
JAVA PROGRAMMING FOR ONLINE QUALITY CONTROL
LABORATORY INTEGRATED WITH REMOTE ROBOT

Richard Chiou1, Yongjin (James) Kwon2, and Tzu-Liang (Bill) Tseng3

1Applied Engineering Technology

Goodwin College of Professional Studies
Drexel University, Philadelphia, PA

2Industrial and Information Systems Engineering

College of Engineering
Ajou University, South Korea

3Mechanical and Industrial Engineering

College of Engineering
University of Texas, El Paso, TX

Abstract

This paper presents computer Java

programming for laboratory development on
real-time quality control integrated with web-
controllable robots. The remote quality
monitoring system (referred to as E-quality)
allows users to monitor the part status including
data, image, and video through the Internet. The
use of Java allows for interconnection and data
transfer between the different components of the
Web-based quality system and the robots. The
ability to access and control quality control
devices via the Web benefits the current
manufacturing environment with access to the
production floor, remote control/programming
/monitoring capability, and integration of
production equipment into information networks
for improved process efficiency and product
quality. The networked hardware and software
components are integrated with quality
methodologies to achieve maximum effective-
ness in teaching E-quality concepts. The remote
quality control laboratory has been developed
for course delivery for engineering and
technology education. The environment is also
suitable for engineering undergraduate and
graduate research work.

Introduction

In tomorrow’s factory, design, manufacturing,

quality, and business are integrated into the
Internet[1-4]. It is a trend that Web based
gauging, measurement, inspection, diagnostic
system, and quality control have become critical
issues in the integration with e-manufacturing
systems and management. The constituents
include highly advanced form of production
equipment and sensor networks connected to the
Internet, all of which identified by the unique
Internet Protocol (IP) addresses. The remote
accessibility and the ability to control the
equipment over the Internet present
unprecedented benefits to the current
manufacturing environment. Designers located
remotely from the production facility can carry
out the inspection and quality inspection as their
design processes evolve. The quality control
issues and the positioning tolerance analysis of
equipment can be tested according to the
assembly and manufacturing specifications. Any
changes in the product specifications and
associated quality control routines can be
instantly updated and verified, which will
enhance the overall production efficiency. In
the event of defective products, the operators
are warned immediately through telecom-
munications networks, such as text messages,
email, and phone calls[5-7].

42 COMPUTERS IN EDUCATION JOURNAL

The objective of the project is to allow
engineering and technology students to
experience with such a system in Web-based
applied quality control[8-11]. The system
currently allows a student to remotely operate
and monitor the inspection process through the
Web and collect data about the ongoing process
for future analysis. This system gives a vivid
picture on the integration of robotics, machine
vision systems, and sensors via the Internet,
leading to a rich online laboratory learning
experience[12-15]. It is the most popular choice
for Web-based applications and is a proven
technology for client–server communications
deployed through embedded network systems.
The firmware and associated scripting tools in
the hardware are closely based on Java and this
allows seamless operation with other Java
applications. For a Web-based system, Java
provides the best range of options to implement
an efficient client – server system. Java Applets
allows clients to build extremely user friendly
and intuitive interfaces that can be deployed
over a Web browser. Java software technology
has been the most extensively supported by the
Web browsers that are currently available in the
market. Subsequently using a Java based
application server to communicate with this
Applet based client is the best choice for
efficient and quick system development. Java
makes it easy to move the code to another
platform which is a common requirement in an
academic environment.

