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Abstract 

 
We have developed a simulation of ideal 

linear and ring polymers in which the polymers 
are moved by Brownian dynamics. Properties 
such as the mean-square radius of gyration, the 
g-ratio, the asphericity and the form factor have 
been computed and compared to theoretical 
predictions. There is good agreement for all 
properties studied. The graphical capabilities of 
the Maple software package have been 
employed to examine individual configurations. 
This type of project is suitable for junior/senior 
majors in engineering, mathematics or science. 

 
Introduction 

 
In a set of previous articles in this journal we 

have described [1-5] a “coarse grained” model 
of polymeric materials. All the atoms making up 
the detailed monomer building blocks of a 
polymer were grouped into spherical “beads” 
and the individual beads were then linked 
together to form the polymer of interest. This 
model could be further simplified by allowing 
the bead units to pass through each other and 
even to overlap. Such an ideal model serves as a 
first approximation of real polymers. In this 
article we explore the differences between ideal 
linear and ring polymers by computing a variety 
of their properties. This investigation formed the 
basis of an independent studies project. 

     
 Although every polymer can assume a 

different spatial configuration at any time, an 
overall size can be characterized by the mean-
square radius of gyration, <S2>. Here, < > 
denotes an average over the polymer 
configurations. It is well-known that for very 
large polymers, <S2> follows the scaling laws 
[6] 

                <S2>linear  =  C1(N - 1) P   and  
                        <S2>ring  =  C2N P                    (1) 

 
where N is the number of beads. The 
coefficients C1 and C2 are determined by the 
details of the polymer model but the exponent P 
is a universal quantity equal to 1.00 for all ideal 
polymers. A useful parameter for comparing the 
sizes of linear and ring polymers is called the g-
ratio and it is defined as the ratio of the radii of 
gyration: 

 

               g = <S2>ring / <S2>linear                (2) 
 

Zimm and Stockmeyer [7] showed that for the 
ideal polymers studied here g = ½. 
 

Details about the shapes of polymers can be 
determined from the matrix representation of the 
tensor of components of the radius of gyration. 
Its eigenvalues, λ1, λ2 and λ3, are the 
components of <S2> along the principal 
orthogonal axes. The trace of this tensor, λ1 + λ2  
+ λ3, is equal to <S2>. By convention, the λ  
values are ordered by magnitude such that  
λ1 ≥ λ2  ≥ λ3 and then averaged. Rudnick and 
Gaspari [8] have defined the asphericity, A, of 
polymers in three dimensions as 

                                    
              3                              3 

     A =  < ∑ (λi – λj)
2

 > / <2 ( ∑  λi )
2 >          (3)             

              i>j                           i=1                                          
 
and the average asphericity, <A>, as 
 
                    3                          3 

    <A> =  < ∑ (λi – λj)
2

  / 2 ( ∑  λi )
2 >       (4)             

                    i>j                       i=1                                          
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Note that in these equations A involves a ratio 
of averages whereas <A> involves an average of 
a ratio. The shape of a polymer can vary from 
an extended rod in which λ2 and λ3 are 
essentially zero so that A and <A> have a value 
of one, to a sphere for which λ1 = λ2 = λ3 and 
both A and <A> are zero. In between these 
extremes a polymer configuration can be 
imagined as enclosed inside an ellipsoid with 
semi-major axis equal to λ1 and semi-minor axes 
equal to  λ2  and  λ3. 

 
     Another important structural property of 

polymers is the scattering factor, S(K). This 
function provides information about the spatial 
monomer distribution of polymer materials. It is 
defined [9] as the Fourier transform of the 
density-density auto-correlation function and is 
given by 

 
                         N 

    S(k) = (1/N2)  ∑ < exp[ik • (Rn – Rm)]>   (5)             
                       m,n                                                      
                   

where k is the momentum transfer of the 
scattering experiment and Rn and Rm are the 
positions of the m-th and n-th monomers. 

  
 In an ideal polymer model the configurations 

obey random statistics and have a Gaussian 
distribution. Then the scattering factor for a 
linear polymer is given by the Debye  [9] 
function 
     S(k) linear = 2 [ X – 1 – exp( - X ) ] / X2    (6) 
 

where  X =  k2 <S2> linear. 
 

