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Abstract 
Modern field programmable gate array 

(FPGA) devices enable the creation of hybrid 
hardware-software systems in which 
performance-critical portions of the application 
are implemented in hardware.  However, the 
design and implementation of hardware 
modules requires considerable specialized skill 
that many Computer Science and Software 
Engineering students lack.  This paper describes 
a finite impulse response (FIR) filter 
implementation for an FPGA platform using 
ImpulseC, a tool for automatically generating 
VHDL code from C code, in a course designed 
for students with minimal digital design 
experience. 

 
Students create an initial software-only 

implementation of the FIR filter and are 
subsequently led through a series of incremental 
design optimizations, each one producing a 
better performance or consuming fewer 
resources than previous designs.  The final 
implementation results in an implementation 
that is nearly 21 times faster than the software 
implementation.  By the end of the course, 
students are able to complete FPGA 
implementations of systems that are 
considerably more complex than the FIR filter. 

 
Introduction 

 
Field programmable gate array (FPGA) 

devices are becoming an increasingly popular 
option for implementing embedded systems 
because time and performance critical portions 
of the application software can be implemented 
in optimized hardware.  However, implementing 
complex processing elements in hardware using 
hardware description languages (HDLs) such as 
VHDL and Verilog requires specialized 

knowledge and skill in digital design concepts.  
Furthermore, because the implementation 
process is cumbersome, many important design 
decisions (e.g., hardware-software partition 
boundaries and selection of hardware 
components) are made early.  High 
implementation costs also prevent the 
exploration of alternative design choices. 

 
A number of emerging C language-based tools 

(such as SystemC[1], Handel-C[2], and 
ImpulseC[3]) are addressing the difficulties 
associated with implementing applications in 
reconfigurable hardware.  The central idea 
behind these languages is to enable application 
designers to leverage the features of the well-
known C and C++ languages for describing the 
runtime behavior of applications.  The 
specialized compilers generate the required low-
level hardware implementations automatically.  
All of these tools require users to learn the 
supported subset of the languages or require 
learning an enhanced syntax and semantics. 

 
The Department of Computer Science and 

Engineering at Mississippi State University 
(MSU), recently offered a split-level (i.e., open 
to graduate and undergraduate students) Special 
Topics in Computer Science course focusing on 
application development techniques for 
reconfigurable and embedded computing.  In 
this course, students are not required to have 
prior digital design coursework or experience.  
However, knowledge of C and a course in 
operating systems are essential prerequisites.  
We use ImpulseC and associated tools in the 
course because ImpulseC supports ANSI C 
syntax.  Hints are provided to the C-to-VHDL 
converter using #pragma compiler directives.  
This means that students can use their preferred 
software development environment in order to 
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develop, test, and debug the application before 
deploying the hardware portions on an FPGA. 

 
In this course, we implement a finite impulse 

response (FIR) filter [4] in order to examine the 
advantages and pitfalls of using ImpulseC.  The 
simplicity of the FIR filter kernel means that 
students can rapidly develop the source codes 
for the filter leaving more time for exploring a 
variety of design and implementation 
alternatives. 

 

 
 

Figure 1: Fundamental FIR Filter Code. 
 

Figure 1 describes the basic FIR filter code for 
a 64 tap integer FIR filter.  The number of taps 
in the filter is declared in line 01.  In line 08 the 
64 elements in coeff vector are initialized by 
reading the values from an external source (e.g., 
the host processor).  In line 09 the first 63 
elements of buffer are read in from a data source 
(e.g., a sensor).  Lines 10–19 represent an 
infinite loop that processes a continuous stream 
of data from the external sensor, converting 
input samples into output samples.  In the body 
of infinite loop, the input sample is acquired 
from a sensor in line 11 and processed in lines 
12–13.  The value of variable accum is the sum 

of the products of the corresponding elements of 
coeff and buffer computed as follows: 
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In lines 14 and 15, the result is scaled down 

and written to an output device (i.e., the output 
sample is given to the consumer of the 
transformed sensor data).  In lines 16 and 17, 
the elements of buffer are shifted down one 
position in order to make room for the next 
input sample value read in from the sensor (i.e., 
the value that was read into vector buffer 63 
iterations ago – and is now in buffer[0] – is 
discarded). 