Web-Based Quality Control System

The underlying idea in a Web based e-quality

control systems is to have an application server
that can communicate and control all the entities
involved in the manufacturing and monitoring
process. In our system, this server
communicates with the machine vision system
that is capable of making real-time inspections
on the products and the robot that performs the
required corrective action. It is also the point to
which any remote user would connect to
through their Web browsers to monitor and
obtain information on the ongoing process.
Figure 1 shows the system setup for remote
quality control integrated with robot and
machine vision[16-18]. It is composed of a
Yamaha SCARA robot, RCX40 robot controller
with on-board Ethernet card, Cognex DVT 540
machine vision sensor, DLink DCS-5300 Web
cameras and a PC for hosting the application
server and Web server. All these devices are
Internet enabled – i.e. these devices can all be
connected to a TCP/IP network through an
Ethernet port and can be addressed through an
IP address. Once hooked up to the network
through a UTP Cat5 cable, these devices
become unique nodes in a TCP/IP network and
are able to communicate with other entities on
the network. The Drexel University network is
an extensive TCP/IP network running on
Ethernet and wireless Ethernet. All IP addresses
are of version 4.

Figure 1. System Setup.

Application Server

Users

Internet

Vision Camera

Robot

COMPUTERS IN EDUCATION JOURNAL 43

The RCX40 robot controller runs a Telnet
daemon on TCP port 23, which is a program
that allows Telnet clients to connect to it and
communicate with it. Telnet is one of the oldest
text based protocol for remote communications.
The daemon allows a Telnet client to connect to
it and type in textual commands which in turn
are interpreted by the internal firmware and
executed as manual actions by the robot. The
machine vision sensor also has extensive
TCP/IP communication facilities. Though it
does not provide a standard protocol interface, it
has an in-built scripting facility that allows
communication programs to be written and
executed in it. The communication program we
implemented is explained in later sections.

The application server runs on a dedicated PC.
It waits for connections to be made from clients.
Once a connection is made, it initiates
connections with the vision sensor and the robot
and establishes a complete communication
topology for the purposes of our system. We
also run a Web server for serving the Applet
which forms our client interface. Our choice is
the Apache Web server version 2.0.59 running
on a Windows XP platform. Apache is by far
the most common and efficient Web server. It is
also distributed for free by the Apache
foundation. The server listens on TCP port 80.
The Applet is stored under the Web server and
when a client requests for the Web page
containing this Applet through his browser, it
responds by sending this page and applet to the
client. Once received, the applet is loaded in the
browser and starts executing. After all the
connections are established, information flows
from each device and client to the application
server, in turn, redistributes it. All the devices
are password protected for enhanced security.

At the core of this system is the Java-based

software that integrates all the hardware
components and provides the user with a unified
view of the system in terms of quality control
operation and information exchange. The
software is implemented as three separate
entities: scripts on the vision sensor, the
application server, and the Applet based client

interface. Figure 2 shows the overall software
structure implemented in the Web-based quality
control system. The measurements made by the
machine vision sensor is formatted and
transferred to the application server through two
scripts. Inter-script communication between
these two scripts happens by setting and
clearing status flags in the common memory
registers. The first script, called the inspection
script, is executed after each snapshot. The
second script, called the main script, runs
constantly in the background. It is responsible
for establishing and maintaining
communications with the application server. It
uses the standard Java style function Socket to
open a TCP connection to the application server
on a dedicated port. Once the connection is
established, it exchanges information on this
connection with the application server through
the functions send and receive.

System Programming Structure

The application server is a communications

program written in Java. The operations of the
program are divided and implemented through
three main Java classes and a main program in
accordance with the object-oriented
programming model. The main program is the
part of the code that is executed first when the
application server is started. The main program
is shown in Figure 2.

The main program starts by waiting for a TCP

connection on a predetermined port from a
browser through the ServerSocket class object.
Since the end user has to activate the inspection
process, this is deemed as the appropriate entry
point into the program. This connection is
initiated by the browser through a Java Applet.
Once a connection is accepted through the
accept method, an object of BrowserSession
class, which is a class designed to handle all the
browser communication aspects is initialized
with this new connection. This newly initialized
object is then used as a parameter to initialize an
object of the Operations class. The Operations
class is designed to operate the communications
with the machine vision camera and the robot.

44 COMPUTERS IN EDUCATION JOURNAL

CLIENT SIDE SERVER SIDE

COMPUTERS IN EDUCATION JOURNAL 45

Figure 2. Java Programming Structure.