    The corresponding function for rings has 
been obtained by Casassa [10] 

                                                 
                                                W 

 S(k) ring = (1 / W) exp( - W2 )  ∫ exp[ t2 ] dt (7)                                                                 
                                                0 

 

where W = X1/2/2 and X =  k2 <S2> ring. 
 

The goal of this project was to determine and 
then compare <S2>, the g-ratio, A, <A> and 
S(k) values calculated from computer 
simulation to theoretical predictions for linear 
and ring polymers. 

  
Method 

 
In the simulations, the location of the 

geometric center of each bead in the polymer is 
defined by their X, Y, and Z coordinates. The 
first bead is always assigned the coordinates of 
the origin (0, 0, 0).  The distance between two 
connected units is maintained to be nearly 1.0 
by a harmonic spring force. This force 
differentiates a linear polymer from a ring since 
rings have an additional connection between the 
first and the last units. In addition to these 
harmonic inter-bead forces, Brownian dynamics 
[11] simulations also model solvent effects by 
including random and frictional forces. 

 
The polymers are started in the XY plane in 

different configurations depending upon the 
total number of beads, N. When N is a multiple 
of three the initial configuration is a triangle 
whereas when N is a multiple of four, it is a 
square. The beads are moved in time by using a 
small time step for integrating the resultant 
equations of motion. The Verlet [11] integration 
algorithm is employed. The initial state is not 
representative of the final equilibrium state and 
therefore, the first 50,000 integration steps are 
discarded before the averaging process begins. 
Since data at adjacent time intervals will be 
highly correlated, the data are collected at a 
spacing of 25,000 time steps.  The resulting 
random snapshots of polymer configurations are 
used for subsequent data analysis.  Typically, we 
generate 1,000 such equilibrated samples. 
 

The computer program which performs the 
simulation was written in C and compiled and 
executed in a Linux environment on a Dell 
laptop using the open source gcc compiler.  
Further understanding of the system’s behavior 
was achieved by employing the graphic features 
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of Maple to visualize the changing polymer 
configurations as the simulation progressed.                                           

The radius of gyration tensor, Tab, for the p-th 
configuration has the following matrix 
components 

                            
                        N 

Tab(p) =(1/N)∑[Ri(p)-RCM(p)]a [Ri(p)-RCM(p)]b  
                           i=1                                             
                                                                        (8) 

 
where a and b indicate two directions in a 
Cartesian frame, Ri(p) is the position of the i-th 
bead and RCM(p) is the center of mass defined as 

 
                                 N                                             

       RCM(p)   =  (1/N) ∑ Ri(p)                        (9) 
                                 i=1          
                                 
The eigenvalues of the matrix representation 

of this 3 X 3 radius of gyration tensor were 
determined by solving the resultant cubic 
equation. 
 

The set of any property values for each 
polymer configuration were then further 
averaged over the total number of samples 
generated to determine the mean value and the 
standard deviation from the mean employing the 
usual equations [12] 
 

Results 
 
Table I presents the simulation results for all 

the systems studied. The number in parenthesis 
denotes  one   standard   deviation   in   the   last  

displayed digits. The 95% confidence interval is 
about twice these reported error bars. It is clear 
from the data that for a given number of units N, 
ring polymers, as expected, are much more 
compact than linear chains. 

 
Weighted nonlinear least-squares fits [12] to 

the <S2> data in Table I gave exponent values of 
0.97 ± 0.01and 0.99 ± 0.01 for the linear and 
ring polymers, respectively. These empirical 
exponents are in reasonable agreement with the 
ideal value of 1.00.         

 
The g-ratios have been calculated from the 

radius of gyration data in Table I and the error in 
this quantity has been computed from the 
standard equation [12] relating the error in a 
ratio to the error in the numerator and the error 
in the denominator.  The simulation g-ratios are 
listed in Table II. The number in parenthesis 
denotes one standard deviation in the last 
displayed digits.  

 
These simulation results are for finite N 

whereas the theoretical equations are for infinite 
N. To determine the value of g as N approaches 
infinity, we plot g vs.1/N so that when N → ∞, 
1/N → 0. The g value for infinite N can thus be 
found by determining the intercept of this graph 
after fitting a weighted least-squares linear line 
in 1/N to each set of data in the tables. The 
extrapolated g-ratio is found to be 0.522 ± 0.010 
compared to the theoretical prediction of 0.500. 
The computer result is slightly outside the 95% 
confidence interval. 