 
One of the pedagogical challenges posed to the 

students in the course is to optimize the 
performance of the FIR filter implemented on 
Digilent, Inc’s XUPV2P FPGA board [5].  This 
board contains a Virtex2 Pro FPGA and a 
variety of onboard peripherals and connectors 
that can be used for FPGA configuration, 
communication, memory expansion, and 
debugging.  More importantly, the FPGA 
contains two PowerPC 405 (PPC405) hard IP 
cores that run at a frequency of 300MHz,  136 
blocks of random access memory (for a total of 
272 kilobytes of RAM), and 136 18-bit 
multipliers.  The optimized FIR filter is required 
to run at a clock frequency of 100MHz and must 
fit completely on this board. 
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 Figure 2: FIR Hardware Implementation. 

01: #define TAPS 64 
02: void firfilter() { 
03:   int   accum = 0; /*64 bit*/ 
04:   int   result; 
05:   int   tap; 
06:   int   coeff[TAPS]; 
07:   int   buffer[TAPS]; 
08:   … /* initialize coeff */ 
09:   … /* initialize buffer */ 
10:   for (;;) {/* do forever */ 
11:     read(instream, 
             &(buffer[TAPS-1])); 
12:     for (tap=0; tap<TAPS; tap++) 
13:       accum += coeff[tap]* 
                   buffer[tap]; 
14:     result = accum >> 2; 
15:     write(outstream, &result); 
16:     for (tap=1; tap<TAPS; tap++) 
17:       buffer[tap-1]=buffer[tap]; 
18:   } 
19: }
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The primary design of the expected solution is 
described in Figure 2.  A software monitor 
process executes on the PPC405 and is 
responsible for signaling the hardware processes 
to start and for providing initial values for the 
coeff vector.  The monitor process also counts 
the number of PPC405 clock cycles it takes for 
the hardware processes to produce a specified 
number of output samples. 

 
The hardware portion of the implementation 

consists of three separate hardware processes.  
The producer process simulates a sensor device 
and generates raw values at a much faster rate 
than can be processed by the FIR filter process.  
The consumer process simulates the remainder 
of the system that uses the transformed output 
sample of the FIR filter.  In our implementation, 
the consumer process simply discards the output 
sample and sends a message to the monitor 
process after the specified number of output 
samples have been received from the FIR filter 
process.  The software monitor waits in a 
polling loop for the message from the consumer 
process, computes the number of clock cycles 
that have elapsed since the previous message, 
and sends this timing information to a terminal 
connected to the development machine via a 
RS232 link. 

 
The various processes communicate with each 

other using ImpulseC streams.  Streams are 
essentially unidirectional first-in first-out 
(FIFO) queues and are the preferred means for 
inter-process communication in the ImpulseC 
programming model.  There are a total of six 
streams in the implementation.  The instream 
stream connects the producer process to the to 
the FIR filter process.  The outstream stream 
connects the FIR filter process to the consumer 
process.  The remaining four streams connect 
the hardware processes to the monitor software 
process using the PPC405’s processor local bus 
(PLB).  The PLB is a bus architecture that is 
used for connecting peripherals implemented in 
FPGA fabric to the PPC405.  The 
implementation of the PLB is provided by 
Xilinx for their FPGAs.  Following is a list of 

the streams connected to the PLB in the FIR 
filter implementation: 

 
• Monitor-to-producer: used for starting 

the producer, 
• Monitor-to-FIR: used for providing the 

initial coefficient values to the FIR filter. 
• Monitor-to-consumer: used for 

specifying the number of FIR filter 
output samples that must be received 
before the software monitor is notified, 
and 

• Consumer-to-monitor: used to inform 
the monitor that the specified number of 
output samples have been received by 
the consumer process. 

 
The streams connecting the hardware processes 
to the software processes are not critical for the 
performance of the FIR filter and are not shown 
in Figure 2.  For this optimization exercise, the 
students focus on improving the performance of 
the code in lines 10 through 17. 
 