The Operations object implements the Java
system class—therefore being able to run as a
thread. A thread is a mini-program within a
program that can execute in parallel with other
threads. The reason behind assigning the
browser communications to a separate class and
the robot-camera operations to another class
should be evident from the way the system is

organized. The browser forms the client part of
the operations while the robot and camera
constitute the server side of the system and
hence this division. Once the initialization of the
objects is completed, a new thread is started
with the newly initialized Operations object and
the thread is started. This effectively establishes
the required connections between the entities in
the system and starts operation.

public class Main {
 public static void main(String[] args)throws Exception {
 ……..
 ServerSocket BrowserListenSocket = new ServerSocket(BrowswerListenPort);
 BrowserSession ThisBrowserSession = BrowserSession(BrowserListenSocket.accept());
 Operations ThisOperation = new Operations (This BrowserSession);
 Thread CurrentThread = new Thread (ThisOperation);
 CurrentThread.start();
 ……….
 }
 }

Web Browser

Quality Information

MFC Library for
ActiveX Controls

Apache Web Server

Client Interface Java Applet

Application Server (Java)

Robot Communications Module

Inspection Camera
Communication Module

Client Communication Module

Main Control & Decision Logic

ROBOT CONTROLLER

Telnet Daemon

INSPECTION CAMERA

TCP Sockets

TCP/IP Socket
Communication

Java IPC

TCP/IP Socket
Communication

HTTP

Java IPC

Java IPC
Web CAMERA

HTTP Server

Image Transfer

Telnet Protocol

Communication with Web browser

The BrowserSession encapsulates all

operations pertaining to the communication with
the browser. Its constructor initializes an Socket
object with the new connection passed on to it
by the main program.

private Socket BrowserConnectionSocket;
public BrowserSession(Socket NewSocket) {
BrowserConnectionSocket = NewSocket;
}

The class provides a WriteMessage() method

through which information is sent to the
browser. The functions of the isAlive() and
Close() methods are self-evident.

private BrowserSession ThisSession;
public Operations(BrowserSession bs) {
ThisSession = bs;
}

It accepts an instant of the BrowserSession

class as an input which effectively gives it
access to the connection with the browser. It
then utilizes the TelnetWrapper class for
communicating with the telnet daemon on the
robot. An instance of the Operations class, once
run as a thread, starts with opening a connection
and initializing the robot.

 public boolean WriteMessage(String Message) {
 try {
 if (BrowserStream == null)
 BrowserStream = new PrintWriter(BrowserConnectionSocket.getOutputStream());
 BrowserStream.println(Message);
 BrowserStream.flush();
 return true;
 } catch (IOException Error) {
 return false;
 }
 }
 public boolean isAlive() {
…………..
 }
 public void Close() {
…………...
 }
}

Web-Based Robotic Operations

The main workhorse of this system is the

Operations class. The constructor for this class
is as follows:

46 COMPUTERS IN EDUCATION JOURNAL

RobotConnection = new TelnetWrapper(RobotIP);
RobotConnection.setPrompt("");
RobotConnection.login("USER", "PASSWORD");
RobotConnection.wait("OK",10000);
ThisSession.WriteMessage(
 RobotConnection.sendCommand("@DO(21)=1") + // Start conveyor belt
 RobotConnection.sendCommand("@DO(23)=0") + // Stop suction pump
 RobotConnection.sendCommand("@SERVO ON") + // Turn on servo
 RobotConnection.sendCommand("@MOVE L,P126") // Move to rest posn.
)

The initialization sequence composes of four

steps. It enables the digital output 21 connected
to the robot’s I/O controller. This output is
essentially the conveyor belt turn on/off signal
and therefore starts it. Digital output 23 is
connected to the vacuum device which is turned
off at the beginning. It is turned on when the
robot is required to pick up an object. The
“SERVO ON” statement turns on the robot’s
servo motor. The next command moves the
robot to a rest position which is pre-defined by
the point P126 in the robot controller’s memory.

Integration with Remote Quality
Inspection

The next step is to establish connection with

the camera, again through a TCP/IP socket on a
pre-assigned port.

