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Abstract 

 
In this paper, we describe the development of 

a Java-DSP (J-DSP) interface with DSP 
hardware for use in undergraduate signals and 
systems and DSP classes. The interface enables 
undergraduate students to design and implement 
algorithms real time on DSP hardware using the 
user-friendly graphical interface of J-DSP. 
Simulations involving digital filters and FFTs 
are first established in the object oriented J-DSP 
environment.  Through the use of a clever 
software interface, real-time implementation of 
select algorithms become possible on the TI 
DSP Starter Kit C6713.  These real-time 
implementations enable students to examine the 
properties of various signal processing 
algorithms using real-life signals. A simple 
audio compression scheme that uses the Fast 
Fourier Transform (FFT) is described in detail. 
The algorithm exposes students to the 
application of the FFT in a simplified MPEG-
like audio compression scheme. The hardware–
software interaction of J-DSP with the TI DSK 
is also covered in the class; an introduction to 
the architecture and its peripherals is also part of 
the learning experience.  Pre- and Post- 
assessment instruments have been developed 
and administered. 

 
Introduction 

 
An effective course in Digital Signal 

Processing (DSP) must convey theoretical and 
practical knowledge of key concepts associated 
with the subject. While simulation tools such as 
MATLAB, Simulink, and J-DSP are valuable, 
running DSP algorithms on real-time hardware 

can further enhance the understanding of these 
concepts. With real-time DSP labs, students 
learn about important implementation issues 
associated with signal processing algorithms 
and DSP chips [1-6].  They also gain an 
appreciation for several compelling applications 
that use DSP chips, such as digital cellular 
phones and MP3 players.  These days, several 
segments of the industry require students that 
have been exposed to implementation issues and 
DSP hardware. In this paper, we choose the 
Texas Instruments (TI) TMS320C6713™ DSP 
Starter Kit (DSK), which is based on the 
C6713™ floating-point processor, as a platform 
for real-time DSP experiments.  This choice was 
motivated by the availability of user-friendly 
development tools and the popularity of the TI 
DSK in industry and academic training circles.  
Although fixed-point processors are less 
expensive and more power efficient relative to 
floating-point processors, they are often more 
difficult to use in an undergraduate learning 
environment and pose certain limitations in 
terms of handling natural data computations. 
Even with specialized training, programming 
fixed-point processors is difficult. Floating-
point processors are easier to program than their 
fixed-point counterparts, but developing code 
for them is still challenging. The learning curve 
is steep for undergraduates, especially if the 
DSP platform has to be programmed in 
assembly language. TI has developed the Code 
Composer Studio™ (CCS™) that provides an 
integrated development environment (IDE) for 
users. CCS is a powerful tool for writing and 
debugging code and has an inbuilt compiler that 
generates the assembly level code required to 
run the DSP. However, even CCS can be 
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overwhelming for undergraduates because it 
requires knowledge of tedious programming 
structures. All these issues highlight the need 
for a front end that allows students to access and 
exploit the capabilities of real-time DSP 
hardware with a user-friendly GUI-based 
software. 

 
In this paper, we describe a GUI-based 

approach to teach undergraduate students the 
concepts of real-time signal processing using J-
DSP [7].  Combining the ease of use of J-DSP 
and the powerful capabilities of the TI DSK 
allows students to explore the concepts of real-
time signal processing in a friendly 
environment. Before using J-DSP to run real-
time DSP algorithms on the DSK, students are 
given a brief overview of the interface between 
J-DSP and the TI DSK. The process of 
connecting J-DSP to the hardware via the RS-
232 and the USB ports is explained. The role of 
CCS in this process is also described. Students 
are then asked to select various DSP functions 
to examine the differences between real-time 
and offline signal processing. Hands-on 
exercises that use this J-DSP interface to the 
DSK have been developed and disseminated to 
undergraduate students in the ASU DSP class.  
A laboratory session was organized where 
students programmed select real-time DSP tasks 
using J-DSP. Pre- and post-lab quizzes were 
given to assess their understanding of real time 
DSP.  