 
Table I The Simulation Data. 

 
  Linear   Ring  
N <S2> A <A> <S2> A <A> 
64 10.64(17) 0.505(30) 0.382(6)   5.51(6)   0.290(13) 0.242(4) 
128 21.71(34) 0.505(30) 0.387(6) 11.10(13) 0.286(13) 0.244(4) 
195 32.47(51) 0.509(31) 0.384(6) 16.94(19) 0.295(13) 0.249(4) 
284 45.84(74) 0.507(34) 0.374(6) 24.01(28) 0.297(15) 0.244(4) 
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Table II Simulation g-ratios. 
 

  N   g-ratio 
  64 0.518(11) 
128 0.511(10) 
195 0.522(10) 
284 0.524(10) 

 
The simulation results for A and <A> in Table 

I show, as expected, that the asphericity of ring 
polymers is substantively lower than the linear 
chains; e.g. the rings are much more sphere-like 
in their shape.  As was the case for the g ratio 
we have extrapolated a linear fit in 1/N to 
predict  values for  a  simulation with an infinite 
number of beads. These extrapolations give A = 
0.508 ± 0.032 and <A> = 0.379 ± 0.006 for 
linear chains and A = 0.296 ± 0.014 and   <A> = 
0.248 ± 0.004   for   rings.    The known values 
for linear chains are 0.526 [13] and 0.394 [13]. 
The corresponding values for rings are 0.294 
[13] and 0.246 [13]. Both linear and ring results 
are in reasonable agreement with the theoretical 
values. That the ring values are in better 
agreement with the predictions reflects the fact 
that the rings have, because of the connectivity 
constraint, reached their asymptotic large N 
value earlier than the linear polymers.   

 
The form factor has also been computed by 

averaging   over   the   angles   between   k   and  

Rn – Rm in Eq. 5 to give [11] 
 
                       N 

   S(k)=(1/N2)∑<sin(k(Rn–Rm))/(k(Rn–Rm))>                
                      m,n                                        (10) 

                                                                 
The results are presented in Figure 1. The 
reciprocal of the form factor is plotted to 
emphasize differences at higher k values 
(smaller distances). Note that Eqs. 6 and 7 give 
the relationship between x and k. The Brownian 
dynamics results for both ideal linear and ring 
polymers are in fine agreement with the 
equations which have been derived for infinite 
N. At low x values (large distances) there is 
essentially no difference in the form factors of 
the two polymers. However, at large x (small 
distance) the detailed polymer structure has a 
significant effect. 
 

Conclusion 
 
  Brownian dynamics has been used to generate 
linear and ring polymer configurations. The 
mean-square radius of gyration has been 
determined for different values of N. It is found 
that the data obey the expected power law with 
a power nearly equal to 1.00. The g-ratio has a 
extrapolated value which is in reasonable 
agreement with the Zimm-Stockmeyer

 

 
 

Figure 1: The reciprocal of the form factor, S(K), vs X. The solid and dotted lines are the theoretical 
Debye and Casassa predictions for linear and ring polymers, respectively, whereas the circles and 
triangles are the corresponding simulation results when N = 284. 
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theoretical prediction [7].  In addition, the 
asphericity and the form factors are also in good 
agreement with the theoretical results. These 
types of simulations provide interesting projects 
in which students can get experience in 
computational science. This will be very useful 
in their future careers. 

 
Appendix:  The  Manhattan  College 
Undergraduate  Research  Program  

 
Manhattan College has a long tradition of 

involving undergraduates in research and was 
one of the original members of the Oberlin 50. 
This is a group of undergraduate institutions 
whose students have produced many Ph.D.s in 
engineering and science. At Manhattan College, 
students can elect to take an independent study 
course for 3 credits during the academic year. In 
addition, the College provides grant support to 
the students for 10 weeks of work during the 
summer. I have personally recruited the students 
from my junior level course in Systems 
Programming. Previously published articles in 
this journal by Manhattan College student co-
authors are a very effective recruitment tool. 
The students have also presented their results at 
a variety of undergraduate research conferences 
including the Hudson River Undergraduate 
Mathematics Conference and the Spuyten 
Duyvil Undergraduate Mathematics Conference.  
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