ServerSocket Camera = new ServerSocket
 (CameraPort);
ThisConnection = Camera.accept();

Once connected, it continuously waits for
messages from the camera that include
measurements, object position and other status
messages. It processes this incoming
measurement information to decide on the
quality of the product. Once a decision is made
it instructs the robot to perform the necessary
action on the inspected object.

BufferedReader FromCamera = new BufferedReader(
 new InputStreamReader(ThisConnection.getInputStream()));
while (true)
{
MessagefromCamera = FromCamera.readLine();
if (Request.equals("MessagefromCamera "))
{
 ThisSession.WriteMessage ("Object Detected \n” +
 RobotConnection.sendCommand("@DO(21)=0")); \\ Stop belt
}
else
{
 . // Parse Dimensions
 ThisSession.WriteMessage(“Dimensions: “ + Dimensions +
 RobotConnection.sendCommand("@MOVE L, " + X + " " + Y + " " + Z + " " +
R) +
 RobotConnection.sendCommand("@DO(23)=1")); \\ Move to object & pick up
 if (Dimensions_Are_Not_Correct)

COMPUTERS IN EDUCATION JOURNAL 47

 {
 ThisSession.WriteMessage("Non Compliant Object\n
 RobotConnection.sendCommand("@MOVE L, P126, P125"));
 \\ Place object in non-compliant stack
 }
 else
 {
 ThisSession.WriteMessage("Compliant Object\n"
 RobotConnection.sendCommand("@MOVE L, P127, P128"));
 \\ Place object in compliant stack
 }
 . //Reset Operations
}
}

The ‘Dimesions_Are_Not_Correct’ phrase is a

set of conditions to check the dimensions. A
simple example would be (Length = 50 AND
width = 50), though in the actual code this is a
complex conditional statement incorporating all
7 parameters being measured. Depending on the
object classification, it is picked and placed on
to a stack defined by the pre-defined positions
P125 and P128.

Communication with Machine Vision

The DVT vision sensor supports a Java style

scripting language through which the
communications program was implemented on
it to communicate and transfer data with the
application server. Part of the code to establish
communications with the application sever is
shown below:

The similarity with Java is readily seen from
the code. This part of the code keeps trying to
connect to the application server until it
successfully makes connection. When
measurements are available they reported back
to the application server using the Send()
method. The text message is converted into a
Byte array as required by the Send() method
using the toByteArray() method.

ToServer.Send(Message.toByteArray())

Web Interface

The end user interface is implemented on a

Web browser through a Java Applet.
Information is also exchanged between the
applet and the application server through a

class RobotControl
{
 public static void main ()
 {
 Socket ToServer = new Socket();
 while (true)
 {
 ConnectResult = ToServer.Connect(“144.188.xx.xx”, 1500);
 If (ConnectResult<0)
 continue;
 }
 DebugPrint(“Connected to Server”);
……………
}

48 COMPUTERS IN EDUCATION JOURNAL

TCP/IP connection. The graphical user interface
is implemented through the use of Java swing
components. The Applet also follows a similar

structure to that of a normal Java program, but it
is not required to implement a main() method.

public class WebInterface extends java.applet.Applet implements Runnable {
 Thread thisThread;
 Socket toApplicationServer;
 PrintWriter outApplicationServer;
 BufferedReader inApplicationServer;
}

The Applet does not execute any task upon
loading. The user initiates the inspection
procedure by clicking on the ‘Start Inspection’
button. Once clicked, it attempts to establish a

connection with the application server.
Successful establishment of connection also
starts the inspection process at the other end as
explained in earlier sections and the inspection
process begins.

private void iStartActionPerformed(java.awt.event.ActionEvent evt) {
 {
 AddText("Connecting to Application Sever at " + sIP + " on Port " + sPort, 0);
 toApplicationServer = new Socket(sIP, sPort);
 AddText("Connected to Application Server", 0);
 iStart.setEnabled(false);
 iStop.setEnabled(true);
 } catch (IOException ex) {
 AddText("Could not Connect to Application Server", 0);
 AddText("Try Again", 0);
 return;
 }
 doRun = true;
 thisThread = new Thread(this);
 thisThread.start();
 }

Once the connection is established the applet

executes the run() method in a separate thread.
The run() method actively exchanges
information with the application server. The
reason to dedicate a separate thread for the
information exchange is that, the main thread is

responsible for displaying and making any
changes to the visual display of the applet and if
the I/O operations are dedicated to this thread, it
fails to refresh the display when any changes
occur.

