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Abstract 

 
Engineering and science students should be 

exposed to the techniques of computer 
modeling. Monte Carlo methods provide an 
opportunity for students to develop their 
computer skills while deepening their 
knowledge of the behavior of materials.  The 
graphics capabilities of the Maple software 
package allow students to easily visualize the 
changes in particle configurations.  

 
Introduction 

 
In a previous publication in this journal Lasky 

and Bishop [1] presented a Monte Carlo 
simulation of a homogeneous two dimensional 
hard particle system. In this article their 
methods are extended to examine binary 
mixtures in two dimensions. A general 
discussion of mixtures can be found in the 
classic textbook of Rowlinson and Swinton [2]. 
A binary hard particle mixture contains two 
kinds of particles: N1 particles with a diameter 
of σ1 and N2 particles with a diameter of σ2. 
The key parameters of interest are the diameter 
ratio, r = σ1/σ2, the mole fraction of each 
particle, Xi = Ni / (N1+N2) where i = 1 or 2, the 
total number of particles, N = N1 + N2, and the 
total system number density, ρ = ρ1+ ρ2, where 
ρ1 and ρ2 are the number densities of the two 
particles. 
 

 An important property of any material is its 
pair correlation function [3], G(R), which 
measures the relative distribution of particles at 
a distance |R| from the center of a reference 
particle. In binary mixtures there are three 
different kinds of pair correlation functions, 

G11(R), G12(R), and G22(R). These measure the 
relative distribution of small-small, small-large 
and large-large particles, respectively. Here 
small and large refer to the particles with the 
smaller and larger diameters respectively. The 
change in the shapes of these pair correlation 
functions indicates the underlying particle 
arrangements. It is well-known [4] that in the 
gaseous state there is little ordering and particles 
are distributed at random whereas in the solid 
state particles pack into long-ranged ordered 
crystals. Thus, the appearance of multiple, well 
defined peaks in the pair correlation function at 
higher densities mirrors the onset of localization 
behavior. 

 
In this project the three pair correlation 

functions are computed for different densities. 
The project also illustrates how the graphics 
capabilities of the Maple software package can 
be combined with a simulation program coded 
in C to help students understand some of the 
behaviors of binary mixtures.  

 
Method 

 
A periodic, two dimensional hard particle 

binary mixture system has been studied with a 
Monte Carlo computer simulation [5-9] method. 
The different particles are started at alternative 
positions in a square lattice and then moved by 
the standard Metropolis Monte Carlo method [5] 
until a random equilibrated state is achieved. 
The square lattice determines the length, Lx, 
and the width, Ly, of a rectangular simulation 
box: 

 
                    Lx = [ N / ρ ] 1/2                           (1a) 
 

                  Ly = Lx                                     (  b) 
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Figure 1 illustrates the starting square lattice 
configurations when the number of each type of 
particle (σ1 = 0.50 and σ2 = 1.00) is set to 50 
and both particle mole fractions are set to 0.50. 
We have employed Maples’ Plottools package 
to draw the different kinds of disks centered on 
the coordinates of the system particles. This 
figure shows a large unoccupied space at the 
relatively low density of ρ = 0.25. The densities 
are measured in reduced units in which the 
diameter of the larger particle is taken to be one 
so that the reduced density of the larger particle 
is 0.20 and the reduced density of the smaller 
one is then 0.20 X (¼) = 0.05. 

 

 
 

Figure 1:  The starting square 
 lattice for ρ = 0.25. 

 
The calculation proceeds by attempting to 

move, in turn, each of the particles in the 
simulation box.  To move a particle from its 
original location, (Xoriginal, Yoriginal), two uniform 
random numbers, RN1 and RN2, between 0 and 
1 are generated and used to select a new trial 
position, 
 
 
 
 
 
 
 

 Xtrial = Xoriginal + (2 * RN1-1) * MAXDX     (2a) 
         
Ytrial = Yoriginal + (2 * RN2-1) * MAXDY      ( b) 
 
 

