
INTERFACING JAVA-DSP WITH A TI DSK
 FOR USE IN A SIGNAL PROCESSING CLASS

Andreas Spanias, Chih-Wei Huang, Ashwin Natarajan, Rony Ferzli, Homin Kwon, Venkataraman Atti,

Visar Berisha, Leonidas Iasemidis, Harish Krishnamoorthi, Photini Spanias, Shibani Misra,
Mahesh Banavar, Kostas Tsakalis, Susan Haag

Arizona State University
Tempe, AZ 85287-5706

Abstract

In this paper, we describe the development of

a Java-DSP (J-DSP) interface with DSP
hardware for use in undergraduate signals and
systems and DSP classes. The interface enables
undergraduate students to design and implement
algorithms real time on DSP hardware using the
user-friendly graphical interface of J-DSP.
Simulations involving digital filters and FFTs
are first established in the object oriented J-DSP
environment. Through the use of a clever
software interface, real-time implementation of
select algorithms become possible on the TI
DSP Starter Kit C6713. These real-time
implementations enable students to examine the
properties of various signal processing
algorithms using real-life signals. A simple
audio compression scheme that uses the Fast
Fourier Transform (FFT) is described in detail.
The algorithm exposes students to the
application of the FFT in a simplified MPEG-
like audio compression scheme. The hardware–
software interaction of J-DSP with the TI DSK
is also covered in the class; an introduction to
the architecture and its peripherals is also part of
the learning experience. Pre- and Post-
assessment instruments have been developed
and administered.

Introduction

An effective course in Digital Signal

Processing (DSP) must convey theoretical and
practical knowledge of key concepts associated
with the subject. While simulation tools such as
MATLAB, Simulink, and J-DSP are valuable,
running DSP algorithms on real-time hardware

can further enhance the understanding of these
concepts. With real-time DSP labs, students
learn about important implementation issues
associated with signal processing algorithms
and DSP chips [1-6]. They also gain an
appreciation for several compelling applications
that use DSP chips, such as digital cellular
phones and MP3 players. These days, several
segments of the industry require students that
have been exposed to implementation issues and
DSP hardware. In this paper, we choose the
Texas Instruments (TI) TMS320C6713™ DSP
Starter Kit (DSK), which is based on the
C6713™ floating-point processor, as a platform
for real-time DSP experiments. This choice was
motivated by the availability of user-friendly
development tools and the popularity of the TI
DSK in industry and academic training circles.
Although fixed-point processors are less
expensive and more power efficient relative to
floating-point processors, they are often more
difficult to use in an undergraduate learning
environment and pose certain limitations in
terms of handling natural data computations.
Even with specialized training, programming
fixed-point processors is difficult. Floating-
point processors are easier to program than their
fixed-point counterparts, but developing code
for them is still challenging. The learning curve
is steep for undergraduates, especially if the
DSP platform has to be programmed in
assembly language. TI has developed the Code
Composer Studio™ (CCS™) that provides an
integrated development environment (IDE) for
users. CCS is a powerful tool for writing and
debugging code and has an inbuilt compiler that
generates the assembly level code required to
run the DSP. However, even CCS can be

COMPUTERS IN EDUCATION JOURNAL 27

overwhelming for undergraduates because it
requires knowledge of tedious programming
structures. All these issues highlight the need
for a front end that allows students to access and
exploit the capabilities of real-time DSP
hardware with a user-friendly GUI-based
software.

In this paper, we describe a GUI-based

approach to teach undergraduate students the
concepts of real-time signal processing using J-
DSP [7]. Combining the ease of use of J-DSP
and the powerful capabilities of the TI DSK
allows students to explore the concepts of real-
time signal processing in a friendly
environment. Before using J-DSP to run real-
time DSP algorithms on the DSK, students are
given a brief overview of the interface between
J-DSP and the TI DSK. The process of
connecting J-DSP to the hardware via the RS-
232 and the USB ports is explained. The role of
CCS in this process is also described. Students
are then asked to select various DSP functions
to examine the differences between real-time
and offline signal processing. Hands-on
exercises that use this J-DSP interface to the
DSK have been developed and disseminated to
undergraduate students in the ASU DSP class.
A laboratory session was organized where
students programmed select real-time DSP tasks
using J-DSP. Pre- and post-lab quizzes were
given to assess their understanding of real time
DSP.

The rest of the paper is organized as follows.

The next section discusses the hardware aspect
of this educational DSP DSK setup. We then
explain the software and interfacing aspects of
this project. The next section outlines some of
the functions available to students, while the
final section provides concluding remarks.

