
EVALUATION OF TEACHING AN ARABIC
 PROGRAMMING LANGUAGE (ARABLANG)

Dr. Mansoor Al-A’ali

Department of Computer Science
College of Information Technology

University of Bahrain,
P. O. Box 32038

Isa Town, Bahrain

Abstract

School students in Arab Countries find

difficulty in learning computer programming in
a language other than their native Arabic
language. This paper reports on an investigation
into the benefits of teaching an Arabic computer
programming language to secondary school
students in Bahrain. The paper presents a
comparison study between the Arabic
programming language ARABLANG (Al-A’ali
1995) and PASCAL Languages for their
suitability for teaching at Arabic schools. A
comparison is made and evaluated with regards
to learning problems and to frequency and types
of errors made by students in each language.

Keywords: Programming, ARABLANG,

Programming Languages

Introduction

Computer packages are normally Latin based
but are modified to process data in Arabic. All
existing system software and programming
languages are Latin based. We believe that if
systems software (operating systems, editors,
programming languages, etc.) were all Arabic
based, this will give a tremendous push to the
use of computers in Arab Countries and
especially at the school level. As a start we
should teach computer programming at schools
and gradually this would lead to the wider use
of computers. Another possibility is to Arabize
system software to enable the building of a new
generation of Arabic software, which is not
based on converting Latin based packages and
tools. To teach programming to Arabic students
at schools using a Latin based language requires

them to know at least the meaning of the
language commands before programming and
understand the error messages.[5] In general,
this is not an easy task for those whose native
language is not English; and it is more difficult
for Arabic school students since all teaching at
schools is done in Arabic.

There have been some attempts to design

Arabic Programming languages. Unfortunately,
most of them are not fully developed and are not
commercially available. Most of these reported
languages are not suitable for teaching school
students and some of them are limited to
specific computer models[5]. Arabic BASIC,
was designed for specific computer systems
such as Commodore, Sinclair, and Sakher.
ARABFORT[6], enables programmers to write
FORTRAN programs in Arabic but was never
fully developed and only accepts the source
code in Arabic. The commands of the language
are direct translation of some commands in
FORTRAN. This language is not suitable for
school students for two main reasons: (1)
FORTRAN itself is not designed mainly for
teaching programming, (2) Compile-time and
run-time errors are not handled in Arabic in the
implementation of the language. Al-Qaul[7] is a
Lisp like logic programming language designed
for Macintosh, which has been withdrawn from
the market.

Al-Risalh[2] is an Arabic pure object-oriented

programming language that has the basic
mechanisms of object-orientation, objects,
classes, and messages[2]. The author
recommends that this language can used to
teach Arabic-speaking students how to program
and how to understand the basic concepts to the

COMPUTERS IN EDUCATION JOURNAL 37

idea of object-oriented. No research is published
about its suitability for teaching school students.

Mulspren[1] is a visual programming

environment for children. Unlike many
conventional visual programming environments,
Mulspren users program using two languages:
an English-like language and a conventional
programming language. The authors believe that
showing multiple representations of a program,
combined with good program visualisation
support, will help children create a good mental
model of conventional programming constructs.
This model may be helpful later in life when
they have to modify programs written in
conventional languages, for example Visual
Basic or Microsoft Word macros. Mulspren is
not an Arabic programming language.

Design of the Language ARABLANG

It is impractical and impossible to find a

language that is ideally suited to all situations
for all users, for all applications, and for all
computers. When designing a language, it is
appropriate to identify broad classes of
languages and create the language such that its
design decisions are optimized for one of these
classes. To classify programming languages,
we have to identify the key concepts according
to which classification may take place. These
key concepts can be summarized in the
following points: The language paradigm,
application area, users, computers, and
processing mode.

Regarding the language paradigm, languages

can be classified as: Imperative Programming
Languages, Functional Programming
Languages, Logic Programming Languages, and
Object-Oriented programming languages.
Examples of these languages are: C or
PASCAL, LISP or ML(10), Prolog(11), C++ or
small talk.

Application areas can be broadly classified as:

business applications, scientific applications,
and teaching. Users can be classified as:
professional programmers, non-programmers,

and trainees. Computers can be broadly
classified as: Microcomputers, mini-computers,
and mainframes. Processing mode can be:
sequential processing or parallel processing.

The design of a programming language may

be based on the following design principles:
Abstraction, Automation, Defense in Depth,
Information Hiding, Orthogonality, Portability,
Regularity, Security, Simplicity, Efficiency,
Cost and Exception Handling. The problems
that face the designer of a programming
language are: (1) It is difficult to define an
exhaustive list of all design principles, (2) For
the most part there are (as yet) no quantitative
measures of the properties of languages, (3) The
design principles are not completely
independent and some of them are contradictory
to each other.

