
 Simulation   and   Real-Time   Implementation   for   Teaching   3D   Sound 
Kenneth  John  Faller  II  and  Armando  Barreto 

Electrical  &  Computer  Engineering  Department 
Florida  International  University 

Miami,  FL,  33174,  USA 
 

Abstract 
 

This paper describes a software demonstration 
program, implemented in Matlab®, which has 
been designed to facilitate the teaching of how 
3D sound is synthesized using computerized 
techniques. The demonstration program 
simplifies the explanation of the fundamentals 
of 3D sound through interactive visual and 
auditory examples. As an extension to the 
Matlab® demonstration program, a real-time 
implementation of continuous sound 
spatialization was developed using the Texas 
Instruments TMS320C33™ DSK Starter Kit. A 
complete description of the implementations is 
given and the necessary code is shared with 
interested educators at a designated web site. 

 
Relevance  of  teaching  the  principles  of 

digital  sound  spatialization. 
 
A large portion of our assimilation of the 

environment that surrounds us depends on our 
ability to determine the location of diverse 
sound sources. This fact has been exploited in 
the development of synthetic immersive 
environments, such as those created for virtual 
reality and computer gaming. Because of the 
growing importance of these technical areas, 
and the impact of sound spatialization on 
broader fields, such as human-computer 
interaction, it is important to provide students in 
technical programs with a basic knowledge of 
how 3D sound is created in computers. While 
many technical curricula do not include 
explicitly a space for the introduction of this 
type of knowledge, a freely available, pre-
packaged demonstration, such as the one 
described here, may provide interested 
educators   with   a   simple,    entertaining   and  

 

succinct vehicle to include this topic in their 
lectures. 
 

When a sound produced by a physical source 
is perceived our brains are able to determine the 
approximate location of the source, in a 3-
dimensional space, as shown in Figure 1. In this 
diagram we note that the “horizontal” location 
of the source is characterized by an azimuth 
angle, and the “vertical” location is defined by 
an elevation angle.  

 
The exact mechanisms used by our brains to 

estimate the azimuth and elevation of a sound 
source from the sound itself are still being 
investigated. It is known, however, that 
important azimuth and elevation cues are 
determined by time and intensity differences 
with which the sound waves arrive to each ear 
and through the spectral changes produced by 
the head and the pinnae or outer ears. Further, 
synthetic replication of these effects can 
actually be used to emulate the apparent 
location of a sound source in space. 

 

 
Figure 1: Diagram of spherical coordinate 

system (from Makous & Middlebrooks [7]). 
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The ability to alter the apparent location of a 
sound source in space is of great value. Areas of 
importance that would benefit from the accurate 
synthesis of 3D sound are: human-computer 
interface, multimedia applications such as video 
games, aids for the vision impaired, virtual 
reality systems, "eyes-free" displays for pilots 
and air-traffic controllers, spatial audio for 
teleconferencing and shared electronic 
workspaces, and auditory displays of scientific 
or business data [1].  

 
3D  Sound  generation  approaches 

 
Currently, there are two approaches to 3D 

sound system implementation: multi-channel or 
two-channel. A multi-channel system consists 
of a number of speakers physically positioned at 
desired points around the listener (i.e. Dolby® 
5.1 setup). Although this is an effective solution 
it is often times cumbersome and expensive. 
The alternative is the two-channel solution. The 
key to this approach is the Head-Related 
Transfer Functions (HRTFs). 

 
HRTFs are signal processing filters applied to 

sound signals to simulate 3D positional sound. 
They account for the modification of sound 
waves by the head, shoulders, torso, and the 
pinnae. Each location around a listener 
(characterized by an azimuth, an elevation and a 
radial distance away from the listener) has a 
pair of corresponding HRTFs that change the 
original sound in the same way as the head and 
torso of the listener would change the sound 
from its physical source (at that location) before 
reaching the left and right eardrums of the 
listener. Strictly speaking, the HRTFs for a 
given source location will vary from person to 
person depending on the listener’s physical 
attributes, although “generic” HRTFs measured 
from a manikin of average dimensions are 
frequently used. 