 
The rest of the paper is organized as follows. 

The next section discusses the hardware aspect 
of this educational DSP DSK setup. We then 
explain the software and interfacing aspects of 
this project. The next section outlines some of 
the functions available to students, while the 
final section provides concluding remarks. 

 
 
 
 

 
 

 

Hardware  Overview 
 
The  TI DSKC6713  Board 

 
The TI DSKC6713 board [8-12] is based on 

the TMS3206713 processor, which is a floating-
point DSP chip operating at 225 MHz. The 
board also includes the 32-bit stereo codec 
TLV320AIC23 (AIC23) to access and produce 
analog input and output signals. Sampling rates 
are  programmable  and  can  be  varied between  
8 kHz and 96 kHz. The board has 16MB of 
SDRAM and 256 kB of flash memory. Input 
and output functions are provided by several 
jacks (MIC IN, LINE IN, etc). The MIC IN and 
HEADPHONE ports constitute the McASP 
(Multichannel Audio Serial Ports) and the LINE 
IN and LINE OUT ports comprise the McBSP 
(Multichannel Buffered Serial Ports.) Also 
available on the board are the EMIP (External 
memory interface), two inter-Integrated Circuit 
buses, two timers, one GPIO (General Purpose 
Input and Output), one HPI (Host-Port 
Interface), and one EDMA (Enhanced Direct 
Memory Access) with 16 independent channels. 

 
 

 
 
Figure 1. The TMS320C6713 DSK board. 

 
The  TMS320C6713  DSP 
 

The TMS C6713 DSP chip can fetch 8 
instructions per cycle and its performance is 
rated at 1800 millions of instructions per second  
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Figure 2. The functional block diagram of TMS320C6713 

(Courtesy of Texas Instruments). 
 

(MIPS). The C6713 can perform 2 multiply and 
accumulate (MAC) instructions per cycle which 
are very important in digital filtering 
implementations.    The   processor   can   
access 264 kB of internal memory including 8 
kB allocated to program and data cache and the 
remaining 256 kB shared by program and data 
space. 

 
The  Importance  of  the  McBSP  Ports 

 
Since the McBSP ports are important in this J-

DSP interface project, we discuss them in some 
detail. The McBSP ports provide the interface 
between the input and output facilities of the TI 
chip family. There are two McBSP ports; 
McBSP0 is used for control and McBSP1 is 
used to send and receive data. Both ports 
support full duplex communication. Double 
buffered   data   registers   are   available   for   a  
 

 
continuous signal stream. Multichannel transmit  
and receive is also available for up to 128 
channels with choice of data size (8, 12, 16, 20, 
24 and 32 bits). Most importantly, the McBSP 
provides conversion functions (ADC and DAC). 
 

The DR (Data Receive pin) receives  data from 
the external input (such as a microphone). The 
received data is first stored in the RSR (Receive 
Shift Register). Once the RSR receives the 
complete data stream, it is moved into the RBR 
(Receive Buffer Register). While the DRR 
(Data Receive Register) is not ready to be read 
by the CPU or the DMA controller, the RBR 
copies the data into the DRR. Data transmission 
is similar to data reception except the DX (Data 
Transmit pin), DXR (Data Transmit Register) 
and XSR (Transmit Shift Register) are 
employed.  
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Figure 3. The block diagram of McBSP 
(Courtesy of  Texas Instruments). 
 
 

Software  and  Interface overview 
 

The  Code  Composer  Studio 
 
The code composer studio (CCS) [10] includes 

a C/C++ editor, compiler, assembler, linker, and 
debugger. The code for the DSK is programmed 
in CCS and then loaded to the board. Support 
for DSP/BIOS is included using a GUI that 
allows users to configure interrupt handlers, 
multithreading, etc. Additionally, CCS 
optimizes the instructions and memory for 
efficiency.  