The programming language may support

exception handling by allowing its programs to
be able to intercept run-time errors and other
unusual conditions, take corrective measures,
and continue.

Other design principles may include: Labeling

(Do not require the user to know the absolute
position of an item in a list. Instead, associate
labels with any position that must be referenced
elsewhere), Preservation of information (The
Language should allow the representation of
information that the user might know and that
the compiler might need), Syntactic consistency
(similar things should look similar, different
things different), Modeling (The language
should provide types and operations that are
suitable for modeling objects in the specific
application area for which it is designed),
Reliability of programs (The language should
support the feature of its programs being
reliable.

To start with, some design decisions have been
taken. These decisions are: (1) The language
should be a high-level one, (2) The language is
of the imperative paradigm, (3) The language is
designed mainly for teaching purposes, (4) Most
users are trainees (or beginners in the field of

38 COMPUTERS IN EDUCATION JOURNAL

computer science), (5) It is supposed to be
implemented mainly on IBM-PC compatibles,
(6) The mode of processing is sequential.
According to these decisions, some other design
principles emerged; these principles are: (1)
Simplicity, (2) limited amount of abstraction,
(3) Portability, (4) Regularity, (5) Efficiency.

Simplicity, means that the language is easy to

learn and easy to use. In order to make the
language easy to learn, readability should be
enhanced. In order to make the language easy
to use, write-ability should be enhanced. These
factors oppose each other. So, a compromise
between both factors becomes necessary.

The overall support for abstraction is clearly

an important factor in the write-ability of the
language. This again affects readability. As a
compromise, it was decided to limit the
abstraction to procedures and functions.

To achieve portability, it was decided to use

the popular and cheap Arabic interface tool
known as Nafitha and later this was transferred
to Arabic Windows. Also the compiler may be
written in a language available on PC-
Compatibles like C. YACC was used to produce
the compiler for ARABLANG.

Regularity can be achieved by applying the

following rules: (1) Each executable statement,
constant declaration, and variable type
declaration should end with a ‘;’ (2) Each
section should have a starting title. (3) The
main ends with a special key word for
termination in a similar way that a routine ends.

The design of the syntax of the language

emphasizes efficiency of implementation (both
during translation and during execution). This is
achieved by applying the following rules: (1)
No backtracking is required when parsing, (2)
Extensive use of delimiters for each construct,
(3) Use of a proper internal form, which can be
executed directly, (4) No left recursion is
allowed, (5) There are no useless productions,
(6) The grammar is not ambiguous, (7) No
dynamic storage allocation, (8) Passing of

parameters can take place only by value and by
reference, (9) A limited set of data structures is
made available, (10) Using the concept of
reserved words, (11) Emphasizing the use of
blanks as a delimiter, (12) No run-time
optimization is required, (13) No dynamic type
checking, (14) No dynamic binding.

It should be noted that efficiency affects the

cost of translation and running of the programs.

Brief Description of ARABLANG

In the following sub-sections, we give a brief
description of the constructs of the language.
The complete syntax is given in appendix A.

Declarations

This includes two different declarations:
constants declaration and variables declaration.

Constants Declaration

It starts with the word "ثوابت " -means

constants-, and then all the constants that will be
used in the program must be declared, e.g.,

constants
 t = 3.4 ;
 num = 18 ;

 ثوابت
 ؛3,4=ط

 ؛18= عدد

In this example the identifier name "عدد " is a

synonym for a constant number 18.

Variables Declaration

It starts with the word " متغيرات" which means

variables, and then all the variables that will be
used in the program must be declared, e.g.,

variables
integer : num, g;

 متغيرات
 رقم، ج ؛: صحيح

This example includes declaration of two

variables, "رقم " and " ج".

COMPUTERS IN EDUCATION JOURNAL 39

Constants and variables declarations can be
written in any order, and each declaration
statement must be followed by a semicolon.

Main Program

An ARABLANG program starts with the
declarations part followed by the main program
part that contains the executable statements,
which are executed in the sequence they are
listed. The list of statements must be prefaced
by the reserved word "البداية" -means begin- and
followed by the reserved word " نهايةال " -means
end A semicolon must terminate each statement.

TheBegin
 statements
TheEnd

 البداية
 جمل

النهاية

A statement can be any of the following:

assignment statement, selection statement,
repetition statement, input/output statement, or a
control statement.

