
34 COMPUTERS IN EDUCATION JOURNAL

FIRST STEPS TOWARD INTEGRATING COMMUNICATION
INSTRUCTION THROUGHOUT COMPUTER SCIENCE AND

SOFTWARE ENGINEERING CURRICULA

Janet E. Burge1, Paul V. Anderson2, Michael Carter3,
Gerald C. Gannod1, Mladen A. Vouk4

1Department of Computer Science and Software Engineering, 2Howe Center for Writing
Excellence, 3 Department of English, 4 Department of Computer Science

1,2Miami University, 3,4North Carolina State University

Introduction

One of the more recognized challenges facing
engineering education has been providing graduates
with the communication abilities necessary to ensure
their success in the workforce.[1,2] Employers
typically place effective communication at the top of
the qualities they seek in new engineers.[3, 4, 5, 6]
To prepare their students to communicate effectively
in their careers, engineering programs may require a
technical writing course taught by another
department and, in some cases, one or two
communication-intensive courses in their programs.
Nevertheless, new college graduates encounter
significant difficulty adjusting to workplace
communication practices,[7,8,9] and employers
invest substantial sums in mentoring, providing in-
house training, or subscribing to external programs
to teach new employees the communication skills
that are basic in their workplace.[10] While technical
writing courses provided by non-engineering faculty
are helpful, they are too general to prepare students
adequately for the domain-specific communication
tasks demanded by their careers.[11] Attention to
communication in a few engineering courses is also
beneficial but does not provide enough breadth or
guided practice to move students from novice to
highly competent communicators in engineering
contexts. Studies of the communication abilities
needed by new engineering graduates produce a
longer array of topics than a single communication
course can provide, even when supplemented by a
few writing-intensive courses in the major.[12,13]
Isolation of communication instruction in these ways
reinforces the assumption by many students that
writing, speaking, and other communication
assignments are “busy work” rather than key aspects
of their professional education.

Supported by a three-year grant from the National

Science Foundation, we are developing and piloting
model curricula that teach communication skills as

an integral part of computer science (CS) and
software engineering (SE) courses.[14] Among the
compelling reasons for exploring this pedagogical
approach is the way it positions communication
instruction within the disciplinary context in which
students will pursue their careers, an especially
effective way of teaching domain-specific
communication abilities.[15, 16] Recent research has
demonstrated that well-designed writing
assignments that are based on the intellectual content
of courses not only develop students’ writing
abilities but also increase their mastery of course
content. Thus, communication instruction in
engineering courses can support technical instruction
instead of detracting from it.[17, 18, 19, 20] Also,
when communication assignments based on real-
world practice are integral with their technical
assignments, students can see how communication is
the means by which they make their technical
knowledge valuable to their employer, clients, and
other stakeholders. Repeated attention to
communication in engineering courses over the four
years of their undergraduate study can enable
students to see that acquisition of communication
expertise is an essential element in their
development as engineering professionals.

Given these benefits, a few universities have

explored ways to integrate technical and
communication instruction in one or more of their
engineering programs.[21, 22, 23] The scope of our
project is distinctive: Our goal is to develop
resources that can be used, in theory, by all
programs; our project team includes specialists from
14 colleges and universities; and we are focusing on
four modes of communication: reading, writing,
speaking, and teaming.

We are identifying learning outcomes and

developing course materials that provide students
with the skills in these areas that are needed to
communicate effectively in engineering and

COMPUTERS IN EDUCATION JOURNAL 35

production environments. Our interdisciplinary team
includes computer science, software engineering,
and technical communication specialists from the
lead institutions, Miami University and North
Carolina State University, and from twelve other
colleges and universities. We are also benefitting
from advice provided by industry professionals. In
the project we are producing model curricula
developed and evaluated at Miami University and
North Carolina State University, sample assignments
developed at a variety of types of institutions, and
teaching materials for instruction and evaluation of
students’ communication skills. We will create a
resource site where these materials can be easily
searched and then adapted in whole or in part by any
CS/SE program. While we are working specifically
with CS and SE education, the potential benefits and
the overall design of our project could apply to any
engineering field.

In this paper, we present results from the first year

of the project, including communication skills,
general and domain-specific, that our industry
partners and faculty participants have categorized as
essential for CS/SE graduates; challenges we have
identified in implementing a communication-infused
curriculum; and general strategies, including
examples, we developed so far for integrating
communication and technical work in CS/SE
curricula.

Project Description

Our project, titled “Integrating Communication

Learning Outcomes Across the CS and SE
Curriculum” is a collaboration among CS/SE
faculty, technical communication specialists who
also have expertise in communication across the
curriculum (CAC), and industry professionals. The
five Principal Investigators (PIs) include at least one
CS/SE faculty member and one communication-
across-the curriculum specialist from our two
collaborating institutions: Miami University and
North Carolina State University. During its initial
phase, October 2009-May 2010, the five PIs
recruited six CS/SE faculty from each of our
institutions plus six others, each from a different
college or university. With the latter group, we
selected faculty from a variety of institution types so
that we could incorporate the perspectives of
institutions much different from our own into the
project. We also recruited six communication-
across-the-curriculum specialists from six

institutions to expand the range of perspectives still
farther.