COMPUTERS IN EDUCATION JOURNAL 49

public void run() {
………..
 try {
 inApplicationServer = new BufferedReader(new
 InputStreamReader(toApplicationServer.getInputStream()));
 while(doRun) {
 Text = inApplicationServer.readLine();
 if (Text.startsWith("Object")) {
 Temp = Integer.parseInt(iTotal.getText());
 Temp++;
 iTotal.setText(Temp.toString());
 }
 if (Text.startsWith("Non Compliant")) {
 Temp = Integer.parseInt(iNo.getText());
 Temp++;
 iNo.setText(Temp.toString());
 }
 if (Text.startsWith("Compliant")) {
 Temp = Integer.parseInt(iYes.getText());
 Temp++;
 iYes.setText(Temp.toString());
 }
 if (Text.startsWith("Dimensions")) {
 Dimensions = Text.substring(12).split(",");
 iLength.setText(Dimensions[0]);
 iWidth.setText(Dimensions[1]);
 iRad1.setText(Dimensions[2]);
 iRad2.setText(Dimensions[3]);
 iCenCen.setText(Dimensions[4]);
 iAngle.setText(Dimensions[5]);
 }
 }
 } catch (Exception ex) {
 AddText("Could not read from Application Server\n" + ex.getMessage() + "\n", 0);
 return;
 }

The run() method essentially waits for any

message from the application server. Once it
reads a message, it interprets and performs the
appropriate update. The message ‘Object’
conveys the message that an object has been
inspected. Therefore it updates the iTotal field
which keeps track of the total number of objects
that are inspected. A ‘Non Compliant’ means
that the inspected object failed to comply with
the required specifications, which leads to
incrementing the iNo field which keeps track of
the total number of non-compliant objects.

Similar explanation applies to the ‘Compliant’
message. The ‘Dimensions’ message reports the
measurement values of the object. The program
parses the data and displays the information
under the appropriate fields.

Experimental Verification

Web-based quality control systems can
provide remote sensing, monitoring, and online
quality diagnosis for robotics and automation in
manufacturing processes. The quality control

50 COMPUTERS IN EDUCATION JOURNAL

issues and the tolerance analysis of an object
can be tested according to the assembly and
manufacturing specifications. Any changes in
the product specifications and associated quality
control routines can be instantly updated and
verified, which will enhance the overall
production efficiency. Figure 3 shows the setup
used for the Web-based quality control. The
experimental setup includes the following items:
Yamaha SCARA robot YK-250X, RCX40 robot
controller with optional on-board Ethernet card,
Cognex DVT 540 machine vision, and HP
m1050e PCs. The RCX40 controller is
connected to the Ethernet and controlled using a
PC/Server. Two DLink DCS-5300 Web cameras
are used for constantly viewing the robot
movement.

All devices, such as the robot, Web cameras,
and machine visions, are connected to the
Ethernet. This reduces the wire maze needed to
link every device and enables users to operate
and control the equipment remotely. The word
network refers to the connection between the
devices in the work area as well as with the

users. Network used here is local area network
(LAN), which is connected to a server. The Web
server is connected to this LAN, and the LAN
can also have access to the devices on the
network from the outside. Every device
connected to the network has a unique IP
address, which is used to connect to them and
also recognize them on the network. The IP
address is separated into network address and
host address sections. The network address
section is extracted from the IP address by AND
processing with the subnet mask. Devices
belonging to the same network must be set to
have the same network address.