Implementation Details 
 

Students are lead through several different 
implementations of the FIR filter code in order 
to explore a variety of design scenarios.  In 
ImpulseC, processes are simply functions with 
the void return type that take handles to 
ImpulseC inter-process communication objects 
as function arguments.  For example, the FIR 
filter process has the following signature: 

 
  void filter( 
  co_stream coeffstream, 
  co_stream instream, 
  co_stream outstream); 
where co_stream is the datatype for the ImpulsC 
stream handle.  In order to inform ImpulseC that 
the filter function defines a process, we call 
the process creation function as follows: 
 fir_proc = co_process_create( 
           "filter", 
           (co_function)filter, 
            3, 
            coeffstream, 
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            instream, 
            outstream); 
 
Note that the steams are associated with the 
process when the co_process_create() 
function is called.   
 

Also, ImpulseC must be informed of all 
processes that are to be executed in hardware by 
calling the co_process_config() 
function.  For example the FIR filter process is 
placed into hardware with the following call:  

 
  co_process_config(fir_proc, 
                  co_loc,"pe0"); 
 
where fir_proc is the handle to the 
previously created FIR filter process object and 
the string “pe0” represents the FPGA hardware.  
If the co_process_config() function call 
is omitted for the the fir_proc handle, the 
FIR filter process is implemented in software. 
 

The ImpulseC software development 
environment is collectively known as 
CoDeveloper and consists of tools such as a 
graphical integrated development environment 
(IDE), preprocessors, compilers, optimizers, and 
HDL generators.  CoDeveloper also provides 
graphical tools such as StageMaster Explorer 
that enables users to examine, at a high level, 
the performance of the generated hardware 
configurations. 

 
CoDeveloper exports the generated HDL 

components into an existing Embedded 
Development Kit (EDK) project.  EDK is 
Xilinx, Inc’s development environment for 
creating FPGA-based applications that require 
processors, processor busses, and software in 
addition to processing units implemented in the 
FPGA fabric [6].  Students are instructed to 
create a basic embedded system consisting of a 
single PPC405, 64 kilobytes of RAM 
(implemented using block RAM resource – i.e., 
BRAMS – resident on the FPGA), a PLB, and 
an RS232 device.   The RS232 port is used to 
communicate with a terminal program on the 
development workstation running windows XP.  

Standard I/O from the software executing on the 
PPC405 is directed to appear on the terminal 
window in the development workstation.  
Students with no prior digital design experience 
can use the EDK project wizard that handles 
most of the implementation details. 

 
Once CoDeveloper exports the generated HDL 

modules to the EDK project, students simply 
instantiate the generated modules in their EDK 
projects, connect any ports that require special 
handling (typically, the default port connections 
are sufficient) and can use EDK’s tools to 
synthesize the system’s HDL and to download 
the FPGA configuration to the FPGA for 
performing live testing.  Readers are encouraged 
to read Refs. [3] and [6] for additional details 
and tutorials. 

 
Software Implementation 
 

The first solution that students implement is a 
software module that combines the monitor and 
FIR filter processes.  This software-based 
implementation serves as a benchmark for 
measuring the optimization achieved by the 
various hardware processes.  The producer 
process is still implemented in hardware in 
order to simulate a hardware sensor that 
produces data and the instream stream connects 
the producer process to the software FIR filter 
process over the PLB.   There is no consumer 
process (it is assumed that the software process 
will consume the transformed data itself). 

 
A naïve implementation of the FIR filter code 

described in Figure 1 produces a new output 
sample after 16,359 PPC405 clock cycles (or 
5,453 system clock cycles – the PPC405 core 
embedded in the FPGA operates at 300MHz 
while the FPGA fabric operates at 100MHz).  
This delay includes a significant penalty for 
reading the raw data from the producer process 
over the PLB.  It also includes the time taken by 
the PPC405 to perform the required 
computation and buffer shifting operations. 