We selected the CS/SE participants so that the

project team included an instructor teaching each of
six courses from each of the PIs’ programs and from
one of the other institutions. These courses start with
the introductory programming course, CS1, taken as
first or second term Freshmen, and end with the
Senior Capstone/Senior Design course that typically
concludes most programs. The courses in between
are the second programming course (CS2), Data
Structures, Databases, and Software Engineering.
These courses are common to both the CS and SE
curricula and, depending on the institution, often
span all four years of the curriculum. These courses
were chosen as a common set that we could use to
demonstrate how communication skills instruction
and practice could be integrated at different points in
the curriculum to allow students’ expertise to grow
as they progressed through the program. We then
formed course-based teams that included CS/SE
faculty from three institutions (Miami University,
North Carolina State University, and a partner
institution) as well as a CAC specialist to create
course-specific communication assignments and
instructional support materials for their courses.

We recruited industry partners representing various

sizes and kinds of employers to assure that the
guidance we received from CS/SE professionals
represented the broad range of careers our graduates
might pursue. In an earlier NSF-sponsored project
seeking advice from industry to guide the
communication abilities desired by the CS/SE
industry, the PIs realized the importance of such
breadth.

We launched the project with a three-day

workshop in June 2010 at which university
participants and industry representatives discussed
the communication skills needed by CS/SE
graduates; attended training sessions on developing
program and course outcomes; and introduced a
framework for assignment construction and
assessment rubrics. The course-based teams then
worked during the summer to develop an initial set
of assignments to pilot during the next course year.
In August 2010, we reviewed pilot assignments and
participated in training sessions on teaching and
evaluating communication skills in CS/SE courses.
A workshop was held for each communication skill:
reading, writing, speaking, and teaming. The CAC

36 COMPUTERS IN EDUCATION JOURNAL

participants in the project conducted these
workshops with assistance from CS/SE participants.

Since then, we have continued to develop and

assess teaching materials and pilot assignments,
focusing on ways to integrate work done in
individual courses into clearly articulated pathways
in which students develop communication abilities
progressively in the same way they build technical
expertise as they advance through their four years of
undergraduate study. We are developing ways of
making the resources we create available to
engineering educators nationwide.

Required Communication Skills

Because our project focuses on providing students

with the communication abilities that are critical to
success in their specific careers, we decided to start
our project by asking our industry partners and our
faculty to identify specific skills they felt were
especially important for recent CS/SE graduates.
Our first workshop was attended by executives and
managers from 11 large and small corporations,
including Microsoft Research, NetApp, Northrop
Grumman Electronic Systems, EMC, SAS, Fidelity
Investments, IBM Corp., and Integrated Industrial
Information, Inc (I3). We broke into small groups
and started the discussion with a series of questions:

• What types of writing and oral presentations

do you expect CS/SE professionals to be able
to do in their first year on the job?

• Which of these expected communication
abilities do they generally not possess?

• What kinds of reading are important for first-
year CS/SE employees to do well in their
work (including requirements and code)?
What do you expect these employees to be
able to do as a result of those kinds of
reading?

• What are important skills, attitudes, other
attributes expected for effectiveness in
working on teams?

• What communication abilities do you expect
recent hires to learn on the job rather than
bring to the job?

• What communication abilities must CS/SE
employees have to advance in your
organization?

The answers to these questions and the discussions
around them in small groups and then a larger
meeting covered a wide range of concerns. Some of
the communication abilities identified were CS/SE
specific, such as reading someone else’s code, while
others were more generic, such as asking questions.
Many of the communication tasks involve more than
one mode of communication, such as speaking in
team meetings or writing notes or scripts for
presentations. Table 1 lists some of the skills
identified.

Much of the discussion focused on some of the
differences between the ways communication is
practiced and taught in a classroom setting and the
ways it takes place in a professional or “real world”
setting. One example concerns audience—in the
workplace, the writer is not always aware of who the
audience is or could be for their documents. Even
when writing for an audience other than their
instructor, students are usually told who the audience
is that they should be writing for. Another involves
understanding expectations. Students are usually
told what is expected from them during a class but in
the workplace this is something they often need to
figure out for themselves, usually by talking with
their new co-workers. Another challenge is
understanding cultural differences. This is especially
critical if parts of a project are multi-national
projects overseas, a fairly common occurrence
nowadays.

There also were some areas where our industry

participants thought students were having a
particularly difficult time. One is the need to be
brave about sharing failure. Students may try to hide
problems they are having from their instructor in
fear of receiving a lower grade, but following that
approach on the job can cause some serious issues.
Another is in looking at problems from multiple
angles. Students tend to be more black and white in
thinking and do not always consider different
perspectives. Another skill that often does not get
taught is the ability to see the “big picture”—what
are the goals behind the project and how does the
project fit into the goals of different audiences?
Other skills include deciding which communication
medium is most appropriate (e-mail vs. phone vs. in
person), negotiating a position, and asking questions.
The skills identified by our industry participants are
now being used to motivate the development of
assignments that address these skills.

COMPUTERS IN EDUCATION JOURNAL 37

Table 1: Communication Skills Identified during June 2010 Workshop.