 
Interface  with  J-DSP 

 
Although CCS is a powerful tool, it can be 

difficult for first time users.  We have developed 
an interface to enable students to load and run 
DSP functions on the DSK through the object 
oriented J-DSP software[15-16]. We have also 
developed a simple custom GUI in J-DSP to 
facilitate working with the real-time DSK 
hardware.  This is shown in Figure 4. Basically, 
J-DSP acts as an extra layer between the end-
user and the DSK. 

 
 
Figure 4: The real-time DSP block in J-DSP. 
 
For communication via the RS-232 port, Java 

requires a signed applet to permit resource 
access[13]. Java also needs the Communication 
API to access the RS-232 port. The end user 
must copy the win32com.dll, comm.jar, and 
javax.comm.properties to the specific 
directories detailed in the Communication API 
manual.  

 
Modifying the DSK to Resolve Hardware 
Conflicts 
 

Successful interfacing requires both CCS and 
J-DSP to communicate with the DSK as shown 
in Figure 5. 

 
The CCS communicates with the DSK via the 

USB port, while J-DSP employs the RS-232 
port available on the daughter card used with 
the DSK. However, a hardware conflict arises 
because the daughter card and the AIC23 codec 
both employ the McBSP1 port. The solution 
was to rewire some of the hardware to enable 
the use of the McBSP0 port for communication 
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via the RS-232 port, and allow McBSP1 to be 
used by the codec, as shown in Figure 6. 

 
. 

 
 
Figure 5: Layers involved in interfacing J-DSP 
with the DSK. 

 

 
 

Figure 6: Re-wiring the daughter card. 
 

The user has to connect the J-DSP block 
shown in Figure 4 to the DSK via the RS-232 
port by clicking the [Open Port] button. USB 
connectivity is also possible through adaptors. 
The default settings are: baud rate 57600bps, 8 
data bits with 1 stop bit and no parity. The 
status of the connection is updated in the 
textbox at the bottom of the dialog box. Once 
the connection is made, various DSP functions, 

shown in Figure 7, can be selected from the 
drop down box. 

 

 
Figure 7: DSP functions available to the user. 

 
Demo/Lab Exercise 

 
Among the various applications implemented 

in real-time via J-DSP, the peak-picking 
algorithm is of particular interest. A music file 
was played on a continuous loop and the peak-
picking algorithm is initiated. Students can 
change various parameters and observe their 
effects on the reconstructed signal.  

 
FFT  Peak-Picking  and  Parseval’s  Theorem 
 

The peak-picking algorithm is used to 
implement a lossy audio compression scheme. 
Its educational value comes from its association 
with Parseval’s theorem and the fact that 
transform domain analysis-synthesis [16] is 
used in JPEG, MPEG, and MP3 [17-22] 
algorithms.   The signal is compressed by using 
a reduced set of the chosen transform 
parameters. An assumption that a signal follows 
certain mathematical and statistical properties is 
vital in choosing signal parameters. After 
redundancies are removed in the compression 
step, the synthesis step involves reconstructing 
the signal with the reduced parameter set. The 
peak-picking compression scheme is a simple 
FFT-based algorithm depicted in Figure 8. 
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Figure 8: The peak-picking block algorithm. 

 
 

The input signal vector is transformed using 
the FFT. The next step involves redundancy 
removal or compression where only a specific 
number of peaks of the FFT magnitude 
spectrum are selected (peak-picking). The peak 
picking implies that the maximum power is 
maintained in the compressed signal as implied 
by the Parseval’s theorem.  These select 
frequency components are then transformed 
back to the time domain using the IFFT. For 
proper reconstruction of the original signal, 
frequency symmetries have to be preserved. 
Since this compression scheme is lossy, there is 
a certain error associated with the 
reconstruction. The key is to choose the 
components such that the error is not 
perceptible.  

