
TTEACHING APPLICATION IMPLEMENTATION ON FPGAS TO
COMPUTER SCIENCE AND SOFTWARE ENGINEERING STUDENTS

Yoginder S. Dandass

Computer Science and Engineering, Box 9637
Mississippi State University, MS 39762

Abstract
Modern field programmable gate array

(FPGA) devices enable the creation of hybrid
hardware-software systems in which
performance-critical portions of the application
are implemented in hardware. However, the
design and implementation of hardware
modules requires considerable specialized skill
that many Computer Science and Software
Engineering students lack. This paper describes
a finite impulse response (FIR) filter
implementation for an FPGA platform using
ImpulseC, a tool for automatically generating
VHDL code from C code, in a course designed
for students with minimal digital design
experience.

Students create an initial software-only

implementation of the FIR filter and are
subsequently led through a series of incremental
design optimizations, each one producing a
better performance or consuming fewer
resources than previous designs. The final
implementation results in an implementation
that is nearly 21 times faster than the software
implementation. By the end of the course,
students are able to complete FPGA
implementations of systems that are
considerably more complex than the FIR filter.

Introduction

Field programmable gate array (FPGA)

devices are becoming an increasingly popular
option for implementing embedded systems
because time and performance critical portions
of the application software can be implemented
in optimized hardware. However, implementing
complex processing elements in hardware using
hardware description languages (HDLs) such as
VHDL and Verilog requires specialized

knowledge and skill in digital design concepts.
Furthermore, because the implementation
process is cumbersome, many important design
decisions (e.g., hardware-software partition
boundaries and selection of hardware
components) are made early. High
implementation costs also prevent the
exploration of alternative design choices.

A number of emerging C language-based tools

(such as SystemC[1], Handel-C[2], and
ImpulseC[3]) are addressing the difficulties
associated with implementing applications in
reconfigurable hardware. The central idea
behind these languages is to enable application
designers to leverage the features of the well-
known C and C++ languages for describing the
runtime behavior of applications. The
specialized compilers generate the required low-
level hardware implementations automatically.
All of these tools require users to learn the
supported subset of the languages or require
learning an enhanced syntax and semantics.

The Department of Computer Science and

Engineering at Mississippi State University
(MSU), recently offered a split-level (i.e., open
to graduate and undergraduate students) Special
Topics in Computer Science course focusing on
application development techniques for
reconfigurable and embedded computing. In
this course, students are not required to have
prior digital design coursework or experience.
However, knowledge of C and a course in
operating systems are essential prerequisites.
We use ImpulseC and associated tools in the
course because ImpulseC supports ANSI C
syntax. Hints are provided to the C-to-VHDL
converter using #pragma compiler directives.
This means that students can use their preferred
software development environment in order to

36 COMPUTERS IN EDUCATION JOURNAL

develop, test, and debug the application before
deploying the hardware portions on an FPGA.

In this course, we implement a finite impulse

response (FIR) filter [4] in order to examine the
advantages and pitfalls of using ImpulseC. The
simplicity of the FIR filter kernel means that
students can rapidly develop the source codes
for the filter leaving more time for exploring a
variety of design and implementation
alternatives.

Figure 1: Fundamental FIR Filter Code.

Figure 1 describes the basic FIR filter code for
a 64 tap integer FIR filter. The number of taps
in the filter is declared in line 01. In line 08 the
64 elements in coeff vector are initialized by
reading the values from an external source (e.g.,
the host processor). In line 09 the first 63
elements of buffer are read in from a data source
(e.g., a sensor). Lines 10–19 represent an
infinite loop that processes a continuous stream
of data from the external sensor, converting
input samples into output samples. In the body
of infinite loop, the input sample is acquired
from a sensor in line 11 and processed in lines
12–13. The value of variable accum is the sum

of the products of the corresponding elements of
coeff and buffer computed as follows:

∑
−

=

×=
1

0

TAPS

i
ii buffercoeffaccum . (1)

In lines 14 and 15, the result is scaled down

and written to an output device (i.e., the output
sample is given to the consumer of the
transformed sensor data). In lines 16 and 17,
the elements of buffer are shifted down one
position in order to make room for the next
input sample value read in from the sensor (i.e.,
the value that was read into vector buffer 63
iterations ago – and is now in buffer[0] – is
discarded).