 
HRTF  Implementation 

 
The demonstration program described here 

uses the Matlab® function “filter” to create a 

binaural (left  & right) pair of sounds from a 
monaural input “wave” file. The “filter” 
function performs the convolution of the 
digitized input sound with the impulse response 
of the appropriate HRTF. The impulse response 
of a filter is the output sequence obtained from 
the filter when the input is a discrete impulse. In 
the case of an HRTF we call the impulse 
response a “Head Relate Impulse Response” or 
“HRIR”.  The operations performed by 
Matlab® when the “filter” routine is executed 
are as shown in Figure 2. [4] 

 
 

 
 

Figure 2: Direct form II transposed structure 
(from Matlab.® [4]). 

 
 
or  
y(n) = b(1)*x(n) + b(2)*x(n-1) + ... 

+ b(nb+1)*x(n-nb) - a(2)*y(n-1) - ... 
- a(na+1)*y(n-na) 

   
Eq.(1) 

where n-1 is the filter order, [8]. 
 
Alternatively, the operation of filter at sample 

m is given by the time domain difference 
equations, 

 
 

          
Eq.(2)

 
 
The input-output description of this filtering 

operation in the z-transform domain is a rational 
transfer function, 

 
 

  Eq.(3) 
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Since the HRTFs measured for the purpose of 
3D sound spatialization are modeled as non-
recursive filters (i.e., no internal feedback is 
assumed in the HRTF models), all the “a” 
coefficients in the above equations will be 
assumed to have a value of zero, which 
simplifies the calculations significantly. In fact, 
under these conditions, the “b” coefficients in 
the above equations are directly the numerical 
values that constitute the HRIRs. 
 

Re-sampling  and  Truncation  of  the 
 MIT  HRTFs 

 
Measurement of the HRIR pairs (left and 

right) that correspond to a large number of 
sound sources around a listener requires an 
elaborate experimental setup. Fortunately, W. 
Gardner and K. Martin, from MIT have 
performed those measurements on a KEMAR 
dummy with a microphone in each ear canal 
and made the numerical results available on 
their website. The contents of their database 
consist of the left and right ear impulse 
responses from the manikin. Maximum length 
(ML) pseudo-random binary sequences were 
used to obtain the impulse responses at a 
sampling rate of 44.1 kHz [2]. 

 
For both the Matlab® demonstration program 

and the real-time implementation in the 
TMS320C33 DSK kit we have used Gardner 
and Martin’s HRIRs, except that we have 
transformed them to correspond to the sampling 
rate we have used, i.e., 48.8 kHz using the 
resample command in Matlab® [4]. In addition 
to this, due to memory limitations, the 
coefficient files were truncated from the 
original 512 to 256 samples, making sure to 
preserve the most significant values of the 
HRIRs (see Figures 3 and 4). Furthermore, we 
have constrained the location of the emulated 
sound sources to just the 0o elevation plane, 
with azimuths that vary in 10º increments.  
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Figure 3: Example of the original impulse 
responses for 40º azimuth, 0º elevation. 
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Figure 4: Example of the reduced impulse 

responses for 40º azimuth, 0º elevation. 
 
 
Display of the “reduced” HRIRs, as in Figure 

4, helped confirmed that no essential segments 
of the impulse responses were destroyed by the 
shortening process. Additionally, the magnitude 
response of the original and the “reduced” 
HRIRs were found to be very similar, as 
displayed in Figure 5, for example. 
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Figure 5: Example of Original vs. Reduced 
Magnitude response for 40º azimuth, 0º 

elevation – left ear. 
 

Matlab®  Demonstration  Program  for 
Teaching  3D  Sound  Synthesis 

 
Our 3D sound instructional program was 

developed in Matlab® because of its superior 
filtering and graphical user interface (GUI) 
capabilities. The GUI allows users to 
experience HRTFs audibly and visually without 
requiring in-depth knowledge of sound 
spatialization (see Figure 6). 

 
 

 
 
Figure 6: Screen shot of the GUI for the HRTF 

teaching software. 
 
 
 

The user is able to select between two modes: 
HRTF or Filter Demo. The selection is made in 
the section labeled “Options.”  