Assignment Statement:

One of the ways to store a value in a variable

is to assign the value to the variable by means of
assignment statement. Such a statement takes
the form:

 VariableName = Expression (e.g.) 6+ ط = ب

Selection Statement:

These types of statements are used to direct the

flow of the program in one direction or another,
based on the value of these variables. Such a
statement is represented in the following format:

If x > 50 then n = n + 1
 else m= m + 1
Eif ;

 1+ ن = ن اذن 50> س اذا
 1+ م = م والا

 ناذا ؛

Which means, if the variable "س " is less than

50, then execute the expression " 1+ن=ن ",

otherwise execute the expression " 1+م=م ". The
word "ناذا" means end of if-statement.

Repetition Statement:

Repetition statement is used to repeat an

operation for a certain number of times. In that
case, the programmer would use a "آرر" loop.

 For num = 1 to 18
 n = n + 1;
 Efor ;

 18الى 1=رقمر من آر
؛ 1+ ن = ن

؛

 نكرر؛

A "بينما" loop is used for a sequence of actions

which need to be performed as long as a certain
condition is true.

While increment > 15 Do
 total = increment + r ;
Ewhile ;

 فذن 15> زيادةبينما
 ر +زيادة= مجموع

 نبينما ؛

Input/Output Statement:

Input/output statements are used to transfer

data from one place to another, for example, to
get data from the keyboard or to display it on
the screen, e.g.,

Read (n, num);
Write (n, " number = ", num);

 ؛)ن،عدد(اقرا
 ؛)، عدد= "العدد " ، اآتب

There are other statements used to enter data

from the beginning of the line, or to leave an
empty line. In this case the command "سطر" is
used for placing a new line. The command is as
follows:

NewLine ; سطر ؛

Subprograms

The subprograms are portions of the program;

they come after the main program and perform
actions under the overall command of the main
program. There are two different kinds of
subprograms called "فرعي" -like procedure in
Pascal, and " بداية " -like function in Pascal.

40 COMPUTERS IN EDUCATION JOURNAL

Procedure procedure_name (var)
 definition-section
Begin
statements
End

لبرنامج الفرعي فرعي ا)متغيرات(اسم
 قسم التعريفات

 بداية
 جمل
 نهاية

Evaluation of the Design

It was mentioned earlier that for most of the

design principles, there are no quantitative
measures. But, a decision was made to let a
small team put the design of the language
according to pre-specified design principles and
limitations, then let another small team evaluate
the design. The evaluation process mainly
concentrates on one question: How much of the
design principles were achieved? Naturally, this
can be broken down to a set of question as: (1)
Is the simplicity principle applied in an adequate
way? (2) Is there a limited amount of
abstraction? (3) Did the design consider
efficiency of implementation? (4) Is the
compromise between readability and write-
ability adequate (5) Is there any possibility for
back tracking during parsing, (6) Is there any
left recursion, (4) Are there any useless
productions, (7) Is the grammar ambiguous.
Some algorithms can be used to help in
answering some of these mentioned questions.

The initial design was evaluated, and some

modifications were made in order to make the
answer to those questions in favour of the
design. After modification, the design was
considered adequate because of the following
reasons: (1) Simplicity is achieved through a
compromise between the factors that enhance
readability and those that enhance write-ability,
(2) Efficiency level is achieved in the design by
ignoring the features that are well known to be
inefficient in the implementation phase itself.
For the other design principles, it is clear that
they are taken care of in the design
and/implementation strategy. In the next few
paragraphs, we will discuss in detail, how we
could evaluate simplicity and efficiency.

The factors that affect readability can be

conceived from the existence of the following
features: (1) natural statement formats, (2)
structured statements, (3) liberal use of
keywords and noise words, (4) provision for
embedded comments, (5) unrestricted length
identifiers, (6) mnemonic operator symbols. (7)
free-field format, (8) complete data declarations,
(9) syntactic differences reflect underlying
semantic differences.

The features that affect write-ability are: (1)

use of concise and regular syntactic structures,
(2) Implicit syntactic conventions that allow
declarations and operations to be left
unspecified, (3) No or little use of noise words,
(4) limited length identifiers, (5) simple
statement formats, (6) use of symbols rather
than mnemonic codes, (7) Elimination of
redundancy.

The features that are well known to be

inefficient in implementation are: (1) left
recursion in the syntax descriptions leads
sometimes to endless loops, (2) The existence of
a lot of alternatives gives chance for back
tracking, (3) little use of delimiters give chance
for back tracking, (4) The existence of useless
productions increases the parsing time, (5) An
ambiguous grammar can not be translated in a
unique form, (6) Dynamic storage allocation is
inefficient, (7) If there were no reserved words
then the parsing will be inefficient, (8) Handling
huge set of data structures require time. Other
features that are not included in the design, but
can be considered during implementation are:
(1) Pass of parameters other than value or
reference can be inefficient, (2) Dynamic type
checking, (3) Dynamic binding, (4)
Optimization techniques require a lot of time.