Here, MAXDX and MAXDY are the 
maximum magnitude of an allowed 
displacement in the X and Y directions, 
respectively, measured from the particle’s center 
of mass. It is the largest possible move. In the 
current simulations MAXDX and MAXDY 
have been set to 0.50 in reduced units (relative 
to a particle with a diameter of 1.0). A move is 
rejected whenever a particle overlaps another 
particle; e.g. the separation between their 
centers becomes less than 0.50 for the small-
small pairs, less than 0.75 for the small-large 
pairs and less than 1.0 for the large-large pairs. 
If the new position is not accepted, the test 
particle remains at its current location. The 
acceptance ratio, the number of accepted moves 
divided by the number of total moves, is 
monitored. The acceptance ratio was 0.74 when 
ρ = 0.25 and 0.41 when ρ = 0.50, reflecting the 
fact that at higher densities the particles are 
more likely to overlap  when they are moved. 
Standard periodic boundary conditions [9] are 
employed. This means that if a particle is moved 
such that if X and/or Y becomes either less than 
0 or larger than Lx or Ly, respectively, an 
identical particle is placed in the box at position 
modulo Lx and/or Ly. This procedure maintains 
the number of particles in the box and makes the 
simulation more representative of bulk matter. 

 
Results 

 
We have developed the simulation using the 

gnu C compiler on a PC loaded with the Linux 
operating system.  First, we performed timing 
runs to see how the code behaves. At a density 
of  ρ = 0.25 we ran 500 Monte Carlo steps for 
four different N values but always kept the mole 
fractions as 0.50 and the diameter ratio as 2.0. 
These timing results are contained in Table I. 
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  N Time (secs) 
16 0.04 
100 1.12 
144 2.28 
256 7.21 

  
Table I: The timing results for different 

 numbers of particles. 
  
     We assume that the CPU timing scales as a 
power law in the number of particles,                            
                               
                    T(N) = A N P                               (3) 
 
where A, the coefficient, and P, the power, are 
constants. The power can be determined by 
taking logs in Eq. 3. to yield 
 
   P = log [ T(N2) /T(N1) ] / log [ N2 /N1]    (4) 
 
We selected N1 = 16 and then found that the P 
values for 100, 144 and 256 particles are 1.82, 
1.84 and 1.87, respectively. Since the main time 
intensive portion of the simulation is the 
computation in the pair correlation functions 
which involve averaging the number of 
interactions between different particle pairs, we 
expect that 
                   
                     T(N) ≈  N (N-1) / 2                    (5) 
 
Hence, as N becomes large, P should be about 
2.0. This prediction is supported by the data. 
 

We then examined the effect on timing when 
the number of Monte Carlo steps for a fixed 
number of particles was altered. In these test 
runs, N = 100, and ρ = 0.25. Table II contains 
these timing results as the number of Monte 
Carlo steps is changed. It is clear from the data 
that the CPU time needed, T(MC steps), scales 
linearly with the number of MC steps: 

 
             T(MC steps) ≈ K(MC steps)               (6) 
 
where K is a constant. 

 
Steps Time (sec) 
100 0.11 
1000 1.14 
10000 11.3 

 
Table II: The timing results for different 

numbers of Monte Carlo steps. 
 

On the basis of these timing investigations it 
was decided to examine systems containing 100 
particles. However, since the successive 
positions of the particles are not independent, it 
will take many Monte Carlo steps to converge 
from the arbitrary initial state to a representative 
equilibrated state. Only the equilibrated steps 
are employed in the final calculations. Hence, 
some number of steps must be discarded before 
the runs are continued to obtain equilibrated 
steps.  Even after the equilibrated regime is 
reached there is still serial correlation between 
each step in the Monte Carlo process. We have 
addressed this problem by computing the pair 
correlations at fixed intervals which encompass 
many Monte Carlo steps.  Thus, the different 
G(R)s are computed by averaging over both the 
appropriate number of particles and the number 
of equilibrated samples. The details of the pair 
correlation function calculations are contained 
in the earlier paper by Lasky and Bishop [1]. 
 
  Production runs for ρ = 0.25 and 0.50 were 
generated for 6,000,000 Monte Carlo steps and 
1,000,000 steps were discarded. The sampling 
interval was set at 250 steps so that there were 
20,000 equilibrated samples to average over. 
Figures 2 and 3 display configuration snapshots 
at the end of the runs when ρ = 0.25 and ρ = 
0.50, respectively. The simulation boxes have 
been scaled to be the same size on this page and 
thus the particles appear to be larger at the 
higher density. There is clearly more free space 
in which particles can move at the lower 
density.  
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Figure 2 Final Configuration, when ρ = 0.25.        Figure 3 Final Configuration, when ρ = 0.50. 
 