One of the pedagogical challenges posed to the

students in the course is to optimize the
performance of the FIR filter implemented on
Digilent, Inc’s XUPV2P FPGA board [5]. This
board contains a Virtex2 Pro FPGA and a
variety of onboard peripherals and connectors
that can be used for FPGA configuration,
communication, memory expansion, and
debugging. More importantly, the FPGA
contains two PowerPC 405 (PPC405) hard IP
cores that run at a frequency of 300MHz, 136
blocks of random access memory (for a total of
272 kilobytes of RAM), and 136 18-bit
multipliers. The optimized FIR filter is required
to run at a clock frequency of 100MHz and must
fit completely on this board.

PPC405

Monitor Process

Producer
Process

FIR Filter
Process

Consumer
Process

PLB

Instream Outstream
FIR Implementation Architecture Block

 Figure 2: FIR Hardware Implementation.

01: #define TAPS 64
02: void firfilter() {
03: int accum = 0; /*64 bit*/
04: int result;
05: int tap;
06: int coeff[TAPS];
07: int buffer[TAPS];
08: … /* initialize coeff */
09: … /* initialize buffer */
10: for (;;) {/* do forever */
11: read(instream,
 &(buffer[TAPS-1]));
12: for (tap=0; tap<TAPS; tap++)
13: accum += coeff[tap]*
 buffer[tap];
14: result = accum >> 2;
15: write(outstream, &result);
16: for (tap=1; tap<TAPS; tap++)
17: buffer[tap-1]=buffer[tap];
18: }
19: }

COMPUTERS IN EDUCATION JOURNAL 37

The primary design of the expected solution is
described in Figure 2. A software monitor
process executes on the PPC405 and is
responsible for signaling the hardware processes
to start and for providing initial values for the
coeff vector. The monitor process also counts
the number of PPC405 clock cycles it takes for
the hardware processes to produce a specified
number of output samples.

The hardware portion of the implementation

consists of three separate hardware processes.
The producer process simulates a sensor device
and generates raw values at a much faster rate
than can be processed by the FIR filter process.
The consumer process simulates the remainder
of the system that uses the transformed output
sample of the FIR filter. In our implementation,
the consumer process simply discards the output
sample and sends a message to the monitor
process after the specified number of output
samples have been received from the FIR filter
process. The software monitor waits in a
polling loop for the message from the consumer
process, computes the number of clock cycles
that have elapsed since the previous message,
and sends this timing information to a terminal
connected to the development machine via a
RS232 link.

The various processes communicate with each

other using ImpulseC streams. Streams are
essentially unidirectional first-in first-out
(FIFO) queues and are the preferred means for
inter-process communication in the ImpulseC
programming model. There are a total of six
streams in the implementation. The instream
stream connects the producer process to the to
the FIR filter process. The outstream stream
connects the FIR filter process to the consumer
process. The remaining four streams connect
the hardware processes to the monitor software
process using the PPC405’s processor local bus
(PLB). The PLB is a bus architecture that is
used for connecting peripherals implemented in
FPGA fabric to the PPC405. The
implementation of the PLB is provided by
Xilinx for their FPGAs. Following is a list of

the streams connected to the PLB in the FIR
filter implementation:

• Monitor-to-producer: used for starting

the producer,
• Monitor-to-FIR: used for providing the

initial coefficient values to the FIR filter.
• Monitor-to-consumer: used for

specifying the number of FIR filter
output samples that must be received
before the software monitor is notified,
and

• Consumer-to-monitor: used to inform
the monitor that the specified number of
output samples have been received by
the consumer process.

The streams connecting the hardware processes
to the software processes are not critical for the
performance of the FIR filter and are not shown
in Figure 2. For this optimization exercise, the
students focus on improving the performance of
the code in lines 10 through 17.