 
An important optimization can be made to the 

filter code.  The buffer shift loop in lines 16 and 
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17 from Figure 1 can be eliminated by 
converting the linear buffer into a circular 
buffer.  The code for implementing this 
optimization is shown in Figure 3 (note that 
ancillary code such as variable declaration and 
coeff and buffer initialization has been omitted). 

 

 
 

Figure 3: Circular Buffer FIR Filter. 
 

The variable tail in the code in Figure 3 
maintains the index that corresponds to the 
current buffer0 element in equation (1).  The 
software implementation of the FIR filter using 
the circular buffer takes on average 12,633 
PPC405 clock cycles (or 4,211 system clock 
cycles) to produce an output sample, a 22.78% 
improvement. 

 
The Initial hardware Implementation 
 

If students heed the design guidelines provided 
in Figure 2 and modularize their codes for the 
software FIR filter implementation 
appropriately, the effort required to create the 
initial hardware implementation is relatively 
trivial.  The monitor process is split into the 
software monitor and the hardware FIR filter.  
The simple consumer process is also created and 
the required stream-based inter-process 
communication channels are established.  The 
code is simulated in software using 
CoDeveloper for testing purposes. Once testing 
and verification is complete, the hardware is 
generated and exported into EDK. 

 
 
 

In the EDK, students compile the software 
portions and generate the FPGA configuration 
bitstream from the hardware description.  
Before downloading the bitstream to the FPGA, 
students are encouraged to examine the 
summary reports produced by the synthesis 
tools in order to determine resource utilization 
and to ensure that the timing constraints are met.  
At this point, most students are surprised to 
learn that we only achieve a maximum 
frequency of 81.23MHz, well below our target 
of 100MHz.  This is because ImpulseC 
generates a design with several logic levels that 
cannot be executed within the 10ns constraint.  
Table 1 shows an excerpt from the EDK report 
detailing the cause of the delay. 

 
Students can readily determine from this 

timing report that the multiplication operation 
“MULT18X18:A9->P34” (in row three of Table 
1) is the main source of the delay.  Additional 
confirmation is obtained by examining the 
generated hardware using CoDeveloper’s Stage 
Master tool.  Figure 4 shows an excerpt from 
Stage Master identifying the number of 
operations that are performed in a single step.  
The subscripts immediately following 
arithmetic, assignment, and array indexing 
operations specify how these operations are 
grouped by ImpulseC’s optimizer into stages.  
Operations with identical subscripts are 
executed in the same clock cycle.  Clearly, the 
multiplication and summing of the product into 
accum is occurring in a single stage (i.e., in 
stage 2).  Therefore, we need to instruct 
ImpulseC’s hardware generator to separate the 
multiplication and summation operations to 
occur in two, or more, separate stages, thereby 
shortening the time taken by each stage.  This 
will result in the design with more stages that 
meets the specified timing constraint. 

 
 
 
 
 
 

1: tail = 0; 
2: for (;;) {/* do forever */ 
3:  read(instream, 
       &(buffer[(tail+TAPS-1)%TAPS]));
4:  for (tap=0; tap<TAPS; tap++) 
5    accum += coeff[(tap] * 
              buffer[(tap+tail)%TAPS];
6:  result = accum >> 2; 
7:  tail++; 
8: } 
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Table 1: Details for Failed Timing. 
 

Cell (in->out) Fanout Gate 
Delay 

Net 
Delay 

FDP:C->Q 32 0.374 0.818 
LUT3:I2->O 2 0.313 0.445 
MULT18X18:A9->P34 2 4.541 0.561 
LUT2:I1->O 1 0.313 0.000 
MUXCY:S->O 0 0.377 0.000 
XORCY:CI->O 1 0.868 0.533 
LUT2:I0->O 0 0.313 0.000 
XORCY:LI->O 1 0.535 0.506 
LUT2:I1->O 0 0.313 0.000 
XORCY:LI->O 1 0.535 0.418 
LUT4:I2->O 1 0.313 0.000 
FD:D  0.234  

 

 
 

Figure 4: Stage Master Excerpt from the Failing 
Code. 