COMPUTERS IN EDUCATION JOURNAL 41

Normally people prefer to write programs in
their own language especially if their education
is not based on English. Programming is one of
the aspects of computers, which until now must
be English because all programming languages
use English words and symbols. In order to
enable the Arabic users to write programs in
Arabic, it is required to develop a new Arabic
programming language. But this is a complex
task. The easiest way to overcome this difficulty
is to develop an Arabic programming language,
which resembles one of the existing
programming languages, except that it uses
Arabic words and symbols. But any
programming language needs a compiler.
Instead of developing a compiler for the
proposed Arabic programming language, one
can make use of the existing compilers by
building a system to convert the Arabic program
to the corresponding Latin programming
language. Hence, the user can use the existing
compilers to compile the converted programs.
There are a limited number of Arabic
programming languages that follow this
approach, e.g., ARABFORT . But this approach
has a number of drawbacks. Firstly, it always
depends on the current version of the compiler
on which it was based. Secondly, all compiler
and operating system messages will appear in
English and this may defeat the original
objective. Thirdly, the problem of interfacing
with other programming languages is yet to be
solved. Finally, the problem of programming
language standards is not considered.

Building a new Arabic programming language

is the best approach. This would involve all the
normal procedures used in building a Latin
based programming language.

We believe that in developing an Arabic

programming language the following proposed
criteria must be considered, in addition to all the
best characteristics provided by a high-level
programming language.

Proposed criteria for evaluation programming

languages:

1. Source code written in Arabic syntax.
2. Compiler and linker messages in Arabic.
3. Run-time messages in Arabic.
4. Compiling is done directly from Arabic

source code to machine code.
5. Arabic operating system commands for

compiling, linking and running the
programs.

6. Arabic editing facility.
7. Debugging facility with messages in Arabic.
8. Interfacing with other Latin and Arabic

packages including programming
languages.

Teaching Pascal and ARABLANG

Permission was obtained from the Ministry of

Education, Bahrain and from Khawla Secondary
School for Girls where teaching was conducted.
The school arranged for us the place, the
timings and the groups (senior secondary school
students). The computer instructor provided the
lab.

Subject

Senior students, aged 16 to 17 were chosen as
participants in the research for three main
reasons:

(a) Study and career decisions made by students

at this stage are important.
(b) The secondary school environment makes it

possible to sample students who might have
access and experience to computers

(c) Senior school students are more close to the
university students in age.

Procedure

Before we began our work we have chosen a
sample of thirty students and divided them
randomly into two equal groups, the first group
was taught Pascal, and the second group was
taught ARABLANG language. Each student in
both groups was given a single copy of the
booklet related to her group. The period of
learning both languages was seven weeks, two
hours weekly for each group.

42 COMPUTERS IN EDUCATION JOURNAL

 .
 .

Figure 1

The above figure shows the teaching process

for Pascal and ARABLANG.

As shown in figure 1, examples were provided

to the students after each lesson as well as
exercises. At the end of each lecture home
works were given to the students, quizzes were
also given. Different kinds of questions were
given to the students such as multiple choice,
true or false, solving problems, writing small
programs. At the end of the period a final test
was given to the students.

Problems

We faced the following problems during our

course of teaching:

1) The students were busy in other subjects.
2) A small number of students were not

interested as no credit was allocated to this
course.

3) The school management refused to give us
more time because the students were having
exams.

4) Students had no practice in using the
keyboard.

5) In some cases we used to translate in Arabic
for the Pascal group although this course
was suppose to be in English.

At the beginning; we wrote two booklets: the

Pascal booklet and the ARABLANG booklet to

Lesson 1 Example 1 Exercise 1 Homework 1

Lesson 2 Example 2 Exercise 2 Quiz 1

 Lesson n

 Test Exercise nExample n

use them for teaching. Each booklet consists of
an introduction plus six chapters, chapter one
(The symbols and operations of each language),
chapter two (The assignment, read and write
statements of each language), chapter three
(Simple programs), chapter four (The If
statement, For and while loop of each
language), chapter five (Arrays) and chapter six
(Files). At the end of each chapter there are
exercises and problems to solve, where the
answers of these exercises were provided at the
end of the booklet.

Evaluation of the Teaching of

ARABLANG and Pascal

During the experiment of teaching, a lot of
mistakes were made by the students and, as will
be explained later, each mistake was studied and
a re-write of some of the ARABLANG syntax
was carried out after careful consideration of
each mistake. Of course Pascal was not revised,
as it is not the aim of this project.