Implementation Details

Students are lead through several different
implementations of the FIR filter code in order
to explore a variety of design scenarios. In
ImpulseC, processes are simply functions with
the void return type that take handles to
ImpulseC inter-process communication objects
as function arguments. For example, the FIR
filter process has the following signature:

 void filter(
 co_stream coeffstream,
 co_stream instream,
 co_stream outstream);
where co_stream is the datatype for the ImpulsC
stream handle. In order to inform ImpulseC that
the filter function defines a process, we call
the process creation function as follows:
 fir_proc = co_process_create(
 "filter",
 (co_function)filter,
 3,
 coeffstream,

38 COMPUTERS IN EDUCATION JOURNAL

 instream,
 outstream);

Note that the steams are associated with the
process when the co_process_create()
function is called.

Also, ImpulseC must be informed of all
processes that are to be executed in hardware by
calling the co_process_config()
function. For example the FIR filter process is
placed into hardware with the following call:

 co_process_config(fir_proc,
 co_loc,"pe0");

where fir_proc is the handle to the
previously created FIR filter process object and
the string “pe0” represents the FPGA hardware.
If the co_process_config() function call
is omitted for the the fir_proc handle, the
FIR filter process is implemented in software.

The ImpulseC software development
environment is collectively known as
CoDeveloper and consists of tools such as a
graphical integrated development environment
(IDE), preprocessors, compilers, optimizers, and
HDL generators. CoDeveloper also provides
graphical tools such as StageMaster Explorer
that enables users to examine, at a high level,
the performance of the generated hardware
configurations.

CoDeveloper exports the generated HDL

components into an existing Embedded
Development Kit (EDK) project. EDK is
Xilinx, Inc’s development environment for
creating FPGA-based applications that require
processors, processor busses, and software in
addition to processing units implemented in the
FPGA fabric [6]. Students are instructed to
create a basic embedded system consisting of a
single PPC405, 64 kilobytes of RAM
(implemented using block RAM resource – i.e.,
BRAMS – resident on the FPGA), a PLB, and
an RS232 device. The RS232 port is used to
communicate with a terminal program on the
development workstation running windows XP.

Standard I/O from the software executing on the
PPC405 is directed to appear on the terminal
window in the development workstation.
Students with no prior digital design experience
can use the EDK project wizard that handles
most of the implementation details.

Once CoDeveloper exports the generated HDL

modules to the EDK project, students simply
instantiate the generated modules in their EDK
projects, connect any ports that require special
handling (typically, the default port connections
are sufficient) and can use EDK’s tools to
synthesize the system’s HDL and to download
the FPGA configuration to the FPGA for
performing live testing. Readers are encouraged
to read Refs. [3] and [6] for additional details
and tutorials.

Software Implementation

The first solution that students implement is a
software module that combines the monitor and
FIR filter processes. This software-based
implementation serves as a benchmark for
measuring the optimization achieved by the
various hardware processes. The producer
process is still implemented in hardware in
order to simulate a hardware sensor that
produces data and the instream stream connects
the producer process to the software FIR filter
process over the PLB. There is no consumer
process (it is assumed that the software process
will consume the transformed data itself).

A naïve implementation of the FIR filter code

described in Figure 1 produces a new output
sample after 16,359 PPC405 clock cycles (or
5,453 system clock cycles – the PPC405 core
embedded in the FPGA operates at 300MHz
while the FPGA fabric operates at 100MHz).
This delay includes a significant penalty for
reading the raw data from the producer process
over the PLB. It also includes the time taken by
the PPC405 to perform the required
computation and buffer shifting operations.

An important optimization can be made to the

filter code. The buffer shift loop in lines 16 and

COMPUTERS IN EDUCATION JOURNAL 39

17 from Figure 1 can be eliminated by
converting the linear buffer into a circular
buffer. The code for implementing this
optimization is shown in Figure 3 (note that
ancillary code such as variable declaration and
coeff and buffer initialization has been omitted).

Figure 3: Circular Buffer FIR Filter.

The variable tail in the code in Figure 3
maintains the index that corresponds to the
current buffer0 element in equation (1). The
software implementation of the FIR filter using
the circular buffer takes on average 12,633
PPC405 clock cycles (or 4,211 system clock
cycles) to produce an output sample, a 22.78%
improvement.