The browser interface also includes two Web
camera views that show the robotic operation
(see Figure 4). The Web cameras are equipped
with an embedded Web server, which captures
stream of images over the Internet using the
HTTP protocol. Our Web interface incorporates
a Microsoft ActiveX object provided by the
manufacturer, and this allows us to directly
embed the camera view in our Webpage with

LEDs

Network
Cameras

Ethernet-based
Machine Vision

Conveyor

Web-cam

YK-250X
SCARA
Robot

Application
Server

Figure 3. A System Setup for Web-based Quality Control.

COMPUTERS IN EDUCATION JOURNAL 51

Webcams

Machine
Vision

Figure 4. Web Interface for the Quality Measurement and Robotic Operations.

minimal configuration. Information is
exchanged between the Applet and the
application server through a TCP/IP connection.
Figure 4 shows a screen shot of the Web-based
end-user interface. The Applet does not execute
any task upon loading. The user initiates the
inspection procedure by clicking on the “Start
Inspection” button. Once clicked, it attempts to
establish a connection with the application
server. Successful establishment of the
connection also starts the inspection process at
the other end, as explained in earlier sections.

There are several fields in the Applet that

gives a live analysis of the ongoing inspection
process such as the number of objects inspected,
number of compliant objects, current
dimensions, and cumulative measurement
history. Since the programs, data, and access
information are stored centrally, changes are
made available to users immediately. The
current Web technology also provides for
extensive interactivity allowing for real-time
interaction with the system.

Conclusions

The development of the Web-based laboratory

positively impacts upon education, research, and
service at the Drexel’s Applied Engineering
Technology curriculum. This work successfully
demonstrates a concept of E-quality through the
implementation of a Web-based quality control
system using Java programming software. A
computer vision system measures the
dimensions of products on the conveyor belt and
sends the information to an application server,
which activates an appropriate action for the
robot. Various image processing and analysis
algorithms are integrated for remote quality
inspection. Operators can remotely adjust the
inspection routine in the case of process
changes, such as lighting conditions, part
variations, and quality criteria. This result
provides a great impact in production since
engineers can access and control the equipment
and quality anytime, from anywhere. From
educational point of view, such setting provides
a convenience to not only place-bound students,
but also to many students who work during the

Object Finder Soft
Sensor Trained to
Detect the Object

Quality
MeasurementsRobotic

Operations

52 COMPUTERS IN EDUCATION JOURNAL

day time, and consequently having not enough
time to complete their lab assignments during
the normal class hours. Due to such benefits, it
is expected that online laboratory will continue
to grow in terms of available numbers as well as
the level of sophistications in the coming years.

Acknowledgement

This work was supported by the US National

Science Foundation (CCLI Phase II DUE-
0618665), the US Dept. of Education (Award #
P116B060122) and Yamaha Robotics
Company. This work was also supported by the
2007 Ajou University Faculty Start-up Funding
for Research and Development. The authors
wish to express sincere gratitude for their
financial support.

References

1. Jose, Joao and Ferreira, Pinto, ”E-
Manufacturing: Business Paradigms and
Supporting Technologies,” Kluwer Acad-
emic Publishers, Dordrecht, The Nether-
lands. Pp. 280, 2004.

2. Michel, Roberto, “E-manufacturing Essen-

tials,” Manufacturing Systems (MSI), Vol.
18, Issue 5, pp. 36, May 2000.

3. Ming, X. G., Yan, J. Q., Lu, W. F., and Ma,

D. Z., “Technology Solutions for
Collaborative Product Lifecycle Manage-
ment – Status Review and Future Trend,“
Concurrent Engineering, Vol. 13, pp. 311 –
319, Dec. 2005.

4. Lacroix, Eric and St-Denis, Richard, “Web

Technologies in Support of Virtual
Manufacturing Environments,” Proc. Conf.
on Emerging Technologies and Factory
Automation, Lisbon, Portugal, Vol. 2, pp.
43- 49, Sept. 2003.