 
In ImpulseC, programmers can specify the 

maximum delay that the generated hardware 
should have in a single stage by using the 
following #pragma directives: 

 
• #pragma CO SET StageDelay n, and  
• #pragma CO SET DefaultDelay n, 
 
where n is the maximum acceptable delay.   The 
DefaultDelay parameter specifies the maximum 
delay that ImpulseC should use unless the 
StageDelay parameter is used to override the 
default delay for a specific block of C 
statements.  ImpulseC estimates the delay based 
on the widths of the operands. 
 

Figure 5 illustrates the modifications needed to 
the FIR filter inner for loop in order to 
incorporate the stage delay specification of 64 
for the multiplication and summation 
operations.  Figure 6 shows the resulting 
StageMaster output showing that the array 
indexing, multiplication, and summation 
operations occur in separate steps. 

 
 

Figure 5: FIR Filter Inner Loop with a 
StageDelay Specification. 

 
This initial hardware implementation produces 

a new FIR filter result every 972 CPU clock 
cycles (or 324 system clock cycles), a 92.31% 
improvement in performance compared to the 
software implementation.  However, further 
improvements in performance are also possible. 

 

 
 

Figure 6: Stage Master Excerpt from the Code 
with a StageDelay Setting of 32. 

 
The pipelined hardware Implementation 
 

The next optimization students are asked to 
make is to create a pipelined implementation of 
the FIR filter process.  Pipelining results in an 
implementation that can perform several 
operations simultaneously.  For example, the 
summation, multiplication, and array lookup 
operations could be occurring for three different 
iterations of the for loop in Figure 5 at the 
same time. 

 
Figure 7 shows the inner loop with the 

StageDelay and PIPELINE #pragma 
directives.  Recall that the StageDelay 
specification is required in order to meet timing 
constraints.  Additionally, StageMaster shows 
that the pipeline has a latency of 5 and a 
cycles/result value of 2.  The latency value of 5 
means that every loop iteration takes 5 clock 
cycles to execute (i.e., it takes 4 cycles for the 
operations shown in Figure 6 and one cycle for 
managing the loop).  The cycles/result value of 
2 indicates that the implementation completes a 
loop iteration every other clock cycle.  

1: for (tap=0; tap<TAPS; tap++) { 
2:   #pragma CO SET StageDelay 64 
3:   accum += coeff[(tap] * 
              buffer[(tap+tail)%TAPS];
4  } 

accum =4 accum +4  
               (buffer[tail +1 tap & 1 63]2 )3 *3 
               (coeff[tap]1)3

accum =2 accum +2  
               (buffer[tail +1 tap & 1 63]2 )2 *2 
               (coeff[tap]1)2
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According to the software monitor process, the 
hardware implementation produces a new FIR 
filter output sample every 405 CPU clock cycles 
(or 135 system clock cycles), essentially 
doubling the performance of the non-pipelined 
implementation.  Furthermore, the resource 
utilization of this design is relatively modest.  
The FIR filter process module uses 814 out of 
13,696 slices, 2 BRAMs (one each for buffer 
and coeff arrays), and 3 out of 136 18-bit 
multipliers. 

 

 
 

Figure 7: FIR Filter Inner Loop with a Pipeline 
Specification. 

 
Automatic loop unrolling 
 

ImpulseC also provides a mechanism for 
unrolling for loops that have constant index 
lower and upper bounds.  Programmers only 
need to place the #pragma CO UNROLL 
statement at the top of the for loop in order to 
cause that loop to be unrolled.  Loop unrolling 
essentially results in the body of the loop being 
replicated as many times as specified by the 
loop index bounds.  The loop index variable is 
replaced with the constant designating the 
appropriate loop index in each loop body copy. 
Unrolling has the potential for significantly 
improving performance because the optimizer 
will generate HDL that performs the loop body 
for all iterations simultaneously if possible.  
Note that simultaneous computation is only 
possible if the computation performed within an 
iteration is not dependent on the result of a 
previous iteration.  However, unrolled loops can 
also result in significantly increased resource 
utilization because the logic required for 
implementing the loop body is replicated many 
times. 