The Initial hardware Implementation

If students heed the design guidelines provided
in Figure 2 and modularize their codes for the
software FIR filter implementation
appropriately, the effort required to create the
initial hardware implementation is relatively
trivial. The monitor process is split into the
software monitor and the hardware FIR filter.
The simple consumer process is also created and
the required stream-based inter-process
communication channels are established. The
code is simulated in software using
CoDeveloper for testing purposes. Once testing
and verification is complete, the hardware is
generated and exported into EDK.

In the EDK, students compile the software
portions and generate the FPGA configuration
bitstream from the hardware description.
Before downloading the bitstream to the FPGA,
students are encouraged to examine the
summary reports produced by the synthesis
tools in order to determine resource utilization
and to ensure that the timing constraints are met.
At this point, most students are surprised to
learn that we only achieve a maximum
frequency of 81.23MHz, well below our target
of 100MHz. This is because ImpulseC
generates a design with several logic levels that
cannot be executed within the 10ns constraint.
Table 1 shows an excerpt from the EDK report
detailing the cause of the delay.

Students can readily determine from this

timing report that the multiplication operation
“MULT18X18:A9->P34” (in row three of Table
1) is the main source of the delay. Additional
confirmation is obtained by examining the
generated hardware using CoDeveloper’s Stage
Master tool. Figure 4 shows an excerpt from
Stage Master identifying the number of
operations that are performed in a single step.
The subscripts immediately following
arithmetic, assignment, and array indexing
operations specify how these operations are
grouped by ImpulseC’s optimizer into stages.
Operations with identical subscripts are
executed in the same clock cycle. Clearly, the
multiplication and summing of the product into
accum is occurring in a single stage (i.e., in
stage 2). Therefore, we need to instruct
ImpulseC’s hardware generator to separate the
multiplication and summation operations to
occur in two, or more, separate stages, thereby
shortening the time taken by each stage. This
will result in the design with more stages that
meets the specified timing constraint.

1: tail = 0;
2: for (;;) {/* do forever */
3: read(instream,
 &(buffer[(tail+TAPS-1)%TAPS]));
4: for (tap=0; tap<TAPS; tap++)
5 accum += coeff[(tap] *
 buffer[(tap+tail)%TAPS];
6: result = accum >> 2;
7: tail++;
8: }

40 COMPUTERS IN EDUCATION JOURNAL

Table 1: Details for Failed Timing.

Cell (in->out) Fanout Gate
Delay

Net
Delay

FDP:C->Q 32 0.374 0.818
LUT3:I2->O 2 0.313 0.445
MULT18X18:A9->P34 2 4.541 0.561
LUT2:I1->O 1 0.313 0.000
MUXCY:S->O 0 0.377 0.000
XORCY:CI->O 1 0.868 0.533
LUT2:I0->O 0 0.313 0.000
XORCY:LI->O 1 0.535 0.506
LUT2:I1->O 0 0.313 0.000
XORCY:LI->O 1 0.535 0.418
LUT4:I2->O 1 0.313 0.000
FD:D 0.234

Figure 4: Stage Master Excerpt from the Failing
Code.

In ImpulseC, programmers can specify the

maximum delay that the generated hardware
should have in a single stage by using the
following #pragma directives:

• #pragma CO SET StageDelay n, and
• #pragma CO SET DefaultDelay n,

where n is the maximum acceptable delay. The
DefaultDelay parameter specifies the maximum
delay that ImpulseC should use unless the
StageDelay parameter is used to override the
default delay for a specific block of C
statements. ImpulseC estimates the delay based
on the widths of the operands.

Figure 5 illustrates the modifications needed to
the FIR filter inner for loop in order to
incorporate the stage delay specification of 64
for the multiplication and summation
operations. Figure 6 shows the resulting
StageMaster output showing that the array
indexing, multiplication, and summation
operations occur in separate steps.

Figure 5: FIR Filter Inner Loop with a
StageDelay Specification.