In the following two tables we show a brief

discussion based on the findings of the teaching
process. A compete discussion of the teaching
process and its findings is available with the
authors but for obvious reasons cannot be
written here. The following two tables illustrate
how each aspect of ARABLANG was taught
and the types of errors that were made by the
students. A complete list of all errors made by
the students in both ARABLANG and Pascal is
given in Tables 1 and 2 later in this paper.

COMPUTERS IN EDUCATION JOURNAL 43

1. The use of the words: Constant & ثوابت

ARABLANG: Constant (ثوابت) : PASCAL: Constant :
86.60% of the students use the word 'الثوابت ' instead of ' وابتث ',

because as known in Arabic language we always use 'أل' before the
word if it comes at the beginning of the sentence and if it comes
alone. For example:
 برنامج الدرس؛
 الثوابت

 ؛5= ت
 البداية
 النهاية
In this condition the following error message appears: ' خطأ في

 'العبارة
We changed the syntax of the word 'ثوابت' to 'الثوابت' in

ARABLANG

20% of the students use the word
CONSTANT as a full word instead of using
CONST. For example:

 Program school ;
 constant
 a = 7;
 begin
 .
 end.

In this case the following error message

appears:
'Begin expected '

2- If Statement (إذا) :
ARABLANG: If Statement (إذا) PASCAL: If Statement
In this case students usually do not know when they should use this
statement and how to use it. The students either do not understand
the logic of the if statement 'اذا' or how it works.
Different examples were given to the student to test their
understanding of the if statement ‘اذا', and what types of mistake they
usually do.

- 66.66 % of the students were using the word 'فان' instead of 'اذن'
 For example ,

أآتب تعليمه تقارن بين متغيرين أ و ب بحيث تكون أ أآبر من ب و تكون أ

10 لا تساوى
"آهلا وسهل" أطبع

: الحل

فان) 10< > أ (و) ب > أ (إذا
")أهلا و سهلا (" أآتب

In this case the student gets the error message :
 'اذن متوقعة'
Since a high percentage of the students prefer to use the word 'فان'
instead of 'اذن' , we changed the syntax of the word 'اذن' to 'فان' in
the system, also we have changed the error message 'اذن متوقعة'
 'فان متوقعة' to اذن '

- 93.33 % of the students did not understand the word 'ناذا', because
it does not sound like an Arabic word, so the students suggested to
use
 'اذا' at the beginning and at the end of the 'النهاية' and 'البداية'
statement.

Here is an example of the student’s solutions in the quizzes

 و إذا آانت قيمة المتغير 50أآتب تعليمه تقارن بين المتغير س وثابت قيمته

13.33 % of the students forget to use the
word then
For example
var
 k : real;
begin
 .
 if K < 5
 K := K + 1 ;
 .
End.
In this case they get the following error
message
' Then Expected '

- 73.33 % of the students use the word do
instead of then
for example

var
 a : integer;
begin
 .
 if a > 2 do
 . . .
End.
In this case they got the error message
 ' Then Expected '

- 46.66 % of the students forget to use
begin and end if there are too many
statements to be executed.
For example:

var
 g,m : integer;

44 COMPUTERS IN EDUCATION JOURNAL

 1 وإلا إلي المتغير ن قيمة 1ضيف إلى المتغير م قيمة , 50س أآبر من
.
:الحل

 فان50> إذا س
 ؛1+ م = م

 وإلا
 ؛1+ ن = ن

 begin
 .
 if g > 7 then
 g := g + 1;
 m := M + 1;
end.

Analysis of Programming Errors

As known in the programming world errors
happen to all of us. Some of these errors happen
by mistake. Because of that each language
compiler reports error messages. In our research
we have selected 50 of the most important error
messages from the Pascal help and translated
them to Arabic and implemented them on the
ARABLANG compiler. Each error message
was explained by example.

In our first practical class in the school we

have distributed the error messages sheet to
each student. 40% of the students in
ARABLANG lab were asking us to help them
correct their errors, 25 % of the students were
using the sheets which were distributed at the
lab, 15 % of the students were asking their
friends for help and 20 % of the students tried
by themselves to detect the errors.