 

In the FIR filter code, summing the product 
into the accum variable is one factor that limits 
the effectiveness of the loop unrolling.  Another 
limiting factor is that arrays are stored in BRAM 
blocks that are dual ported (i.e., there can only 
be two simultaneous reads from different 
addresses).  This means that only two iterations 
of the FIR filter inner loop can execute 
simultaneously.  The primary factor that 
prevents us from utilizing ImpulseC’s loop 
unrolling capability is that the resulting 
implementation’s FPGA resource utilization is 
too high.  When the inner loop in the FIR filter 
process is unrolled, the design’s resource 
requirements are as follows: 

 
• number of Slices: 15,933  out of  13,696   

(116% of the device), 
• number of Slice Flip Flops: 5,138  out of  

27,392 (18%  of the device) 
• number of 4 input LUTs: 29,529  out of  

27,392 (107% of the device), 
• number of BRAMs: 2  out of    136 (1%  

of the device), and 
• number of MULT18X18s: 136  out of    

136 (100% of the device). 
 

Clearly, this design will not fit in the FPGA we 
are using.  There is no option in ImpulseC to 
perform a partial unroll.  ImpulseC also does not 
have the ability to automatically limit the unroll 
operation when the BRAM dual access 
limitation occurs. 
 
Manual Loop Unrolling 
 

Loop unrolling, however, is an important 
optimization that can be achieved within 
resource utilization limits by restructuring the 
original program.  The problem of dual port 
memory access can be solved by “scalarizing 
array variables,” a feature supported by 
ImpulseC.  “Scalarization” means that the 
ImpulseC compiler can move the 
implementation of an array variable from 
BRAM into FPGA registers provided that all 
accesses to the array elements is through 
constants (or an expression that can be 
completely resolved at compile time involving 

1: for (tap=0; tap<TAPS; tap++) { 
2:  #pragma CO SET StageDelay 64 
3:  #pragma CO PIPELINE 
4:   accum += coeff[(tap] * 
              buffer[(tap+tail)%TAPS];
5: } 
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the index of an unrolled for loop).  When the 
array elements are implemented as registers, 
they can be accessed simultaneously.  The 
problem of excessive resource utilization can be 
addressed by manually unrolling the FIR filter 
inner loop.  This way, the extent of the unrolling 
can be explicitly controlled. 

 
There are two arrays in the FIR filter process, 

coeff and buffer.  The loops that are used to 
initialize the 64 elements of coeff and 63 initial 
elements of buffer can be unrolled in order to 
ensure that array accesses occurs using constant 
array indices during initialization.  In the main 
body of the FIR filter process, however, the 
need for using the variable tail in accessing 
buffer makes the task of using constant array 
indices complex.  It is much simpler to use the 
linear buffer FIR filter processes shown in 
Figure 1.  The primary reason for implementing 
the circular buffer version was to eliminate the 
cost of shifting buffer elements.  However, if 
buffer is scalarized, its elements can be read 
from and written to simultaneously.  This means 
that the shifting of the entire array can be 
performed in a single clock cycle.  

 
In the manually unrolled implementation, we 

perform four sets of 16 loop iterations in our 
manually unrolled loop.  In other words, we 
perform 16 multiplication and summations 
simultaneously.  We also ensure that all access 
to the coeff and buffer arrays occur through 
constant indices.  Sixteen accumulator variables 
a_00, a_01, …, and a_15 are used in order to 
maximize parallelization of the multiplication 
and summation operations.  Because the 
computation of an individual accumulator 
variable is not dependent on the value of another 
accumulator variable, all 16 accumulators can 
be computed independently from each other in a 
single iteration.  If we were to use a single 
accumulator, then the summation of the 
individual products will result in sequential 
operations because the FPGA is not fast enough 
to sum all sixteen products. 