This initial hardware implementation produces

a new FIR filter result every 972 CPU clock
cycles (or 324 system clock cycles), a 92.31%
improvement in performance compared to the
software implementation. However, further
improvements in performance are also possible.

Figure 6: Stage Master Excerpt from the Code
with a StageDelay Setting of 32.

The pipelined hardware Implementation

The next optimization students are asked to
make is to create a pipelined implementation of
the FIR filter process. Pipelining results in an
implementation that can perform several
operations simultaneously. For example, the
summation, multiplication, and array lookup
operations could be occurring for three different
iterations of the for loop in Figure 5 at the
same time.

Figure 7 shows the inner loop with the

StageDelay and PIPELINE #pragma
directives. Recall that the StageDelay
specification is required in order to meet timing
constraints. Additionally, StageMaster shows
that the pipeline has a latency of 5 and a
cycles/result value of 2. The latency value of 5
means that every loop iteration takes 5 clock
cycles to execute (i.e., it takes 4 cycles for the
operations shown in Figure 6 and one cycle for
managing the loop). The cycles/result value of
2 indicates that the implementation completes a
loop iteration every other clock cycle.

1: for (tap=0; tap<TAPS; tap++) {
2: #pragma CO SET StageDelay 64
3: accum += coeff[(tap] *
 buffer[(tap+tail)%TAPS];
4 }

accum =4 accum +4
 (buffer[tail +1 tap & 1 63]2)3 *3
 (coeff[tap]1)3

accum =2 accum +2
 (buffer[tail +1 tap & 1 63]2)2 *2
 (coeff[tap]1)2

COMPUTERS IN EDUCATION JOURNAL 41

According to the software monitor process, the
hardware implementation produces a new FIR
filter output sample every 405 CPU clock cycles
(or 135 system clock cycles), essentially
doubling the performance of the non-pipelined
implementation. Furthermore, the resource
utilization of this design is relatively modest.
The FIR filter process module uses 814 out of
13,696 slices, 2 BRAMs (one each for buffer
and coeff arrays), and 3 out of 136 18-bit
multipliers.

Figure 7: FIR Filter Inner Loop with a Pipeline
Specification.

Automatic loop unrolling

ImpulseC also provides a mechanism for
unrolling for loops that have constant index
lower and upper bounds. Programmers only
need to place the #pragma CO UNROLL
statement at the top of the for loop in order to
cause that loop to be unrolled. Loop unrolling
essentially results in the body of the loop being
replicated as many times as specified by the
loop index bounds. The loop index variable is
replaced with the constant designating the
appropriate loop index in each loop body copy.
Unrolling has the potential for significantly
improving performance because the optimizer
will generate HDL that performs the loop body
for all iterations simultaneously if possible.
Note that simultaneous computation is only
possible if the computation performed within an
iteration is not dependent on the result of a
previous iteration. However, unrolled loops can
also result in significantly increased resource
utilization because the logic required for
implementing the loop body is replicated many
times.

In the FIR filter code, summing the product
into the accum variable is one factor that limits
the effectiveness of the loop unrolling. Another
limiting factor is that arrays are stored in BRAM
blocks that are dual ported (i.e., there can only
be two simultaneous reads from different
addresses). This means that only two iterations
of the FIR filter inner loop can execute
simultaneously. The primary factor that
prevents us from utilizing ImpulseC’s loop
unrolling capability is that the resulting
implementation’s FPGA resource utilization is
too high. When the inner loop in the FIR filter
process is unrolled, the design’s resource
requirements are as follows:

• number of Slices: 15,933 out of 13,696

(116% of the device),
• number of Slice Flip Flops: 5,138 out of

27,392 (18% of the device)
• number of 4 input LUTs: 29,529 out of

27,392 (107% of the device),
• number of BRAMs: 2 out of 136 (1%

of the device), and
• number of MULT18X18s: 136 out of

136 (100% of the device).

Clearly, this design will not fit in the FPGA we
are using. There is no option in ImpulseC to
perform a partial unroll. ImpulseC also does not
have the ability to automatically limit the unroll
operation when the BRAM dual access
limitation occurs.

