the night working on them. 
Anecdotally, these trends are not surprising, but 
now we can clearly measure them.  
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Figure 4: a) The quartiles of student percentiles for all homework 
submitted in a particular time span before assignments are due. 
The grey bars shown indicate the total number of submissions in 
the time interval. b) Student percentile and the time of day they 
do their homework. It has been shown that higher percentile 
students do their homework earlier in the day, and don’t stay up 
as late as their peers. 
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In our future work, we plan to automate many 
of the reasonable instructor responses to such 
data. We may, for example, offer an automated 
reminder to calibrate if they have not in 
previous attempts, or we may have the site 
advise students to do their homework earlier if 
they’re waiting until the night before it’s due. 
We are also adding capabilities to detect unit 
conversion errors, and to notify the instructor 
when a particular student is having an abnormal 
level of difficulty so that in-person interventions 
may occur. With the ability to analyze each 
student’s problem solving strategies for each 
assignment, we anticipate substantial gains. 
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