 
The Filter Demo mode can be used to explain 

to a student what the program is really doing, in 
simple and familiar terms. This mode processes 
one of the available sound samples (“Wave 
file”) with a low pass filter to generate the Right 
output channel (delivered to the user through 
the right headphone) and with a high pass filter 
to generate the Left output channel (delivered to 
the user through the left headphone). When the 
student “Plays” the sound through the filters 
he/she will realize the transformation imposed 
on the same input sound, to generate the two 
output channels of the binaural sound. The 
student also has the ability to plot the 
characterization of both channels, as either 
impulse response sequences or as magnitude 
response plots. 

 
In HRTF mode, the user must choose the 

desired azimuth from a drop down list in the 
section labeled “Azimuth.” In the section 
labeled “Plot Type,” they must choose between 
magnitude or impulse response plot types. In 
addition to this, four audio samples have been 
provided. The user can select from the four by 
clicking on the name of the desired sample in 
the section labeled “Wav File.” Once the 
appropriate selections are made, the user can 
either view the results of the selections by 
clicking the [Plot] button or use the selected 
HRIRs to filter and [Play] the chosen audio 
sample.  

 
When the [Plot] button is clicked, the function 

plotBtn_Callback is invoked (Figure 7). This 
function reads in the necessary coefficient files 
for the left and right ear using cof2vec (Figure 
8) then, depending on the user’s selections, it 
plots either the impulse or magnitude response 
using functions plotImpulseResp or 
plotMagResp (Figures 9 and 10 respectively).  
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If the user clicks the [Play] button then the 
function playBtn_Callback is invoked (Figure 
11). In an identical fashion to the function 
plotBtn_Callback, the necessary coefficient 
files for the left and right ear are read into 
vectors using the cof2vec function (Figure 8). 
Next, the selected audio sample is read in using 
the Matlab® command wavread or, if noise is 
selected, the “rand” command is used to create 
a pseudo random noise signal [4]. Once the 
coefficient files and the audio sample have been 
read in, the audio sample is filtered using the 
function hrtfFilter (Figure 12). Finally, using 
the Matlab® command “sound,” the filtered 
audio sample is played to the user. 

 
The complete set of Matlab® files needed to 

run the demonstration program is accessible 
from:http://dsplab.eng.fiu.edu/3DSND_DEMO/ 

 
 

% --- Executes on button press in plotBtn. 
function plotBtn_Callback(hObject, eventdata, handles) 
    % hObject    handle to plotBtn (see GCBO) 
    % eventdata  reserved - to be defined in the future     
    % handles    struct with handles and user data (see 
         GUIDATA) 
    azimuthVal = get(handles.azimuthList, 'String'); 
    azimuthIndex = get(handles.azimuthList, 'Value'); 
     
    if(get(handles.hrtfRad, 'Value')) 
        HR = cof2vec(strcat('../Coeff 
Files/H',cell2mat(azimuthVal(azimuthIndex)),'R.cof')); 
        HL = cof2vec(strcat('../Coeff 
Files/H',cell2mat(azimuthVal(azimuthIndex)),'L.cof')); 
    else 
        HR = cof2vec('../Coeff Files/AVG.cof'); 
        HL = cof2vec('../Coeff Files/DIFF.cof'); 
    end 
     
    if(get(handles.impResponseRad, 'Value')) 
    
        plotImpulseResp(HL,HR,handles.leftPlot,handles. 
          rightPlot); 
    else 

     plotMagResp(HL,HR,handles.leftPlot,handles. 
        rightPlot); 
    end 

 
 

Figure 7: Function called when the plot button 
is clicked (main.m). 

 
 
 

function cofFin = cof2vec(fileName) 
    % Reads in coefficient file 
    cof = textread(fileName,'%s','delimiter','\t,',  
             'whitespace',''); 
    cof = cof(2:size(cof,1)-2); 
    N = size(cof,1); 
    cof(N-4) = cof(N-9); 
    index = 1; 
    for i=1:N 
        if(mod(i,5) == 1) 
            cofTemp = cell2mat(cof(i)); 
            cofStr = strrep(cofTemp,'.float ',''); 
            cofFin(index) = str2num(cofStr); 
            index = index + 1; 
        elseif(mod(i,5) > 1) 
            cofStr = cell2mat(cof(i)); 
            cofFin(index) = str2num(cofStr); 
            index = index + 1; 
        end 
    end 

 
 
Figure 8: Function called to read in coefficient 

files and returns them as a vector (cof2vec.m). 
 