  
Deciding the number of peaks to be selected is 

crucial to the quality of the reconstructed signal. 
Selecting more peaks ensures high quality 
reconstruction at the expense of a higher rate.  

  
Students from the undergraduate DSP class 

first played the original music file. They were 
then asked to process this audio signal using the 
peak-picking algorithm that was implemented 
real time on the DSK board. The number of FFT 
components selected was varied. Two methods 
for selection were implemented, namely peak-
picking and initial low-frequency component 
selection. The students were asked to 
subjectively rate the quality of the reconstructed 
signal in each case. They were also asked to 
assess the differences between real time and 
offline implementations.  

 
 
 
 

 
 

 
An assessment quiz was administered before 

(pre-lab)   and   after   (post-lab)    the   hands-
on laboratory exercise. The questions posed are 
itemized below: 

 
1. Peak-picking of the DFT is typically used 

for: 
a. Filter design 
b. Speech/Audio compression 
c. JPEG compression 
d. None of the above 

2. Peak-picking is equivalent to 
downsampling. (T/F) 

3. Picking the first components bears 
similarities to lowpass filtering. (T/F) 

4. In the peak-picking algorithm all the phase 
components are set to zero. (T/F) 

5. Running DSP algorithms on a generic 
processor is faster than running the same 
algorithm on real time DSP hardware. (T/F) 

6. The SNRs obtained with peak-picking are    
better / worse    (circle one) than the SNRs 
obtained by choosing the same number of 
the initial low frequency DFT components. 

7. Arrange in order the following functions 
that are involved in the A/D conversion of 
the input signal at the codec embedded in 
the TI-DSK board: 
a. Sampling 
b. Pre-filtering 
c. Quantization 

8. The real time implementation of the peak 
picking algorithm implies that the output is 
delivered  
a. with precisely 0 delay. 
b. with delay approximately equal to the 

frame size. 
c. with delay equal to the number of 

spectral components selected times the 
sampling period. 
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9. Choose those that are true. DSP chips are 
a. embedded in PCs to assist the main 

processor to run software. 
b. used in cell phones. 
c. used in Hi-def TV. 
d. used in typical digital wrist watches. 

10. DSP chips are optimized 
a. for FFTs. 
b. for high order digital filters. 
c. to manage peripheral devices on the PC 

such as the mouse and keyboard. 
11. Circle the statements that are correct. 

a. A DSP chip does a Mulitply-Accumulate 
in one cycle. 

b. A Pentium III chip does a Multiply-
Accumulate in one cycle. 

12. Circle the correct statement 
a. Fixed-point processors consume less 

power than floating-point processors. 
b. Floating-point processors are easier to 

program than fixed-point processors. 
c. Floating-point processors are more 

expensive than fixed-point processors. 
 
In summary, students showed an improvement 

in terms of knowledge of general topics in real-
time processing. They also became familiar with 
real-time compression techniques that utilize the 
FFT. 

 
Conclusion 

 
This paper described the basic hardware 

architecture of the TMS320C6713 DSK board 
along with some of its functions. Interfacing the 
real-time DSK hardware with the software such 
as J-DSP and the CCS was explained. Pre- and 
post assessment quizzes were administered and 
improvements were demonstrated.  This new 
real-time capability of J-DSP enabled 
instructors to provide a valuable introduction to 
real-time DSP without having to cover low level 
assembly programming.   Through this 
laboratory experience, students gained 
knowledge on the following topics: 

 

- The association of Parseval’s theorem 
with real-time transform-domain 
compression schemes.  

- Differences between offline and real-time 
signal processing in terms of execution 
time and software complexity. 

- Capabilities of DSP chips in terms of real 
time processing of signals. 

- Association of FFT-based compression 
schemes with compelling JPEG and MP3 
applications. 

- Exposure to DSP hardware issues. 
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