5. Lee, Jay, “E-manufacturing—fundamental,
tools, and transformation”, Robotics &
Computer-Integrated Manufacturing, Vol.
19, No. 6, pp. 501 – 508, Dec. 2003.

6. Wang, Lihui, Orban, Peter, Cunningham,

Andrew, and Lang, Sherman, “Remote Real-
time CNC machining for Web-based
Manufacturing,” Robotics & Computer-
Integrated Manufacting, Vol. 20, No. 6, pp.
563-571, Dec. 2004.

7. Zhou, Guanghui, Jiang, Pingyu, and Fukuda,

Shuichi, “Using Mobile Agents to Schedule
a Manufacturing Chain on the Internet,”
Concurrent Engineering, Vol. 10, pp. 311-
323, Dec. 2002.

8. Shen, Yantao, Xi, Ning, Lai, King W.C. and

Li, Wen J., “Internet-based Remote
Assembly of Micro-electro-mechanical
systems (MEMS),” Assembly Automation,
Vol. 24, No. 3, pp. 289-296, 2004.

9. Chiou, Richard, Kwon, Yongjin, Rauniar,

Shreepud, and Sosa, Horacio, "Visual Basic
Programming for Internet-based Robotic
Control", Computers in Education Journal,
p. 81, vol. XVII, April – June of 2007.

10. Kwon, Y., Rauniar, S., Chiou, R. & Sosa,

H., “Remote Control of Quality Using
Ethernet Vision and Web-enabled Robotic
System” Journal of Concurrent Engineering:
Research and Applications, Vol. 14, No. 1,
pp. 35-42, 2006.

11. Kwon, Y., Chiou, R., Rauniar, S. & Sosa,

H., 2006, “Positioning Accuracy
Characterization of Precision Micro Robot
over the Internet,” Journal of Advanced
Manufacturing Systems, Vol. 5, No.1, pp.
45-57, 2006.

COMPUTERS IN EDUCATION JOURNAL 53

54 COMPUTERS IN EDUCATION JOURNAL

12. Jiang, Pingyu and Zhang, Yingfeng,
“Visualized Part Manufacturing via an
Online e-Service Platform on Web,”
Concurrent Engineering, Vol. 10: pp. 267-
277, Dec. 2002.

13. Wang, Lihui, Xi, Fengfeng and Zhang, Dan,

“A Parallel Robotic Attachment and Its
Remote Manipulation,” Robotics and
Computer-Integrated Manufacturing,” Vol.
22, Issues 5-6, pp. 515-525, Oct-Dec 2006.

14. Wang, Lihui, Sams, Ryan, Verner, Marcel

and Xi, Fengfeng, “Integrating Java 3D
Model and Sensor Data for Remote
Monitoring and Control,” Robotics and
Computer-Integrated Manufacturing, Vol.
19, Issues 1-2, pp. 13-19, Feb-Apr 2003.

15. Yang, Yu, Zhang, Xiaodong, Liu, Fei and

Xie, Qiu, ”An Internet-based Product
Customization System for CIM,” Robotics
and Computer-Integrated Manufacturing,
Vol. 21, Issue 2, pp. 109-118, April 2005.

16. Cognex Smart Image Sensor DVT 545

Series Manual.

17. Yamaha Robot Operations Manual RCX40.

18. Cognex Smart Image Sensor FrameWork

Manual.

Biographical Information

Dr. Richard Chiou’s background is in
mechanical engineering with an emphasis on
manufacturing. Dr. Chiou is currently an
associate professor in the Goodwin College of
Professional Studies at Drexel University. His
areas of research include machining,
mechatronics, and internet based robotics and
automation. He has secured many research and
education grants from the NSF, the SME
Education Foundation, and industries.

Dr. Yongjin (James) Kwon is a professor in
the Division of Industrial and Information
Systems Engineering at Ajou University in
South Korea. His research interests include
web-enabled robotic systems, computer vision,
3 dimensional representation of remote systems,
and e-quality for manufacture. Dr. Kwon has
many years of academic experience and his
research articles have been published in many
international journals.