 
 

Figure 8 shows the code for the modified FIR 
filter nested loops.  In line 05, the individual 
accumulator variables are set to zero in 
anticipation of the upcoming accumulation 
operations.  The partially unrolled inner loop is 
in lines 06 through 38.  In lines 09 through 32, 
temporary variables c_00 through c_15 and 
b_00 through b_15 are assigned the appropriate 
values from the coeff and buffer arrays.  A series 
of if statements is used to convert the tap 
variable’s value into constant array indexing 
expressions in order to enable scalarization.  A 
case statement may also be used; however, 
ImpulseC has problems with the implementation 
of case statements in particular situations.  
Therefore we generally avoid the use of case 
statements.  ImpulseC “flattens” the if-else 
structure so that it executes in a single clock 
cycle.  In lines 34 through 37, the sixteen 
products are computed from the corresponding 
c_00 through c_15 and b_00 through b_15 and 
summed with the corresponding accumulators 
a_00 through a_15.   

 
The call to the  co_par_break() function 

in line 33 informs ImpulseC’s optimizer that we 
want the operations following line 33 to be 
performed in a separate clock cycle from any 
operations preceding line 33.  This explicit 
control over the optimizer is required because 
otherwise the ImpulseC optimizer packs too 
many operations into one clock cycle resulting 
in a failure to meet timing constraints when the 
design is synthesized.  The co_par_break() 
function has no other purpose and performs no 
computation. 

 
In line 39, the 16 accumulator variables are 

summed into the final accumulator accum.  
Because the FPGA cannot add 16 32-bit 
variables in a single clock cycle, we set the 
DefaultDelay pragma directive to 128 which 
causes ImpulseC to split the summation to 
complete in four clock cycles. 
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01: for(;;) { 
02:   /* Read values from the stream */ 
03:   co_stream_read(stmDataIn, &nSample, sizeof(nSample)); 
04:   firbuffer[TAPS - 1] = nSample; 
05:   a_00 = a_01 = a_02 = a_03 = a_04 = a_05 = a_06 = a_07 =  
      a_08 = a_09 = a_10 = a_11 = a_12 = a_13 = a_14 = a_15 = 0; 
06:   for(tap=0; tap<TAPS/16; tap++) { 
07:     #pragma CO SET StageDelay 64 
08:     #pragma CO PIPELINE 
09:     if (tap == 0){ 
10:       c_00 = coef[0*16 + 00]; b_00 = buffer[0*16 + 00]; 
11:       c_01 = coef[0*16 + 01]; b_02 = buffer[0*16 + 02]; 
12:       … /* similarly extract the others here*/ 
13:       c_15 = coef[0*16+ 15]; b_15 = buffer[0*16 + 15]; 
14:     } 
15:     else if (tap == 1){ 
16:       c_00 = coef[1*16 + 00]; b_00 = buffer[1*16 + 00]; 
17:       c_01 = coef[1*16 + 01]; b_02 = buffer[1*16 + 02]; 
18:       … /*similarly extract the others here*/ 
19:       c_15 = coef[1*16 + 15]; b_15 = buffer[1*16 + 15]; 
20:     } 
21:     else if (tap == 2){ 
22:       c_00 = coef[2*16 + 00]; b_00 = buffer[2*16 + 00]; 
23:       c_01 = coef[2*16 + 01]; b_02 = buffer[2*16 + 02]; 
24:       … /*similarly extract the others here*/ 
25:       c_15 = coef[2*16 + 15]; b_15 = buffer[2*16 + 15]; 
26:     } 
27:     else if (tap == 3){ 
28:       c_00 = coef[3*16 + 00]; b_00 = buffer[3*16 + 00]; 
29:       c_01 = coef[3*16 + 01]; b_02 = buffer[3*16 + 02]; 
30:       … /*similarly extract the others here*/ 
31:       c_15 = coef[3*16 + 15]; b_15 = buffer[3*16 + 15]; 
32:     } 
33:     co_par_break(); 
34:     a_00 += b_00 * c_00; 
35:     a_01 += b_01 * c_01; 
36:     … /* similarly compute a_02 to a_14 here */ 
37:     a_15 = b_15 * c_15; 
38:   } 
39:   accum = a_00 + a_01 + a_02 + a_03 + a_04 + a_05 + a_06 + a_07 +  
              a_08 + a_09 + a_10 + a_11 + a_12 + a_13 + a_14 + a_15; 
40:   nFiltered = accum >> 4; 
41:   co_stream_write(stmDataOut, &nFiltered, sizeof(nFiltered)); 
42:   for (tap = 1; tap < TAPS; tap++){ 
43:      #pragma CO UNROLL 
44:      firbuffer[tap-1] = firbuffer[tap]; 
45:   } 
46: } 

Figure 8: Code for the Manually Unrolled FIR Filter Computation. 
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The for loop in lines 42 through 55 performs 
the shifting of the buffer elements.  Because this 
loop is unrolled (note the #pragma CO 
UNROLL directive in line 43), the shift operation 
is completed in a single clock cycle. 