Reading Teaming
Read specifications Participate in team meetings– including
Find bugs in specifications making a technical argument in them
Read someone else’s code Participate in a scrum
Read training manuals Structure a plan for a small group
Read with a purpose (different purposes Collaborate with team members (rather than
 appropriate for different situations) competing as can happen in academe)
Foraging for information Make the team’s goals your goals
Read e-mails Communicate across cultures— work
 with team members from cultures that do
Writing not fight for their opinions
Write technical summaries Adopt to a new team
Prepare bug reports Determine when it is important to update
Create design specifications your manager on your project’s status
Create implementation specifications Manage conflict
Write/abstract a white paper Assess yourself
Write e-mail Ask questions
Write status reports Prepare meeting agendas/minutes
Whiteboard
Prepare meeting agendas/minutes

Speaking
Make a technical argument
Walk through code or design
Make PowerPoint presentations
Make an elevator speech
Determine when to make a phone call
 (rather than send e-mail, memo, etc.)
Ask questions
Communicate status of projects and tasks
Whiteboard

Challenges Encountered

During the process of developing the outcomes and

course materials for this project, we have
encountered a number of challenges that pose
potential risks for institutions that intend to adopt
our work. In this section we identify those risks,
while in the next section we provide a number of
strategies that serve to mitigate the risks. The
challenges we have encountered in implementing a
more communication-intensive curriculum can be
grouped into four non-exclusive categories:

a) Curricular issues,
b) Instructional issues,
c) Logistical issues, and
d) Motivational issues.

Curricular issues are primarily concerned with

identifying how to best incorporate communication

skills into a larger degree program. The biggest issue
is the add/subtract problem—is it possible to include
communication without having it be at the expense
of technical instruction? Although research
demonstrates that incorporating well-designed
writing assignments and instruction writing into a
course increases mastery of technical material,[17,
18, 19, 20] the fact remains that many courses,
particularly in the initial programming sequence, are
already quite crowded. This means that it is critical
that the communication-based assignments be
integrated into the instruction in a way that does not
remove the focus from technical skills. Removing
technical writing and English courses from a
curriculum to provide room for domain-specific
communication courses or materials in a technical
curriculum is a possibility, but not a wise action
because communication instruction by writing
specialists and by technical faculty complement each
other in ways that round out students’

38 COMPUTERS IN EDUCATION JOURNAL

communication expertise. Another challenge is
determining which communication skills should be
addressed in which courses. For example, many
faculty are concerned that working in teams during
lower level courses may mean that weaker students
may be able to get through without demonstrating
that they have mastered the knowledge and skills
they need to succeed in subsequent courses. The
level, amount, and emphasis on communication
skills need to be appropriate for the goals of each
course.

Instructional issues are primarily concerned with

the degree to which technical faculty are trained in
teaching and assessment of communication skills.
Specifically, instructional issues arise because
technical faculty may not be formally trained in how
to teach or assess communication. Over the past
several decades, the writing-across-the-curriculum
and communication-across-the-curriculum-
movements have developed many strategies that
faculty who have not had training in communication
pedagogy can use to incorporate writing and
speaking into any college course.[15, 24, 25] These
practices have been adopted by some engineering
faculty and programs.[26, 27, 28, 29] Often the
result is that a few faculty in an engineering program
include and even emphasize writing, but the majority
do not. In contrast, by emphasizing the infusion of
writing in six courses spread over all four years of
students’ undergraduate studies, our project would
engage a much larger portion of a program’s faculty,
perhaps even all of them, in leading courses where
attention to communication is a significant feature.
Further, in contrast to the usual approach of WAC
and CAC initiatives, which usually involve
assigning writing activities and projects, our project
includes instruction by the professor. For many
engineering faculty, it may not be clear how much
instruction needs to be given, when it is best
provided, and what they would say if they were to
teach communication skills to their students. In
addition, faculty may not have a clear picture of
which communication skills their students possess
upon entry into a course and which they will need to
teach. For example, many CS/SE students are
required to take a technical communication course in
order to complete their degree, but this course is
usually not a prerequisite for any of their technical
courses, so they often approach writing a technical
report in the same way that they would approach
writing an essay. Instructors need to know how to
communicate their expectations to the students.
Assessment (including grading) of communication is

also new to many instructors. They need assistance
in learning what to comment on, how to comment
productively, and how to assign grades to this kind
of student work. Also, they fear that grading will
take a great deal of time, so they need advice about
how to do it efficiently.

Logistical issues are concerned with the degree to

which communication skills can be operationally
achieved given constraints within a department or
institution. In particular, there is not a one-size-fits-
all approach to incorporating communication skills
into technical courses. Different types of institutions
and programs will have different challenges related
to size, resources, and infrastructure. An institution
that teaches small courses where the instructors are
responsible for grading will be able to offer different
types of assignments than one that teaches large
courses where grading is handled by teaching
assistants (who often will not be native English
speakers or have not received appropriate
instructional training, adding another level of
challenge). The same course may be taught at
different levels at different institutions or a single
course could have students taking it at different
levels. For example, the Database course at Miami
University could have sophomores, juniors, and
seniors all in the same section.