 
 

function plotImpulseResp(HL,HR,axesLeft,axesRight) 
    axes(axesLeft); 
    cla; 
    grid on; 
    xlim(axesLeft,[1 size(HL,2)]); 
    title(axesLeft,'Left vs. Right - Impulse Response'); 
    ylabel(axesLeft,'Left'); 
    xlabel(axesLeft,'Samples'); 
    box on; 
    %% Create plot 
    hold on; 
    plot(HL,'Parent',axesLeft); 
    hold off; 
    axes(axesRight); 
    cla; 
    grid on; 
    xlim(axesRight,[1 size(HR,2)]); 
    xlabel(axesRight,'Samples'); 
    ylabel(axesRight,'Right'); 
    box on; 
    %% Create plot 
    hold on; 
    plot(HR,'Parent',axesRight); 
    hold off; 

 
 
Figure 9: Function that plots the impulse 

response (plotImpulseResp.m). 
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Real-Time  Implementation  for  
 Teaching  3D  Sound 

 
A real-time implementation of the same 

concepts used for the Matlab® demonstration 
program was developed using the Texas 
Instruments TMS320C33 DSK Starter Kit (~ 
$150) and Borland 4 C++. The TMS320C33 
DSK contains a Burr-Brown PCM3003 Stereo 
Audio Codec, which allows for dual-channel 
processing of an audio signal. This allows users 
to experience HRTFs through a real-time 
system. Furthermore, this implementation can 
create a spatialized version of any monaural 
sound fed into it, for as long as necessary. The 
user can increment or decrement the azimuth 
used for spatialization by 20° using the left or 
right arrow keys (Figure 13). 

 
 

function plotMagResp(HL,HR,axesLeft,axesRight) 
    axes(axesLeft); 
    cla; 
    [HL,FL] = freqz(HL,1,1000,48800); 
    hold on; 
    s.plot   = 'mag';       % Plot magnitude only 
    s.xunits = 'khz';       % Label the freq. units correctly 
    s.yunits = 'dB';        % Plot the magnitude squared 
    freqzplot(HL,FL,s); 
    title(axesLeft,'Left vs. Right - Magnitude Response'); 
    ylabel(axesLeft,'Left Magnitude (dB)'); 
    hold off; 
     
    axes(axesRight); 
    cla; 
    [HR,FR] = freqz(HR,1,1000,48800); 
    hold on; 
    s.plot   = 'mag';       % Plot magnitude only 
    s.xunits = 'khz';       % Label the freq. units correctly 
    s.yunits = 'dB';        % Plot the magnitude squared 
    freqzplot(HR,FR,s); 
    ylabel(axesRight,'Right Magnitude (dB)'); 
    hold off; 
 
 

Figure 10: Function that plots the magnitude 
response (plotMagResp.m) 

 
 
 
 
 
 
 
 
 
 

function playBtn_Callback(hObject, eventdata, handles) 
    % hObject    handle to playBtn (see GCBO) 
    % eventdata  reserved - to be defined in a future 
version of MATLAB® 
    % handles    structure with handles and user data (see 
GUIDATA) 
    azimuthVal = get(handles.azimuthList, 'String'); 
    azimuthIndex = get(handles.azimuthList, 'Value'); 
    if(get(handles.hrtfRad, 'Value')) 

        HR = cof2vec(strcat('../Coeff 
Files/H',cell2mat(azimuthVal(azimuthIndex)),'R.cof')); 
        HL = cof2vec(strcat('../Coeff 
Files/H',cell2mat(azimuthVal(azimuthIndex)),'L.cof')); 
    else 
        HR = cof2vec('../Coeff Files/AVG.cof'); 
        HL = cof2vec('../Coeff Files/DIFF.cof'); 
    end 
     
    wavIndex = get(handles.wavListBox, 'Value'); 
    wav = 0; 
    switch wavIndex 
        case 1 
            % Create 5 second noise sample for 48.8 KHz 
sampling rate from 1 to -1 pp 
            min = -1; 
            max = 1; 
            wav = min + (max-min) * rand(48800*5,1); 
        case 2 
            wav = wavread('../wav/queens.wav',488000); 
        case 3 
            wav = wavread('../wav/led.wav',488000); 
        case 4 
            wav = wavread('../wav/jesu.wav',488000); 
    end 
     
    % Filter hrtfRad's 
    [FHL FHR] = hrtfFilter(HL,HR,wav); 
     
    sound([FHL FHR],48800); 
 
 
Figure 11: Function called when the play button 

is clicked (main.m). 
 