Type of error %
1. Using reserved word as a variable 20
2. Priority of arithmetic operation 60
3. Forget the semicolon after the statement 73.33
4. Difficulty in finding the output 20
5. Difficulty in declaring variable 26.66
6. Difficulty in writing full program 33.33
7. Using comma instead of semicolon 40
8. Using double quotation instead of single quotation 13.33
9. Forget the dot after the end 86.66
10. Forget to write the word برنامج at the beginning of the Program 13.33
11. Forget to write the name of the program 26.66
12. Use the word الثوابت instead of 86.66 ثوابت
13. Use the word المتغيرات instead of 80 متغيرات
14. Use ':=' instead of '=' in constant deceleration 13.33
15. Forget to use the word 20 البداية

16. Forget to use the word 26.66 النهاية
17. Use the word فان instead of 66.66 إذن
18. Does not understand the word 93.33 ناذا

19. Does not understand the word 80 نكرر
20. Does not understand the word 93.33 نبينما

21. Forget to use the word 46.66 نفذ
22. Forget to use the left or right bracket 33.33
23. Forget to specify type of variables 13.33
24. Read identifier from constant section 20
25. do not close quotation mark 46.66

 Table 1. Error messages as a result of teaching ARABLANG.

COMPUTERS IN EDUCATION JOURNAL 45

Type of error %
1. Using reserved word as a variable 53.33
2. Priority of arithmetic operation 53.33
3. Forget the semicolon after the statement 73.33
4. Difficulty in finding the output 20
5. Difficulty in declaring Variable 46.66
6. Difficulty in writing full program 20
7. Using comma instead of semicolon 33.33
8. Using double quotation instead of single quotation 26.66
9. Confusing between Do and Then 73.33
10. Using If statement instead of While 53.33
11. Forget to use Begin 33.33
12. Forget to use End 33.33
13. Forget to write the name of the program 33.33
14. Use the word constant instead of const 20
15. Using ' := ' sign instead of ' = ' sign 26.66
16. Using the word variable instead of var 13.33
17. Using equal sign instead of colon in var section 20
18. Use the name of the program in var section 13.33
19. Forget the dot after the end 73.33
20. Forget to use Then 13.33
21. Do not know how and where to use the for loop 66.66
22. Forget to use right and left bracket 46.66
23. Use identifier to be read from constant section 26.66
24. Do not close quotation mark 46.66

Table 2. Error messages as a results of teaching Pascal.

After teaching ARABLANG and observing

students difficulties and the types of error
messages made, we changed the syntax of some
instructions as shown in (table 3)

 Before testing After testing

 الثوابت ثوابت
 المتغيرات متغيرات
 اذا علاقة منطقية اذن
 ناذا

 اذا علاقة منطقية فان
 البداية
 النهاية

2 الى رقم1رقم:= آرر أ
 نكرر

2 الى رقم1رقم:= آرر أ
 البداية
 النهاية

نفذبينما علاقة منطقية
 نبينما

 بينما علاقة منطقية نفذ
 البداية
 النهاية

Table 3. Modified ARABLANG syntax based

on errors made by students.

Survey of student awareness of computing
and computer programming.

As shown from (table 4) 66.66 % of the
students prefer to program with Arabic language

What do you think
about computer
technology

Easy
13%

Difficult
70

I don't
know
16.6%

What is your
opinion in computer
programming

Easy
26.66%

Difficult
20%

I don't
know
53.33

In which language
do you prefer to
program?

Arabic
66.66%

English
6.66%

Both
26.66

Do you know about
the following
languages

Basic
50

Pascal
0%

C
0%

In which level do
you think that the
programming should
start

Interme
diate
73.33%

Secondary
26.66

don't
know
0%

Table – 4 General survey of student awareness
of computing and computer programming.

46 COMPUTERS IN EDUCATION JOURNAL

because it is the native language. On the other
hand 6.6 % of the students prefer to program
using English language because it is more useful
in practical life. 26.66 % do not mind if they use
both languages in programming. 73.33 % of the
students prefer to start programming at the
intermediate level, while the remaining students
prefer to start programming in secondary level.

Conclusion

Teaching students a programming language in

their native language may encourage them to get
into the computing field. In this paper, we
presented a new Arabic programming language
called ARABLANG for school children.
ARABLANG has been tested in Bahrain
schools to determine its effectiveness in
teaching a computer programming language to
Arab students. A major part of the effort was
devoted towards setting up the teaching material
and evaluation criteria for teaching. The
language was taught to secondary school
students and the results clearly show that
ARABLANG is definitely a way forward for the
future of Arabic programming languages.
Further research is required to investigate many
other aspects related to programming in Arabic,
such as, the choice of mnemonics and terms, the
starting level, etc.

References

1. Wright, T.; Cockburn, A. Mulspren: A Multiple

Language Simulation Programming
Environment (Conference Paper). Proceedings
IEEE 2002 Symposia on Human Centric
Computing Languages and Environments. IEEE
Comput. Soc, Los Alamitos, CA, USA. pp. 101-
3; 2002.