Motivational issues are concerned with creating

instructional buy-in from both student and faculty
perspectives. From the perspective of the technical
faculty member, the technical content is seen as
paramount while the technical communication skills
are seen as important but secondary. Many students
choose CS/SE for their major because they enjoy the
technical aspects of the work. There is a common
perception that “soft skills” such as writing,
speaking, and teaming are not needed and less
critical and are acquired automatically (in a
mysterious and unspecified way). If the students and
faculty do not perceive something as being valuable
they are less likely to invest time and effort into
doing it well.

Strategies

In the first year, our project focused on developing

and piloting assignments in at least six different
courses and at eight different institutions. In this
section we describe some of the strategies that we
have developed to address the challenges identified
above. Specifically, we have identified four key
strategies:

COMPUTERS IN EDUCATION JOURNAL 39

a) Identify communication learning outcomes at

both the program and the course level;
b) Design rubrics for communication-based

assignments to both assist in communicating
expectations to students as well as support
instructor grading;

c) Provide instructional supports to instructors to
assist in teaching domain-specific
communication skills; and

d) Develop a framework for communication-
based assignment development that
emphasizes outcomes, rubrics, and a real-
world context for each assignment (to provide
motivation for the student and instructor).

Communication Skills Outcomes

Many faculty in engineering and computer science
are familiar with program and course outcomes
through ABET. For faculty in programs that have
not sought ABET accreditation, the concept of
student learning outcomes (SLOs) may need to be
introduced and explained. In any program, whether
or not affiliated with ABET, communication
outcomes are only one of many kinds of student
learning outcomes, leaving them only a small place
in the program’s graduation-level outcomes. They
may only appear in the list of outcomes for one or
two courses. We recommend giving prominence to
communication outcomes by making them more
explicit among both program and course outcomes.
This strategy serves to address both the curricular
and motivational issues identified earlier. When
included in the graduation-level outcomes, they
answer such questions as “Why should we do this?”
by indicating the prominence of communication
skills among the qualifications graduates will bring
to their careers. Included among the outcomes for
specific courses, they answer questions like “Where
should we do this?”

In the example program-level outcomes shown in

Table 2, communication outcomes are integrated
with technical outcomes. The message is that all
faculty are responsible for enabling students to
achieve them all in whatever courses they may
teach. Faculty can use these outcomes to identify
those they will incorporate in their courses so that
students have a broad experience of using the major
forms of communication in the field in a variety of
courses.

Although our project focuses on six courses, every

course in a program could have its own set of
student learning outcomes (SLOs) that contribute
towards the eventual achievement of the program-
level outcomes. These outcomes describe what
students should be able to do upon completing the
course. They can be created in two ways: by writing
new (additional) outcomes that describe the
communication skills incorporated into the course or
by modifying existing outcomes to incorporate or
highlight communication. The advantage of the
latter is that it makes it clear that communication is
integrated into the instruction and evaluation of
technical skills rather than something separate. In the
CS2 course at Miami University, both strategies
were employed. In considering the communication
within a course, one needs to remember that
communication in that context means being able to
speak, read, write and in general communicate in the
language of the field. In the case of software
engineering, the communication would use SE
ontologies, dictionaries, specific SE languages, and
so on. In the following examples, the words in
boldface highlight the text that was added to three
technical outcomes in order to incorporate
communication outcomes:

• Write basic UML1 class diagrams based on a

problem statement
• Break a programming problem down into an

appropriate set of classes, identify appropriate
methods for each class, and explain the
design choices made.

• Design and document a complete set of test
cases and use this to identify logic errors.

The first outcome incorporates “reading” and
“writing” as a communication skill: Students need to
be able to demonstrate that they can read and
understand the problem statement as an input to their
design. They also need to be able to write that down
in a domain-specific way. The second outcome
indicates that students need to “read” a programming
problem specification and explain their solution
(design) and its semantics to someone. In this case, it
is left open whether they will explain orally
(speaking) or in writing. The third outcome requires
that they document their test cases, which requires
writing in an SE-specific sub-genre called test cases.

1 UML (Unified Modeling Language) is a collection of notations
used by software engineers to specify requirements, design, and
development artifacts.

40 COMPUTERS IN EDUCATION JOURNAL

Table 2. Program-Level Learning Outcomes
Developed by CS/SE Faculty at North Carolina

State University.

Program-Level Learning Outcomes

To demonstrate that graduates can reason effectively
about computing and develop software, they should be
able to:

1. Identify and define abstract computing models that
could provide a basis for solving a given problem
and analyze them for their potential and limitations
for a solution.

2. Prove mathematically the characteristics and

limitations of an abstract model of computation
with respect to the ability to solve specific abstract
problems and/or to do so efficiently; inherent in
this ability is the mastery of techniques such as (a)
decomposing and synthesizing instances, (b)
providing the equivalence of different models, (c)
searching for patterns in the various instances, (d)
proving that certain patterns fit the model and
others do not fit the model, and (e) determining the
extent to which a model can solve the problem and
solve it with acceptable use of resources as defined
mathematically.

3. Develop efficient algorithms and data structures for

solving a problem and identify other problems or
algorithms to which these apply.