Hardware Overview

The TI DSKC6713 Board

The TI DSKC6713 board [8-12] is based on

the TMS3206713 processor, which is a floating-
point DSP chip operating at 225 MHz. The
board also includes the 32-bit stereo codec
TLV320AIC23 (AIC23) to access and produce
analog input and output signals. Sampling rates
are programmable and can be varied between
8 kHz and 96 kHz. The board has 16MB of
SDRAM and 256 kB of flash memory. Input
and output functions are provided by several
jacks (MIC IN, LINE IN, etc). The MIC IN and
HEADPHONE ports constitute the McASP
(Multichannel Audio Serial Ports) and the LINE
IN and LINE OUT ports comprise the McBSP
(Multichannel Buffered Serial Ports.) Also
available on the board are the EMIP (External
memory interface), two inter-Integrated Circuit
buses, two timers, one GPIO (General Purpose
Input and Output), one HPI (Host-Port
Interface), and one EDMA (Enhanced Direct
Memory Access) with 16 independent channels.

Figure 1. The TMS320C6713 DSK board.

The TMS320C6713 DSP

The TMS C6713 DSP chip can fetch 8
instructions per cycle and its performance is
rated at 1800 millions of instructions per second

28 COMPUTERS IN EDUCATION JOURNAL

Figure 2. The functional block diagram of TMS320C6713

(Courtesy of Texas Instruments).

(MIPS). The C6713 can perform 2 multiply and
accumulate (MAC) instructions per cycle which
are very important in digital filtering
implementations. The processor can
access 264 kB of internal memory including 8
kB allocated to program and data cache and the
remaining 256 kB shared by program and data
space.

The Importance of the McBSP Ports

Since the McBSP ports are important in this J-

DSP interface project, we discuss them in some
detail. The McBSP ports provide the interface
between the input and output facilities of the TI
chip family. There are two McBSP ports;
McBSP0 is used for control and McBSP1 is
used to send and receive data. Both ports
support full duplex communication. Double
buffered data registers are available for a

continuous signal stream. Multichannel transmit
and receive is also available for up to 128
channels with choice of data size (8, 12, 16, 20,
24 and 32 bits). Most importantly, the McBSP
provides conversion functions (ADC and DAC).

The DR (Data Receive pin) receives data from
the external input (such as a microphone). The
received data is first stored in the RSR (Receive
Shift Register). Once the RSR receives the
complete data stream, it is moved into the RBR
(Receive Buffer Register). While the DRR
(Data Receive Register) is not ready to be read
by the CPU or the DMA controller, the RBR
copies the data into the DRR. Data transmission
is similar to data reception except the DX (Data
Transmit pin), DXR (Data Transmit Register)
and XSR (Transmit Shift Register) are
employed.

COMPUTERS IN EDUCATION JOURNAL 29

Figure 3. The block diagram of McBSP
(Courtesy of Texas Instruments).

Software and Interface overview

The Code Composer Studio

The code composer studio (CCS) [10] includes

a C/C++ editor, compiler, assembler, linker, and
debugger. The code for the DSK is programmed
in CCS and then loaded to the board. Support
for DSP/BIOS is included using a GUI that
allows users to configure interrupt handlers,
multithreading, etc. Additionally, CCS
optimizes the instructions and memory for
efficiency.

Interface with J-DSP

Although CCS is a powerful tool, it can be

difficult for first time users. We have developed
an interface to enable students to load and run
DSP functions on the DSK through the object
oriented J-DSP software[15-16]. We have also
developed a simple custom GUI in J-DSP to
facilitate working with the real-time DSK
hardware. This is shown in Figure 4. Basically,
J-DSP acts as an extra layer between the end-
user and the DSK.

Figure 4: The real-time DSP block in J-DSP.

For communication via the RS-232 port, Java

requires a signed applet to permit resource
access[13]. Java also needs the Communication
API to access the RS-232 port. The end user
must copy the win32com.dll, comm.jar, and
javax.comm.properties to the specific
directories detailed in the Communication API
manual.

Modifying the DSK to Resolve Hardware
Conflicts

Successful interfacing requires both CCS and
J-DSP to communicate with the DSK as shown
in Figure 5.

The CCS communicates with the DSK via the

USB port, while J-DSP employs the RS-232
port available on the daughter card used with
the DSK. However, a hardware conflict arises
because the daughter card and the AIC23 codec
both employ the McBSP1 port. The solution
was to rewire some of the hardware to enable
the use of the McBSP0 port for communication

30 COMPUTERS IN EDUCATION JOURNAL

via the RS-232 port, and allow McBSP1 to be
used by the codec, as shown in Figure 6.