2. Amin, M.R., “The Arabic object-oriented
programming language Al-Risalh” (Conference
Paper). Proceedings ACS/IEEE International
Conference on Computer Systems and
Applications. IEEE Computer Soc, Los
Alamitos, CA, USA. pp. 424-7; 2001.

3. Rader, C.; Cherry, G.; Brand, C.; Repenning, A.;

Lewis, C. Designing mixed textual and iconic
programming languages for novice users

(Conference Paper). Proceedings. 1998 IEEE
Symposium on Visual Languages (Cat.
No.98TB100254). IEEE Comput. Soc, Los
Alamitos, CA, USA. pp. 187-94; 1998.

4. Al-A`ali, M.; Hamid, M., “Design of an Arabic

programming language (ARABLAN) (Journal
Paper). Computer Languages. Vol. 21, Iss. 3-4,
pp. 191-200; Oct.-Dec. 1995.

5. Mansoor AL-A’ali, Moheb R. Girgis,

“Arabization: Actual and Objectives”, 4th
International conference on Multi-lingual
Computing, Cambridge University, London,
UK, pp.9.1.1 -9.1.10 April, 1994

6. Girgis, MR, “Writing FORTRAN Programing in

Arabic Language”, Journal of the institute of
Maths & Computer Science (Computer Science
series), Vol. 3, No. 2, 1992,pp.51-63,1992

7. VERBUM, Paradigm Software Inc., Cambridge,

Massachusetts U.S.A., 1989.

Acknowledgements

To the memory of my friend and research

colleague Dr. Hamid who sadly passed away just
before we started this project.

Biographical Information

Dr. Mansoor Al-A’ali finished his B.Sc. in

Computer Studies from the University of
Teesside, UK in 1982. He received his M.Sc. in
Computer Science from the University of Aston in
Birmingham, UK in 1984. He received his Ph.D.
from the University of Aston in Birmingham, UK
in 1989. Mansoor is currently working in the
Department of Computer Science at the University
of Bahrain. Since 1989 he has been working as a
consultant for a number of leading Bahraini
organizations leading the design and quality
assurance issues of major industrial computer
systems. His research interests include: AI,
computers in education, algorithms, Ethics and
Arabization. He has over fifty refereed
publications in these areas. Mansoor was the
Chairman of the Department of Computer Science
at the University of Bahrain from 1992 to 1995
and was the Director on Continuing Education
from 1996 to 2000.

COMPUTERS IN EDUCATION JOURNAL 47

Appendix A: syntax of ARABLANG

In the table below, we show the context-free grammar (CFG) of the ARABLANG language in English
and in Arabic.

program → declarations_block
 main_program
 subprograms_block

 التعريفات_ قسم ← برنامج
 الرئيسي_ البرنامج

 الجزئية_البرامج_ قسم
declarations_block → declarations_list | φ التعريفات _قائمة ←التعريفات _قسم |φ
declarations_list → declarations
 | declarations declarations_list

ريفات ←التعريفات _قائمة ع ت
ع ريفات_قائمة تعريفات | الت

declarations → constants_dec | variables_dec المتغيرات _تعريف| الثوابت _تعريف ←تعريفات
constants_dec → constants const_list ريف ع الثوابت_قائمةثوابت ←الثوابت _ت
const_list → const_assign
 | const_assign const_list

 الثابت_قائمة ←الثوابت _قائمة
 الثوابت_الثابت قائمة_قائمة |

const_assign → id = constant_value الثابت؛_قيمة* = مف ←الثابت _قائمة ؛
constant_value → number | " string_const " منصصة _رموز" | عـدد ←الثابت _قيمة"
number → int_num | real_num حقيقي_عدد| صحيح _عدد ← عـدد
variables_dec → variables var_dec ; ريف ع ؛المتغيرات _قائمةمتغيرات ←المتغيرات _ ت
var_dec → type : identifier_list
 | type : identifier_list ; var_dec

 المعرفات_قائمة : نوع ←المتغيرات _قائمة
 المتغيرات_قائمة؛ المعرفات _قائمة : نوع |

identifier_list → identifier
 | identifier ، identifier_list

 معرف ←المعرفات _قائمة
رف | ع المعرفات_قائمة ،م

identifier → id | id [const] ثابت[مف | مف ←معرف [
const → id | int_num صحيح_عدد | مف ←ثابت
type → integer
 | real
 | char
 | string [const]

 صحيح ←نوع
 حقيقي |
 رمز |

] ثابت [رموز |

main_program → TheBegin
 optional_statements
 TheEnd

ال البداية ←الرئيسي _برنامج
 اختيارية_جمل

 النهاية
optional_statements → statement_list | φ جمل _قائمة ←اختيارية _جمل |φ
statement_list → statement
 | statement statement_list