4. Recognize and define a problem related to a

specific scenario that can be solved with a software
application. Describe how the end-users or internal
actors within a system intend to use the application
to be developed. Gather and analyze information
that allows for requirements that will solve the
problem to be created; validated; verified; and, if
necessary, revised.

5. Create and express a design for an underlying

abstract model of computation that accommodates
defined system requirements—including
considerations of privacy, security, and
efficiency—so that a developer can implement the
application. Review the design to ensure it can
accomplish the requirements and, where it does
not, redesign until it meets the requirements.

6. Implement software conforming to a specified

design so that it is usable, testable and modifiable
by others. Review the implementation to ensure it
meets the system requirements and conforms to
design and, where it does not, correct the
implementation until it meets the requirements and
design.

7. Plan and execute appropriate tests in order to

identify ways in which the software does not meet
the requirements and, where it does not, to
redesign, implement and retest until it meets the
requirements.

The following communication outcomes are derived
from the general program outcomes above. By achieving
these communication outcomes, students both learn to do
what is described in the general outcomes and
demonstrate that they have attained those outcomes.

To demonstrate that graduates have achieved the
general program learning outcomes, they should be
able to:

1. Present in writing or orally an abstract model that
could be used to solve a real-world application
problem so that the presentation could be
understood by stakeholders.

2. Write a mathematical proof related to an abstract

model of computation so that it can be understood
by an audience with sufficient mathematical
maturity (ability to understand proofs by induction,
contradiction, etc.)

3. Present in writing or orally the reasoning they have

applied in creating a mathematical proof related to
an abstract model of computation so that it can be
understood by someone acquainted with an
application of the model.

4. Present in writing or orally a description of how an

abstract model of computation can be productively
applied to solving a problem related to software
engineering in another area of computer science or
in another field

5. Present in writing or orally a critical assessment of

a problem situation defined by a need for software
to be developed for solving the problem: (a)
collect information from sponsors, end-users, and
on-site observations; (b) analyze that information;
(c) use the analysis to define the problem in terms
of the stakeholders’ needs and goals for addressing
those needs

6. Write requirements representing the stakeholders’

needs and goals in such a way that the
requirements can be applied in a design by others

7. Read requirements for various purposes, such as to

inspect and correct them, to validate them as
meeting the user’s needs, to revise them so that
they better meet user’s needs, to implement them in
a design, and to identify what students don’t know
and what they need to know to create code.

COMPUTERS IN EDUCATION JOURNAL 41

8. Write a design that accommodates the defined

system requirements—including considerations of
privacy, security, and efficiency—so that a
developer can implement the application.

9. Read a design for various purposes, such as to

ensure it can accomplish the requirements and,
where it does not, redesign until it meets the
requirements and to translate it into code.

10. Write a program to conform to a specified design

so that it is usable, testable, and modifiable by
others.

11. Write a narrative description of code, including a

list of file names or directories included.

12. Read code and comments for various purposes, to

find and correct errors in syntax and semantics, to
determine what a program is supposed to do, to
revise a program so that it accomplishes what it is
supposed to do, to modify a program for different
purposes, to ensure that a program conforms to
system requirements and conforms to design, to
provide productive feedback to those who created
it, to continue a program begun by someone else,
and to apply it to new uses.

13. Write a developer guide that is appropriate to the

audience.

14. Write a user guide that is appropriate to the

audience.

15. Present in writing or orally a test plan and results

of testing that identifies ways in which the software
does not meet the requirements.

16. Present in writing or orally progress reports that

describe advancements and difficulties in a
software development project.

17. Present in writing and orally a full technical report

describing a software development project.

18. Read technical literature in the field for various

purposes, such as to summarize, to analyze it, to
answer a technical question, and to solve a
technical problem.

19. Present in writing or orally a research report that

solves a technical problem based on an analysis of
literature in the field.

20. Work effectively in teams: (a) develop ground

rules to guide the team’s approach to work; (b)
define roles so that expectations of team members

are clear and followed; (c) create agendas and
minutes for team meetings; (d) interact with other
team members in ways that assure the productive
contributions of all team members; (e) create
specific action items for each member and then
hold him or her accountable; (f) identify, create,
and manage the tools that enable teams to work
effectively; (g) resolve conflicts among team
members.

For the CS2 course, faculty also developed new

communication-centric outcomes:

• Interpret a UML diagram and explain its

relationship to a problem statement.
• Read and understand code written by people

other than themselves.
• Use a problem statement to define a set of

software requirements.
• Explain how a final software implementation

deviated from their original design.
• Follow good programming style and

documentation conventions to write code that
is easily understandable and extensible.

• Explain issues encountered and progress made
during a software development project.

In these examples, not all categories of

communication skills were explicitly required. For
instance, none of the outcomes address teaming or
explicitly involve speaking. One of the advantages
of distributing communication skills across the
curriculum is that it is not required that every class
address every skill. For example, teaming might not
be desired in lower level programming classes where
students must program on their own to master
critical skills, and classes taught in large sections
will not be able to manage the logistics of students
presenting in class. In the former, it is still possible
to have students team in a lab setting and in the latter
students could still practice speaking in small
groups.