.

Figure 5: Layers involved in interfacing J-DSP
with the DSK.

Figure 6: Re-wiring the daughter card.

The user has to connect the J-DSP block
shown in Figure 4 to the DSK via the RS-232
port by clicking the [Open Port] button. USB
connectivity is also possible through adaptors.
The default settings are: baud rate 57600bps, 8
data bits with 1 stop bit and no parity. The
status of the connection is updated in the
textbox at the bottom of the dialog box. Once
the connection is made, various DSP functions,

shown in Figure 7, can be selected from the
drop down box.

Figure 7: DSP functions available to the user.

Demo/Lab Exercise

Among the various applications implemented

in real-time via J-DSP, the peak-picking
algorithm is of particular interest. A music file
was played on a continuous loop and the peak-
picking algorithm is initiated. Students can
change various parameters and observe their
effects on the reconstructed signal.

FFT Peak-Picking and Parseval’s Theorem

The peak-picking algorithm is used to
implement a lossy audio compression scheme.
Its educational value comes from its association
with Parseval’s theorem and the fact that
transform domain analysis-synthesis [16] is
used in JPEG, MPEG, and MP3 [17-22]
algorithms. The signal is compressed by using
a reduced set of the chosen transform
parameters. An assumption that a signal follows
certain mathematical and statistical properties is
vital in choosing signal parameters. After
redundancies are removed in the compression
step, the synthesis step involves reconstructing
the signal with the reduced parameter set. The
peak-picking compression scheme is a simple
FFT-based algorithm depicted in Figure 8.

COMPUTERS IN EDUCATION JOURNAL 31

Figure 8: The peak-picking block algorithm.

The input signal vector is transformed using
the FFT. The next step involves redundancy
removal or compression where only a specific
number of peaks of the FFT magnitude
spectrum are selected (peak-picking). The peak
picking implies that the maximum power is
maintained in the compressed signal as implied
by the Parseval’s theorem. These select
frequency components are then transformed
back to the time domain using the IFFT. For
proper reconstruction of the original signal,
frequency symmetries have to be preserved.
Since this compression scheme is lossy, there is
a certain error associated with the
reconstruction. The key is to choose the
components such that the error is not
perceptible.

Deciding the number of peaks to be selected is

crucial to the quality of the reconstructed signal.
Selecting more peaks ensures high quality
reconstruction at the expense of a higher rate.

Students from the undergraduate DSP class

first played the original music file. They were
then asked to process this audio signal using the
peak-picking algorithm that was implemented
real time on the DSK board. The number of FFT
components selected was varied. Two methods
for selection were implemented, namely peak-
picking and initial low-frequency component
selection. The students were asked to
subjectively rate the quality of the reconstructed
signal in each case. They were also asked to
assess the differences between real time and
offline implementations.

An assessment quiz was administered before

(pre-lab) and after (post-lab) the hands-
on laboratory exercise. The questions posed are
itemized below:

1. Peak-picking of the DFT is typically used

for:
a. Filter design
b. Speech/Audio compression
c. JPEG compression
d. None of the above

2. Peak-picking is equivalent to
downsampling. (T/F)

3. Picking the first components bears
similarities to lowpass filtering. (T/F)

4. In the peak-picking algorithm all the phase
components are set to zero. (T/F)

5. Running DSP algorithms on a generic
processor is faster than running the same
algorithm on real time DSP hardware. (T/F)

6. The SNRs obtained with peak-picking are
better / worse (circle one) than the SNRs
obtained by choosing the same number of
the initial low frequency DFT components.

7. Arrange in order the following functions
that are involved in the A/D conversion of
the input signal at the codec embedded in
the TI-DSK board:
a. Sampling
b. Pre-filtering
c. Quantization

8. The real time implementation of the peak
picking algorithm implies that the output is
delivered
a. with precisely 0 delay.
b. with delay approximately equal to the

frame size.
c. with delay equal to the number of

spectral components selected times the
sampling period.

32 COMPUTERS IN EDUCATION JOURNAL

9. Choose those that are true. DSP chips are
a. embedded in PCs to assist the main

processor to run software.
b. used in cell phones.
c. used in Hi-def TV.
d. used in typical digital wrist watches.

10. DSP chips are optimized
a. for FFTs.
b. for high order digital filters.
c. to manage peripheral devices on the PC

such as the mouse and keyboard.
11. Circle the statements that are correct.

a. A DSP chip does a Mulitply-Accumulate
in one cycle.

b. A Pentium III chip does a Multiply-
Accumulate in one cycle.