Manual Loop Unrolling

Loop unrolling, however, is an important
optimization that can be achieved within
resource utilization limits by restructuring the
original program. The problem of dual port
memory access can be solved by “scalarizing
array variables,” a feature supported by
ImpulseC. “Scalarization” means that the
ImpulseC compiler can move the
implementation of an array variable from
BRAM into FPGA registers provided that all
accesses to the array elements is through
constants (or an expression that can be
completely resolved at compile time involving

1: for (tap=0; tap<TAPS; tap++) {
2: #pragma CO SET StageDelay 64
3: #pragma CO PIPELINE
4: accum += coeff[(tap] *
 buffer[(tap+tail)%TAPS];
5: }

42 COMPUTERS IN EDUCATION JOURNAL

the index of an unrolled for loop). When the
array elements are implemented as registers,
they can be accessed simultaneously. The
problem of excessive resource utilization can be
addressed by manually unrolling the FIR filter
inner loop. This way, the extent of the unrolling
can be explicitly controlled.

There are two arrays in the FIR filter process,

coeff and buffer. The loops that are used to
initialize the 64 elements of coeff and 63 initial
elements of buffer can be unrolled in order to
ensure that array accesses occurs using constant
array indices during initialization. In the main
body of the FIR filter process, however, the
need for using the variable tail in accessing
buffer makes the task of using constant array
indices complex. It is much simpler to use the
linear buffer FIR filter processes shown in
Figure 1. The primary reason for implementing
the circular buffer version was to eliminate the
cost of shifting buffer elements. However, if
buffer is scalarized, its elements can be read
from and written to simultaneously. This means
that the shifting of the entire array can be
performed in a single clock cycle.

In the manually unrolled implementation, we

perform four sets of 16 loop iterations in our
manually unrolled loop. In other words, we
perform 16 multiplication and summations
simultaneously. We also ensure that all access
to the coeff and buffer arrays occur through
constant indices. Sixteen accumulator variables
a_00, a_01, …, and a_15 are used in order to
maximize parallelization of the multiplication
and summation operations. Because the
computation of an individual accumulator
variable is not dependent on the value of another
accumulator variable, all 16 accumulators can
be computed independently from each other in a
single iteration. If we were to use a single
accumulator, then the summation of the
individual products will result in sequential
operations because the FPGA is not fast enough
to sum all sixteen products.

Figure 8 shows the code for the modified FIR
filter nested loops. In line 05, the individual
accumulator variables are set to zero in
anticipation of the upcoming accumulation
operations. The partially unrolled inner loop is
in lines 06 through 38. In lines 09 through 32,
temporary variables c_00 through c_15 and
b_00 through b_15 are assigned the appropriate
values from the coeff and buffer arrays. A series
of if statements is used to convert the tap
variable’s value into constant array indexing
expressions in order to enable scalarization. A
case statement may also be used; however,
ImpulseC has problems with the implementation
of case statements in particular situations.
Therefore we generally avoid the use of case
statements. ImpulseC “flattens” the if-else
structure so that it executes in a single clock
cycle. In lines 34 through 37, the sixteen
products are computed from the corresponding
c_00 through c_15 and b_00 through b_15 and
summed with the corresponding accumulators
a_00 through a_15.

The call to the co_par_break() function

in line 33 informs ImpulseC’s optimizer that we
want the operations following line 33 to be
performed in a separate clock cycle from any
operations preceding line 33. This explicit
control over the optimizer is required because
otherwise the ImpulseC optimizer packs too
many operations into one clock cycle resulting
in a failure to meet timing constraints when the
design is synthesized. The co_par_break()
function has no other purpose and performs no
computation.

In line 39, the 16 accumulator variables are

summed into the final accumulator accum.
Because the FPGA cannot add 16 32-bit
variables in a single clock cycle, we set the
DefaultDelay pragma directive to 128 which
causes ImpulseC to split the summation to
complete in four clock cycles.