Each institution distributes skills across their

curriculum in different ways so it would not be
practical to produce definitive lists of SLOs for each
course involved in this project, but we will produce
examples from Miami University and from North
Carolina State University as well as instructions on
how existing outcomes can be tailored to add
communication skills.

42 COMPUTERS IN EDUCATION JOURNAL

Rubrics to communicate expectations and guide
assessment

Rubrics serve a number of different roles.[30, 31]

For the faculty member, they provide guidance about
the communication principles to discuss with
students, and they offer the criteria by which student
work will be evaluated. The details of a rubric
provide a grader (either the faculty or teaching
assistant) with specific characteristics by which to
differentiate between excellent and novice student
work. For the student, a rubric acts as a statement of
expectations for a work product. In addition, a
rubric can be used as a specification of the relation
between outcomes and student achievement of those
outcomes. For instance, in the rubric provided in
Table 3, different traits can be directly related to this
outcome: “The student can give an effective oral
presentation of requirements.”

Table 3. Rubrics for a Requirements

Presentation Assignment.
Grading:

1. Presentation dry run (2 pts): 2 pts if a

complete dry run is given to the instructors
prior to the dinner, 1 pt if a dry run is given
where the presentation was thrown together
hastily, 0 if no dry run is performed.

2. Presentation introduction (3 pts): 2 pts if a
slide or two is given introducing the project
and why it is valuable to the clients. This
serves as the motivation for the rest of the
talk. 1 pt if the introduction is not clear, 0
otherwise.

3. Requirements description (7 pts): 7 pts if
requirements (functional and nonfunctional)
are clearly described in nontechnical
language and are organized logically, 4 pts if
requirements are not clear or lacking in
detail, 2 pts if requirements are incomplete, 0
otherwise.

4. Task descriptions (7 pts): 7 pts if all the
major tasks (or task categories) are described
clearly in nontechnical language, 4 pts if
some parts of the system appear to be
missing, 2 if descriptions are vague, 0
otherwise.

5. Storyboards (7 pts): 7 pts if storyboards are
legible and provide enough detail for the
client to visualize how someone would
interact with the system, 4 pts if some
storyboards are confusing or if one or two are

missing, 2 pts if storyboards are incomplete,0
otherwise.

6. Presentation flow (2 pts): 2 pts if the flow of
the presentation is easy to understand with
clear transitions, 1 pt if there is a spot where
a listener can get lost, 0 if it is difficult to
follow the presentation.

7. Team Presenting (2 pts): 2 pts if team
members introduce each other and all team
members speak, 1 pt if not all team members
speak or if some team members appear
unengaged while their teammates are
speaking, 0 if the presentation was not
developed as a team.

8. Professionalism (2 pts): 2 pts if the team
presents themselves professionally, 0
otherwise.

9. Audience aware (4 pts): 4 pts if any technical
terms are explained clearly for a nontechnical
audience, 2 pts if one or two spots are not
clear, 0 pts if the talk is not accessible to non
CS people.

10. Visuals (4 pts): 4 pts if all graphics and text
are clearly readable, 2 pts if there are any
“eye test” slides, 0 if the presentation is
difficult to read.

11. Speaking (4 pts): 4 pts if all speakers speak
clearly and enthusiastically, make eye contact
with the audience, and appear to have
rehearsed the talk, 3 pts if one person appears
disengaged, etc. Note that nervousness will
not be penalized nor will the use of notes as
long as the speaker still attempts eye contact.

12. Questions (4 pts): 4 pts if the team actively
solicits and accurately responds to questions
and feedback, 2 pts if questions are dodged or
dismissed out of hand, 0 pts if no attempt is
made to actively solicit questions.

13. Peer evaluation summary (5 pts): 5 pts for a
summary that lists responses to all the major
points made by the peer evaluations plus an
overall summary of how the presentation
could be improved, 4 pts if some points are
missing, 3 pts if the overall summary is
missing or if some peer evaluation comments
are not given a thoughtful response, 0
otherwise.

In addition, significant point reductions may

occur if any of the following are detected:

1. Use of any graphics, pictures, text without

appropriate citations (the source MUST be

COMPUTERS IN EDUCATION JOURNAL 43

given for any graphics used, etc.).
2. Lack of sensitivity towards the clients using

the project.
3. Inappropriate responses to audience

questions.

Instructor Supports

The August 2010 workshop contained four

sessions on teaching each of the four communication
skills—reading, writing, speaking, and teaming.
These were designed to help project participants get
started in teaching their students these skills. This
was a good start towards training one set of
instructors, but the goal of this project is to provide
assistance so that other instructors can incorporate
communication into their courses as institutions
adopt more communication skills into their
curricula. To facilitate this, we will be developing a
variety of instructional supports.

Instructor supports are required to assist with three

issues encountered in teaching and using
communication skills. One issue is that it is not
always clear how or when students need to be
trained in writing, speaking, teamwork, or reading.
Faculty members may not be comfortable teaching
these topics (which they may not have been taught
themselves). Another issue is that while some
instruction is necessary if the students are to be
successful, it needs to be done in a way that
minimizes the impact on the time given to technical
topics and avoids repeating the same (nontechnical)
instruction in multiple courses. The third issue is
assessment, which we hope to address through the
use of rubrics. While some rubrics are assignment
specific, there are some generic ones that can be
defined for common types of assignments that can
then be tailored as needed.