We have also used the plot facility of Maple to 
obtain the G(R) plots presented below. In Figure 
4 at ρ = 0.25, all three G(R)s display behavior 
which is typical for dilute fluids in that no 
particles interpenetrate, G(R) = 0, there is a 
sharp first peak corresponding to the nearest 
neighbor shell and this is followed by a rapid 
decrease in the function to a value expected for 
a uniform fluid, G(R) =1.0. 

 

Figure 4: Pair correlation when ρ = 0.25. 
--- small-small … small-large ___ large-large 

 
We then examined a system with ρ = 0.50. 

The results for ρ = 0.50 are displayed in Figure 
5.  Now all three G(R)s display behavior which 
is more typical of dense fluids in that there is a 
higher and narrower first peak and developing 
secondary peaks. The secondary peaks indicate 
strong correlations between second-nearest 
neighbors. This expected as the fluid becomes 
more close packed.  

 Figure 5: Pair correlation when ρ = 0.50. 
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Conclusion 
 

We have investigated two dimensional 
periodic binary mixture hard disk systems by 
Monte Carlo simulations and have indicated 
how the pair correlation functions reveal the 
underlying molecular structure. Graphic tools 
such as those employed here provide a clear 
demonstration of some aspects of the behavior 
of materials and thus strongly enhance student 
understanding and intuition.  
 

Appendix: The  Manhattan  College 
Undergraduate  Research  Program 

 
Manhattan College has a long tradition of 

involving undergraduates in research and was 
one of the original members of the Oberlin 50. 
This is a group of undergraduate institutions 
whose students have produced many PhDs in 
engineering and science.  At Manhattan College, 
students can elect to take an independent study 
course for three credits during the academic 
year.  In addition, the College provides grant 
support to the students for ten weeks of work 
during the summer. I have personally recruited 
the students from my junior level course in 
Systems Programming. Previously published 
articles in this journal by Manhattan College 
student co-authors are a very effective 
recruitment tool.  The students have also 
presented their results at a variety of 
undergraduate research conferences including 
the Hudson River Undergraduate Mathematics 
Conference and the Spuyten Duyvil 
Undergraduate Mathematics Conference. 

 
Acknowledgements 

 
We wish to thank the Manhattan College 

Computer Center for providing computer time. 
We also wish to thank Professor Paula Whitlock 
for many useful conversations about Monte 
Carlo calculations. 

 
References 

 
1.   M. Lasky and M. Bishop, “Monte Carlo 

Simulations of Two Dimensional Hard 

Particle Systems”, Comp. Edu. J., XVIII, 42 
(2008). 

 
2.      J.S. Rowlinson and F.L. Swinton, “Liquids and 

Liquid Mixtures”, (Butterworth Scientific, 
London,1982). 
 

3. M. Bishop and C. Bruin, “The Pair Correlation 
Function: A Probe of Molecular Order”, Am. 
J. Phys., 52, 1106 (1984). 

 
4.      D.A. McQuarrie, Statistical Mechanics, (Harper 

and Row, New York, 1976). 
 
5. N. Metropolis, A.W. Rosenbluth, M.N. 

Rosenbluth, A.H. Teller and E. Teller, 
“Equation of State Calculations by Fast 
Computing Machines”, J. Chem. Phys., 21, 
1087 (1953). 

 
6.   D. P. Landau and R. Alben, “Monte Carlo 

Calculations as an Aid to Teaching Statistical 
Mechanics”, Am. J. Phys., 41, 394 (1973). 

 
7.      M.H. Kalos and P.A. Whitlock, “Monte Carlo 

Methods Volume I Basics”, 2nd edition, 
(Wiley., Berlin, 2008). 

 
8.   H. Gould and J. Tobochnik, “An Introduction 

to Computer Simulation Methods:  Part 2”, 
(Addison and Wesley, Reading, 1988). 

 
9.   M.P. Allen and D.J. Tildesley, “Computer 

Simulation of Liquids”, (Oxford University 
Press, Oxford, 1993). 

 
Biographical  Information 

 
Brian T. Merriman is currently a student in the 

computer science program at Manhattan 
College. 

 
Marvin Bishop is a Professor in the 

Department of Mathematics and Computer 
Science at Manhattan College. He received his 
Ph.D. from Columbia University, his M.S. from 
New York University and his B.S. from the City 
College of New York.  His research interests 
include simulation and modeling and parallel 
processing. 