 

function [FHL FHR] = hrtfFilter(hrtfL,hrtfR,wav)      
    % Filter Left and Right channels 
    FHL = filter(hrtfL,1,wav); 
    FHR = filter(hrtfR,1,wav); 

 
 
Figure 12: Function that filters a signal using 

the specified HRTF (hrtfFilter.m). 
 



 
 

Figure 13: Screen shot of user interface for real-
time implementation. 

 
The implementation of the HRTF in this 

system is similar to the software-based solution. 
The following sequence of code is located in 
the interrupt service routine of the assembly 
file: 

 
FIR         FLOAT  R1,R1 
                      STF R1,*AR4++% 
                      LDF              0.0,R1 
                      LDF  0.0,R2 
                      RPTS            LENGTH1-1 
                      MPYF3  *AR3--,*AR4++%,R1 
||        ADDF3  R1,R2,R2 
                     ADDF3  R1,R2,R2 
                     FIX                R2,R1 
                 RETS 

 
Figure 14: FIR subroutine is assembly file for 

TMS320C33 DSK (hrtf.asm). 
 
This sequence of instructions implements 

equation 1 to convolve the input signal with the 
HRTF-based FIR filter. The complete set of 
programs needed to make the real-time 3D 
sound implementation run on the TMS320C33 
DSK is available at http://dsplab.eng.fiu.edu/ 
3DSND_DEMO/. 
 

Results 
 
Both the Matlab® demonstration program and 

the real-time implementation on the 
TMS320C33 DSK have been used to 
successfully demonstrate 3D sound to 
engineering students.  Overall, students have 
been able to perceive the intended virtual 
positioning of the sound being processed and its 
movement as the azimuth selection is changed. 

In some instances, students listening to the 
spatialized sounds reported confusion on the 
location of the sound sources, in particular, 
front and back reversals. For example, a sound 
source that is filtered such that it should be 
perceived to be located at 20° azimuth would be 
perceived to be at 160° azimuth (refer to Figure 
1 for spherical coordinate system). This is a 
common effect of using generalized HRTFs and 
is referred to as the “Cone of Confusion” (see 
Figure 15). 

 
 

 
 
Figure 15: Cone of Confusion, top head view. 
 
The primary source of this phenomenon is the 

use of generalized HRTFs. The generalized 
HRTFs, as mentioned earlier, are measured 
using a KEMAR dummy head with 
microphones in it [2]. To maximize the 
accuracy of sound localization, the geometrical 
features of each individual user should be 
involved in the definition of the HRTFs used by 
the system when that particular user is listening 
to the spatialized sounds. Unfortunately, this 
requires specialized equipment that is not easily 
available to many of the potential users of the 
system. 

 
Conclusion 

 
This paper demonstrates HRTFs in both 

simulated and real-time environments. A 
detailed description is provided of the software 
and real-time based systems proposed to 
demonstrate 3D sound using Head Related 
Transfer Functions (HRTF). Fully commented 
versions of the coefficient files and Matlab® 
files for the software based implementation are 
available for download at http://dsplab.eng.fiu. 
edu/3DSND_DEMO/. This web site also 
contains assembler files, the DSK executable, 
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the C source code, and the DOS executable for 
the real-time implementation on the 
TMS320C33 DSK. 

 
We hope that the setup that has been described 

in this paper and the implementations freely 
available to students and educators will enable 
those interested to understand and experience 
3D sound. Furthermore, these implementations 
can be used to demonstrate the practical value 
of many fundamental concepts of an 
introductory course of signals and systems or 
DSP, such as: transfer function, impulse 
response, convolution, frequency response, etc. 
In addition, it is hoped that witnessing these 
demonstrations may entice students to pursue 
an interest in signal processing and, 
specifically, in sound spatialization and virtual 
3D Sound. 
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