The instructor supports are being designed and

developed based on the experience of piloting the
first set of communication-based assignments. Some
supports have already been requested, suggested or
employed:

• Instructional materials, such as PowerPoint

slides, to teach each communication skill.
• Rubrics for assessing presentations.
• Rubrics for assessing peer review.
• Document templates (those already defined

include status reports, meeting
agendas/minutes, requirements specifications).

• Podcasts of training materials so instruction
will not involve class time.

• A quick reference guide on communication
skills that can be provided to students.

• Examples of good student work to accompany
assignments.

As additional assignments are piloted, instructors

are reporting back on where they require additional
assistance. The CAC experts on the project are
working with the instructors to design, evaluate, and
refine supports needed.

Framework for Assignment Development

The project had eighteen faculty from eight

different institutions developing assignments. A
framework was defined to guide assignment
development by requesting that faculty define the
following information along with each assignment:

• Which communication abilities the assignment

would develop (writing, speaking, reading,
teaming, and listening).

• Course learning outcomes addressed: both
technical and communication (separate
sections were given, however faculty were
encouraged to combine these when possible).

• An explanation that could be given to the
students on how the assignment benefits them.
This explanation should relate the assignment
to their future professional practice, a key
factor in providing them with motivation for
doing the assignment and taking it seriously.
When possible, assignments are mapped to the
specific communication skills that our industry
partners identified (as listed in Table 1).

• Technical tasks that the assignment would be
used with.

• The genre of the assignment. Genre, in this
context, refers to the type of communication.
For example, a Software Requirements
Specification would be a genre.

• The audience for the assignment. Audience is
critical in communication. A document or
presentation designed for a technical audience
would use terminology that would be
inappropriate for a nontechnical audience.

• The purpose of the assignment. For example, a
requirements specification is written to define
what the finished system is required to do,
while a status report is written to keep a

44 COMPUTERS IN EDUCATION JOURNAL

manager or customer apprised of the progress
being made on a development project.

• Specifications of the assignment–the length,
formality, and level of polish required from
the students.

• Evaluation criteria for assessing student work.
This section typically would refer to a rubric
written for the assignment.

• The process followed in administering the
assignment. Some assignments consist of
multiple steps and deliverables.

• Project milestones required for longer projects
that may include revisions and dry runs.

• Resources needed by the instructor to teach
the students the skills needed to administer the
assignment. These may also include resources
that directly support the students such as
document templates or examples of successful
prior student work.

This framework is still a work in progress and will

be modified based on feedback from assignments as
they are piloted. The framework for a specific
assignment also will be adapted each time an
assignment is piloted to adjust to problems as they
were encountered. Table 4 gives the framework for a
Requirements Presentation assignment developed for
Miami University’s capstone course.

Table 4: Framework Example for a Requirements

Presentation Assignment.

Title of
Assignment

Requirements Presentation

Course CSE448 – Senior Design Project I

Communication
abilities
developed by the
assignment

_x__Writing _x__Speaking
_x__Reading __x_Listening
_x__Teaming

Typical course
learning outcomes
addressed by this
assignment

1.1: The student can define the
problem, determine requirements
to solve the problem, and analyze
alternative approaches to solving
the problem.
2.2: The student can document
and present the results of the
design process by the following
means: Prepare and deliver
various written engineering
reports as requested by the

client; prepare and deliver
effective professional oral
presentations.
3.1: The student can successfully
function in a team environment.

Learning
outcomes for
assignment

 Technical The students will demonstrate
their ability to understand the
problem, define requirements
(including use cases), and develop
alternative approaches.

 Communication The students will demonstrate:
• The ability to design and create

an effective presentation aimed
at a nontechnical audience.

• The ability to deliver the
presentation as a member of a
team.

• The ability to attentively listen
to, and clearly answer,
questions from the audience.

Explanation to
students of the
assignment’s
benefit to them

The requirements specification is
used to document the results of
the collaboration with the client
to determine what the completed
system must be able to do. In
addition to the written document,
which not all stakeholders will
have the time to read, a
presentation can serve as a
mechanism to get feedback on
the requirements prior to
beginning the design process. The
client is often not a computer
programmer so it is critical that
the language used in the
presentation is that of their
domain, not that of the
implementation domain. This
presentation can also serve as a
way to “sell” the client on your
ideas.

Technical task(s)
with which it
might be used

System Requirements

COMPUTERS IN EDUCATION JOURNAL 45

Deliverable

 Genre Presentation for a nontechnical
audience.

 Audience Therapists, High School Students,
outside visitors.

 Purpose To communicate the software
requirements to the client and
obtain feedback on the initial plan
for what the system will do.

Specifications
(length, level of
polish, or
formality)

Thirty- minute formal
presentation. Approximately 20
slides.

Evaluation criteria
(attach rubric)

See Rubric (in Table 2 of this
paper).