12. Circle the correct statement
a. Fixed-point processors consume less

power than floating-point processors.
b. Floating-point processors are easier to

program than fixed-point processors.
c. Floating-point processors are more

expensive than fixed-point processors.

In summary, students showed an improvement

in terms of knowledge of general topics in real-
time processing. They also became familiar with
real-time compression techniques that utilize the
FFT.

Conclusion

This paper described the basic hardware

architecture of the TMS320C6713 DSK board
along with some of its functions. Interfacing the
real-time DSK hardware with the software such
as J-DSP and the CCS was explained. Pre- and
post assessment quizzes were administered and
improvements were demonstrated. This new
real-time capability of J-DSP enabled
instructors to provide a valuable introduction to
real-time DSP without having to cover low level
assembly programming. Through this
laboratory experience, students gained
knowledge on the following topics:

- The association of Parseval’s theorem
with real-time transform-domain
compression schemes.

- Differences between offline and real-time
signal processing in terms of execution
time and software complexity.

- Capabilities of DSP chips in terms of real
time processing of signals.

- Association of FFT-based compression
schemes with compelling JPEG and MP3
applications.

- Exposure to DSP hardware issues.

Acknowledgment

 This work has been sponsored in part by
the NSF CRCD EI Project (award 0417604), the
NSF award 0443137, and the ASU FSE SenSIP
Center.

TM –DSK TMS 320xxxx and most related

hardware used in this study are Trademarks of
Texas Instruments Incorporated. MATLAB and
Simulink are trademarks of The MathWorks.

References

1. T. B. Welch, C. H. G. Wright, and M. G.

Morrow, “Experiences in Offering A DSP-
based Communication Laboratory,” Digital
Signal Proc. Workshop, 2004 and the 3rd
IEEE Sig. Proc. Education Workshop, pp.
68-72, Aug 2004.

2. W.-S. Gan, “Teaching and Learning the
Hows and Whys of Real-Time Digital
Signal Processing,” IEEE Trans. on Educ.,
vol. 45, no. 4, pp. 336-343, Nov. 2002.

3. M. D. Galanis, A. Papazacharias, and E.
Zigouris, “A DSP Course for Real-Time
Systems Design and Implementation Based
on the TMS320C6211 DSK,” 14th
International Conf. on Dig. Sig. Proc., vol. 2,
pp. 853-856, July 2002.

COMPUTERS IN EDUCATION JOURNAL 33

4. S. L. Wood, G. C. Orsak, J. R. Treichler, D.
C. Munson, S. C. Douglas, R. Athale, and M.
A. Yoder, “DSP Concepts and Experiments
in a High School Curriculum,” 37th Conf. on
Sig., Systems, and Computers, vol. 2, pp.
1365-1369, Nov. 2003.

5. C. H. G. Wright, T. B. Welch, and W. J.
Gomes III, “Teaching DSP Concepts using
MATLAB and the TMS320C31 DSK,”
Proc. of International Conf. on Acous.,
Speech, Sig. Proc., vol. 6, pp. 3573-3576,
March 1999.

6. M. G. Morrow, T. B. Welch, and C. H. G.
Wright, “A Tool for Real-Time DSP
Demonstration and Experimentation,” Proc.
of 10th IEEE Digital Signal Proc. Workshop,
pp. 162-167, Oct. 2002.

7. JDSP http://jdsp.asu.edu

8. Texas Instruments, Inc., http://www.ti.com

9. Texas Instruments, Inc., “TMS320C6713
DSP Starter Kit”, http://focus.ti.com/docs/
toolsw/folders/print/tmdsdsk6713.html

10. Texas Instruments, Inc., “Code Composer
Studio Features and Demos”, http://focus.ti.
com/dsp/docs/dspsupporto.tsp?sectionId=3
&tabId=432.

11. R. Chassaing, Digital Signal Processing and
Applications with the C6713 and C6416
DSK, John Wiley & Sons, Inc., Hoboken,
New Jersey, 2005.

12. DSPGLOBAL, “DSPG-IC1-232 Rs232
daughtercard”, http://www.dspglobal.com/
Int%20Card%20SERIAL.htm.

13. Java Technology, http://java.sun.com.

14. A. Spanias and V. Atti, “Interactive On-line
Undergraduate Laboratories Using J-DSP,”
IEEE Trans. on Education Special Issue on
Web-based Instruction, vol. 48, no. 4, pp.
735-749, Nov. 2005.

15. A. Spanias, A. Venkataraman, K. Ahmed,

A. Papandreou-Suppappola, M. Zaman, and
T. Thrassyvoulou “On-line signal processing
using J-DSP,” IEEE Signal Processing
Letters, Volume: 11 , Issue: 10 , pp. 821 –
825, Sept. 2004.