COMPUTERS IN EDUCATION JOURNAL 43

01: for(;;) {
02: /* Read values from the stream */
03: co_stream_read(stmDataIn, &nSample, sizeof(nSample));
04: firbuffer[TAPS - 1] = nSample;
05: a_00 = a_01 = a_02 = a_03 = a_04 = a_05 = a_06 = a_07 =
 a_08 = a_09 = a_10 = a_11 = a_12 = a_13 = a_14 = a_15 = 0;
06: for(tap=0; tap<TAPS/16; tap++) {
07: #pragma CO SET StageDelay 64
08: #pragma CO PIPELINE
09: if (tap == 0){
10: c_00 = coef[0*16 + 00]; b_00 = buffer[0*16 + 00];
11: c_01 = coef[0*16 + 01]; b_02 = buffer[0*16 + 02];
12: … /* similarly extract the others here*/
13: c_15 = coef[0*16+ 15]; b_15 = buffer[0*16 + 15];
14: }
15: else if (tap == 1){
16: c_00 = coef[1*16 + 00]; b_00 = buffer[1*16 + 00];
17: c_01 = coef[1*16 + 01]; b_02 = buffer[1*16 + 02];
18: … /*similarly extract the others here*/
19: c_15 = coef[1*16 + 15]; b_15 = buffer[1*16 + 15];
20: }
21: else if (tap == 2){
22: c_00 = coef[2*16 + 00]; b_00 = buffer[2*16 + 00];
23: c_01 = coef[2*16 + 01]; b_02 = buffer[2*16 + 02];
24: … /*similarly extract the others here*/
25: c_15 = coef[2*16 + 15]; b_15 = buffer[2*16 + 15];
26: }
27: else if (tap == 3){
28: c_00 = coef[3*16 + 00]; b_00 = buffer[3*16 + 00];
29: c_01 = coef[3*16 + 01]; b_02 = buffer[3*16 + 02];
30: … /*similarly extract the others here*/
31: c_15 = coef[3*16 + 15]; b_15 = buffer[3*16 + 15];
32: }
33: co_par_break();
34: a_00 += b_00 * c_00;
35: a_01 += b_01 * c_01;
36: … /* similarly compute a_02 to a_14 here */
37: a_15 = b_15 * c_15;
38: }
39: accum = a_00 + a_01 + a_02 + a_03 + a_04 + a_05 + a_06 + a_07 +
 a_08 + a_09 + a_10 + a_11 + a_12 + a_13 + a_14 + a_15;
40: nFiltered = accum >> 4;
41: co_stream_write(stmDataOut, &nFiltered, sizeof(nFiltered));
42: for (tap = 1; tap < TAPS; tap++){
43: #pragma CO UNROLL
44: firbuffer[tap-1] = firbuffer[tap];
45: }
46: }

Figure 8: Code for the Manually Unrolled FIR Filter Computation.

44 COMPUTERS IN EDUCATION JOURNAL

The for loop in lines 42 through 55 performs
the shifting of the buffer elements. Because this
loop is unrolled (note the #pragma CO
UNROLL directive in line 43), the shift operation
is completed in a single clock cycle.

This pipelined and partially unrolled

implementation of the FIR Filter consumes the
following resources:

• number of Slices: 8,059 out of 13,696

(58% of the device),
• number of Slice Flip Flops: 9,702 out of

27,392 (35% of the device)
• number of 4 input LUTs: 14,821 out of

27,392 (54% of the device), and
• number of MULT18X18s: 64 out of

136 (47% of the device).

These statistics seem to suggest that there may
sufficient resources to attempt a design that
performs 32 simultaneous multiplication
operations. However, when the resource
consumption approaches 100%, it takes longer
for the hardware “place and route” tools to
complete.

The synthesized design takes 63 CPU clock
cycles (or 21 system clock cycles) to produce a
new output sample when executed on the
FPGA. This is an 87.5% improvement over the
previous pipelined implementation. A 16-fold
improvement in performance is not achieved
because there are a number of operations that
must be performed sequentially. This is a good
opportunity to introduce students to Amdahl’s
law [7] which states that the speedup of a
problem with size W that has a serial component
with size Ws, is bounded from above by W/Ws
regardless of the number of processors utilized.