 
This pipelined and partially unrolled 

implementation of the FIR Filter consumes the 
following resources:  

 
• number of Slices: 8,059  out of  13,696 

(58% of the device), 
• number of Slice Flip Flops: 9,702  out of  

27,392 (35% of the device) 
• number of 4 input LUTs: 14,821 out of  

27,392 (54% of the device), and 
• number of MULT18X18s: 64  out of    

136 (47%  of the device). 
 

These statistics seem to suggest that there may 
sufficient resources to attempt a design that 
performs 32 simultaneous multiplication 
operations.  However, when the resource 
consumption approaches 100%, it takes longer 
for the hardware “place and route” tools to 
complete. 
 

The synthesized design takes 63 CPU clock 
cycles (or 21 system clock cycles) to produce a 
new output sample when executed on the 
FPGA.  This is an 87.5% improvement over the 
previous pipelined implementation.  A 16-fold 
improvement in performance is not achieved 
because there are a number of operations that 
must be performed sequentially.  This is a good 
opportunity to introduce students to Amdahl’s 
law [7] which states that the speedup of a 
problem with size W that has a serial component 
with size Ws, is bounded from above by W/Ws 
regardless of the number of processors utilized. 

 
Conclusions 

 
This paper describes a series of hands-on 

projects that can be used to introduce hardware-
software codesign to Computer Science, 
Software Engineering, and beginning Computer 
Engineering students who have had little (or no) 
exposure to digital design.  By using ImpulseC, 

students can express the expected behavior of 
the application in C, a language most students 
are comfortable with.  However, in order to 
facilitate experimentation, students must make 
an effort to organize the code in a manner that 
allows easy movement of functionality between 
software and hardware platforms.  Furthermore, 
in order to enhance performance, students need 
to take advantage of the optimization features 
offered by ImpulseC. 

 
The processes of starting from a software-only 

implementation and making incremental 
modifications with increasing performance 
improvements holds the students’ interest while 
keeping the workload on the students 
manageable.  Many Computer Science and 
Software Engineering students are wary of the 
course initially.  However, they quickly learn 
that hardware-software codesign can be 
performed rapidly using modern programming 
tools.  The ability to quickly make changes to 
the C code and compiler directives in order to 
test alternative designs is also appealing to the 
students. 

 
The most valuable advantage of using 

ImpulseC is the ease with which students can 
explore the design space.  This encourages 
students to try a variety of alternatives in order 
to come up with a faster performing 
implementation than their peers.  In this course 
students were organized into pairs and several 
pairs had friendly competitions trying to outdo 
each other. 

 
This simple FIR filter implementation also 

provides the foundations on which the students 
worked towards other advanced term projects in 
the class (e.g., parallel AES modules, 
bioinformatics peptide processing pipeline, and 
extension of ImpulseC streams for use over 
network links). 

 
While ImpulseC provides a number of 

advantages when implementing applications for 
a FPGA platform, it is not perfect.  ImpulseC 
and the CodDeveloper tools suffer from a 
number of minor bugs and the development 
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team puts out new releases on a nearly monthly 
basis.  The language has limited support for 
pointers.  Furthermore, it is likely that existing 
C programs will require extensive 
reorganization in order to be successfully ported 
for execution in hardware.  However, with some 
effort, students quickly learn to workaround the 
issues that come with ImpulseC programming 
and become effective users of the language, the 
streaming programming model, and the 
CoDeveloper toolset.  The source codes for all 
of these implementations are available upon 
request. 
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