 جملة ←جمل _قائمة
 جمل_قائمة جملة |

statement → assign_statement
 | selection_statement
 | loop_statement
 | io_statement
 | control_statement
 | subprogram_call

 يساوي_جملة ←جملة
 اختيار_جملة |
 تكرار_جملة |
خال_جملة | د اخراج/ا

 تحكم_جملة |
 جزئي_برنامج_مناداة |

assign_statement → var = simple_expression بسيطة_جبرية_عبارة = متغير ←يساوي _جملة
var → id | id [simple_expression] بسيطة_جبرية_عبارة[مف | مف ←متغير[
selection_statement → if expression then
statement_list
 else_statement eif ;

جمل _قائمة اذن ية جبر_عبارةاذا ←اختيار _جملة
 ناذا ؛والا _جملة

else_statement → else statement_list | φ جمل _قائمة والا ←والا _جملة |φ
loop_statement → for from var =
 simple_expression to
simple_expression
 optional_statements efor ;
 | While expression do

الى جبرية _بارةع = تغير آرر من ←تكرار _جملة
 جبرية_عبارة

م

 نكرر ؛اختيارية _جمل
اختيارية _جملنفذ جبرية _عبارةبينما |

 نينما ؛

48 COMPUTERS IN EDUCATION JOURNAL

 optional_statements ewhile ;
control_statement → newline ; سطر ؛ ←تحكم _جملة
io_statement → read read_variables ;
 | write (parameter_list) ;

خال_جملة د ؛اقرأ _متغيراتاقرا ←اخراج /ا
 ؛) المعطيات_قائمة(اآتب |

read_variables → (var_list) | φ اقرأ _تغيرات يرات_ قائمة (م غ φ |) مت
var_list → var | var , var_list م تغيرات_قائمةمتغير ، | متغير متغيرات _قائمة
parametre_list → parameter
 | parameter , parameter_list

 معطى المعطيات _قائمة
 معطى ، المعطيات _قائمة |

parameter → simple_expression | "
string_const "

منصصة _ رموز" | بسيطة _جبرية_ عبارةمعطى
"

subprogram_call → id actual_parameters; ؛ معطيات مف جزئي _برنامج_مناداة
actual_parameters → (parameter_list) | φ المعطيات _قائمة(معطيات (|φ
expression → simple_expression relop
simple_expression

بسيطة عمليةعلاقة _جبرية_عبارة جبرية _عبارة
 بسيطة_جبرية_عبارة

simple_expression → term
 | sign term
 | term addop
simple_expression

 حـد بسيطة_جبرية_عبارة
 حـد اشارة |
ليةجم عبارة | سيطة _جبرية_حد ع بم

sign → + | - اشارة - | +
term → factor
 | factor mulop term

 عامل حـد
 عامل عمليةضرب حد |

factor → number
 | var
 | (simple_expression)
 | factor ^ factor
 | subprogram_call

 عـدد عامل
 متغير|

 معطياتمف |
)بسيطة _جبرية_عبارة(|

 عامل^ عامل |
relop → = | < | > | <> | <= | > = لية علاقة_ع =| > = | < | > | < > | < = م
mulop → * | / لية ضرب _ع /| * م
addop → + | - جمع _ليةعم + |-
subprograms_block → subprograms | φ جزئية _برامج الجزئية _البرامج_قسم |φ
subprograms → subprog
 | subprog subprograms

 جزئي_برنامج جزئية _برامج
ة جزئي_جزئي برامج_برنامج |

subprog → function | procedure فرعي_برنامج| دالة جزئي _برنامج
function → type : function id formal_parameters
;
 declaration_block
 begin optional_statements return
simlpe_expression end

تغيرات_ قائمة(مف دالة : نوع ةدال م ؛)ال
 التعريفات_قسم

 نهاية ؛بسيطة _جبرية_ عبارةارجع اختيارية _جملبداية

procedure → sub id formal_parameters ;
 declaration_block
 begin optional_statements end

 ؛)المتغيرات_ قائمة(فرعي مف فرعي_برنامج
ريفات_قسم ع الت
 نهايةاختيارية _جملبداية

formal_parameters → (var_dec) | φ
 .رمز لكلمة معرف: مف*

COMPUTERS IN EDUCATION JOURNAL 49

	Teaching Pascal and ARABLANG
	Subject
	Procedure
	Problems
	Evaluation of the Teaching of
	ARABLANG and Pascal
	ARABLANG: If Statement (إذا)
	Analysis of Programming Errors
	Before testing After testing

	Survey of student awareness of computing and computer progra
	References