Conclusions

This paper describes a series of hands-on

projects that can be used to introduce hardware-
software codesign to Computer Science,
Software Engineering, and beginning Computer
Engineering students who have had little (or no)
exposure to digital design. By using ImpulseC,

students can express the expected behavior of
the application in C, a language most students
are comfortable with. However, in order to
facilitate experimentation, students must make
an effort to organize the code in a manner that
allows easy movement of functionality between
software and hardware platforms. Furthermore,
in order to enhance performance, students need
to take advantage of the optimization features
offered by ImpulseC.

The processes of starting from a software-only

implementation and making incremental
modifications with increasing performance
improvements holds the students’ interest while
keeping the workload on the students
manageable. Many Computer Science and
Software Engineering students are wary of the
course initially. However, they quickly learn
that hardware-software codesign can be
performed rapidly using modern programming
tools. The ability to quickly make changes to
the C code and compiler directives in order to
test alternative designs is also appealing to the
students.

The most valuable advantage of using

ImpulseC is the ease with which students can
explore the design space. This encourages
students to try a variety of alternatives in order
to come up with a faster performing
implementation than their peers. In this course
students were organized into pairs and several
pairs had friendly competitions trying to outdo
each other.

This simple FIR filter implementation also

provides the foundations on which the students
worked towards other advanced term projects in
the class (e.g., parallel AES modules,
bioinformatics peptide processing pipeline, and
extension of ImpulseC streams for use over
network links).

While ImpulseC provides a number of

advantages when implementing applications for
a FPGA platform, it is not perfect. ImpulseC
and the CodDeveloper tools suffer from a
number of minor bugs and the development

COMPUTERS IN EDUCATION JOURNAL 45

team puts out new releases on a nearly monthly
basis. The language has limited support for
pointers. Furthermore, it is likely that existing
C programs will require extensive
reorganization in order to be successfully ported
for execution in hardware. However, with some
effort, students quickly learn to workaround the
issues that come with ImpulseC programming
and become effective users of the language, the
streaming programming model, and the
CoDeveloper toolset. The source codes for all
of these implementations are available upon
request.

References

1. D. C. Black and J. Donovan, SystemC: From

the Ground Up, Springer, New York, 2005.

2. I. Page, “Constructing Hardware-Software

Systems from a Aingle Description,”
Journal of VLSI Signal Processing, 12(1),
pp. 87-107, 1996.

3. D. Pellerin and S. Thibault, Practical FPGA

Programming in C, Prentice Hall, New
Jersey, 2005.

4. R. G. Lyons, Understanding Digital Signal

Processing, Prentice Hall, new Jersey, 1996.

5. Xilinx, Inc., Xilinx University Program

Virtex-II Pro Development System, 2005,
http://www.digilentinc.com/Data/Products/
XUPV2P/XUPV2P_User_Guide.pdf,
(accessed may 2007).

6. Xilinx, Inc., EDK Concepts, Tools, and

Techniques, http://www.xilinx.com/ise/
embedded/edk91i_docs/edk_ctt.pdf,
(accessed May 2007).

7. G. M. Amdahl, “Validity of the Single

Processor Approach to Achieving large
Scale Computing Capabilities,” in
Proceedings of the AFIPS Conference,
1967.

Biographical Information

Yoginder S. Dandass is an Assistant Professor
in the Department of Computer Science and
Engineering at Mississippi State University
(MSU). His research interests include high
performance computing and reconfigurable
computing with applications in computer
security, digital forensics, and bioinformatics.
He obtained his PhD from MSU in 2003 his MS
degree from Shippensburg University of
Pennsylvania in 1996. From 1997 until 2003,
Dr. Dandass was employed as a researcher at
MSU’s NSF Engineering Research Center for
Computational Fluid Dynamics and in the
Department of Computer Science. He also has
over eight years of experience as a consultant in
the information technology industry prior to
1997.

46 COMPUTERS IN EDUCATION JOURNAL

	Abstract
	Introduction
	Implementation Details
	Software Implementation
	The Initial hardware Implementation
	The pipelined hardware Implementation
	Automatic loop unrolling
	Manual Loop Unrolling

	Conclusions
	References
	Biographical Information