16. S. Ahmadi and A. Spanias, “Algorithms for

Low-bit rate sinusoidal coding,” Speech
Communications, 34(2001), pp. 369-390,
June 2001.

17. T. Painter, A. Spanias, “Perceptual

segmentation and component selection for
sinusoidal representations of audio,” IEEE
Transactions on Speech and Audio
Processing," Volume 13, Issue 2, pp. 149-
162, March 2005.

18. Y. Song, A. Spanias, V. Atti, and V.

Berisha, “Interactive Java Modules for the
MPEG-1 Psychoacoustic Model,” Proc.
ICASSP '05, Vol. 5, pp.581-584,
Philadelphia, March 2005.

19. R. Ramapriya and A. Spanias, “A

Simulation Tool for introducing MPEG -
Audio (MP3) concepts in a DSP course,
Proc. of IEEE International Conference on
Acoustic, Speech and Signal Processing
(ICASSP-2002), Orlando, May 2002.

20. T. Painter and A. S. Spanias, “Perceptual

Coding of Digital Audio,” Proceedings of
the IEEE, pp. 451-513, Vol. 88, No.4, April
2000 (winner of field series 2002 IEEE
Donald G. Fink Prize Paper Award).

21. A. Spanias, T. Painter, V. Atti, Audio Signal

Processing and Coding, 464 pages, ISBN: 0-
471-79147-4, Wiley, New Jersey, February
2007.

34 COMPUTERS IN EDUCATION JOURNAL

http://jdsp.asu.edu/
http://www.ti.com/
http://focus.ti.com/docs/
http://www.dspglobal.com/
http://java.sun.com/

22. A. Spanias, Digital Signal Processing; An
Interactive Approach, 388 pages, Textbook
with theory, problems, and JAVA-DSP
computer exercises, ISBN 978-1-4243-
2524-5, Tempe, January 2007.

Biographical Information

Andreas Spanias is a Professor in Electrical

Engineering and Director of the SenSIP
Consortium at Arizona State University (ASU).
He is the author of two text books. He and his
student team developed the computer simulation
software Java-DSP (J-DSP-ISBN 0-9724984-0-
0) which is being used in the ASU DSP courses.
He is co-recipient of the 2002 IEEE Donald G.
Fink paper prize award and he is a Fellow of the
IEEE. He served as Distinguished Lecturer of
the IEEE SPS in 2004.

Chih-Wei Huang is a Masters student in

Electrical Engineering at ASU. He worked on
DSP and Java implementations of the MP3
decoder.

Ashwin Natarajan is a Doctoral student in

Electrical Engineering at ASU. He worked on
adaptive filter simulations in J-DSP.

Rony Ferzli is a Doctoral student in Electrical

Engineering at ASU. He worked on DSP
boards and his research is in image processing.

Homin Kwon is a Doctoral student in

Electrical Engineering at ASU. His research
interests are in sensor networks.

Venkataraman Atti received his Doctoral

Degree at ASU in 2006. He is currently with
Acoustic Technologies working on echo
cancellers.

Visar Berisha is a Doctoral student in
Electrical Engineering at ASU. His research
interests are in bandwidth extension of speech.
He has done work in DSP, sensor networks,
radar, and biomedical signal processing. He
held internships at General Dynamics,
Raytheon, MIT Lincoln Labs and Medronic.

Leonidas Iasemidis is Associate Professor in

Biomedical Engineering at ASU. His research
interests are in biomedical signal processing.

Photini Spanias has a Doctoral degree from the

College of Education at ASU. She is currently a
lecturer at ASU teaching math classes. She
participated in the assessment of J-DSP
software.

Shibani Misra is a Masters student in

Electrical Engineering at ASU. She worked on
J-DSP implementations of genomic signal
processing algorithms.

Mahesh Banavar is a Doctoral student in

Electrical Engineering at ASU. He works on
sensor networks and multi-carrier systems.

Kostas Tsakalis is a Professor in Electrical

Engineering at ASU. He works on adaptive
control systems. He co-developed J-DSPs
controls simulator. He published in automatic
control and co-authored a monograph in
adaptive control.

Harish Krishnamoorthi is a Doctoral student in

Electrical Engineering at ASU. He is the
Teaching Assistant of the DSP class at ASU and
works on audio processing systems.

Susan Haag is an Associate Research

Professor with the Ira A. Fulton School of
Engineering. She specializes in assessment and
evaluation.

COMPUTERS IN EDUCATION JOURNAL 35