Additional, when
appropriate

 Process 1. Dry run the presentation for
the instructors.

2. Present the slides at a formal
dinner for the instructors,
clients, and HS students
working on the project.

3. Conduct peer evaluations as
well as grading by the
instructor.

4. If questions do not come
automatically, call on audience.

5. Read and summarize the peer
evaluations.

 Milestones

 Other

Resources to
support
instructors using
this assignment

[Some of these resources will be
developed as the project
proceeds.]

 Writing related Slides giving guidelines for what
makes a good presentation;
specific instructions for this
presentation; peer review form
and instructions on each criterion
from the form.

 Speaking related See above but focus on speaking.

 Reading related

 Teaming related See above (project should be a
team project).

 Listening related Instruction to students on how to
answer questions.

Summary and Conclusions

The three-year project described here is tackling

the ambitious problem of developing a new
methodology to better prepare our students for the
kinds of communication they will need to be
proficient at in order to succeed in the workplace.
Our approach is to target six core courses that span
the CS and SE curricula as opportunities to integrate
reading, writing, speaking, and teaming into their
technical instruction. This allows the skills to be
taught in context and also serves to reinforce the
idea that communication is a necessary component
in professional success.

Prior to and during the implementation of this

project, currently at the half-way point, we have
identified numerous challenges to its adoption that
can be categorized as curricular (how to best
incorporate skills into a larger program and into
individual courses), instructional (how to teach and
assess communication), logistical (how to
incorporate communication into courses at different
levels of the curriculum and at institutions with
different class sizes), and motivational (how to
convince students and faculty of the importance of
communication). The project addresses these issues
in several ways. For curricular issues, we are
developing program and course-level student
learning outcomes as a guide for skill distribution
and integration and will provide a curriculum
spanning set for institutions of two different sizes.
For instructional issues, we will provide
instructional supports to faculty to assist with
instruction and sample rubrics to assist with
assessment. For logistical issues, we are working
with eight different institutions and will provide
sample assignments that have been piloted at these
institutions. For motivation, we have teamed with
industry professionals to provide their assessment of
what skills they need to see in new graduates and we
will be using this insight to design assignments that

46 COMPUTERS IN EDUCATION JOURNAL

can target these skills. We expect students and
faculty to be more receptive to assignments that are
grounded in actual professional practice.

The results of the project will be disseminated on-

line and will include all outcomes, assignments, and
instructional materials generated. By providing two
model curricula piloted at two very different
institutions, Miami University and North Carolina
State University as well as individual assignments
developed by our partners, we hope to support
adoption of this approach at other institutions so that
CS and SE students will graduate with the
communication skills necessary to succeed in their
professional careers. The strategies employed and
lessons learned will also be valuable to programs in
other engineering fields interested in increasing the
communication abilities of their graduates.

Acknowledgements

This work was funded in part by NSF CPATH-II

Awards CCF-0939122 and CCF-0939081, IBM
Corp., and NC State Engineering Foundation.
Any opinions, findings and conclusions or
recommendations expressed in this material are
those of the author(s) and do not necessarily reflect
the views of the National Science Foundation (NSF).
We would also like to acknowledge the invaluable
contributions of our project participants.

References

1. ABET Engineering Accreditation
Commission (www.abet.org). Criteria for
Accrediting Engineering Programs—
Effective for Evaluations During the 2011-
2012 Accreditation Cycle.

2. ABET Computing Accreditation

Commission (www.abet.org). Criteria for
Accrediting Computing Programs—Effective
for Evaluations During the 2011-2012
Accreditation Cycle.

3. United States Department of Labor. (2010-

2011). “Engineers.” Occupational Outlook
Handbook. http://www.bls.gov/oco/ocos027
.htm.

4. Pfeiffer, P. “What employers want from
students.” Association for Computing
Machinery,http://www.acm.org/membership
/student/emplymntart.html.

5. Leibowitz, J. 2004). “Teaching the

importance of communication in IT.” IT
Professional, 6(1), 38-42.

6. Karunasekera S., Bedse K. (2007).

“Preparing software engineering graduates
for an industry career.” Proceedings of the
Conference on Software Engineering
Education and Training.

7. Begel A., Simon, B. (2008). “Struggles of

new college graduates in their first software
development job.” Proceedings Of The 39th
ACM Technical Symposium On Computer
Science Education.

8. Dias, P., Pare, A. (2000). Transitions:

Writing in academic and workplace settings.
Cresskill, NJ: Hampton.

9. Dias, P., Ed. (1999). World’s apart: Acting

and writing in academic and workplace
settings. Mahwah, NJ: Earlbaum.

10. National Commission on Writing. (2004).

Writing: A ticket to work . . . or out of it.
Princeton, NJ.

11. Wolfe, J. (2009) "Why technical

communication textbooks fail engineering
students." Technical Communication
Quarterly. 18.4, 351-75.

12. Katz, S.M. “Part I-learning to write in

organizations: what newcomers learn about
writing on the job.” IEEE Transactions on
Professional Communication. 53(4), 107-
115.

13. Ruff, S., Carter, M. (2009).

“Communication learning outcomes from
software engineering professionals: A basis
for teaching communication in the
engineering curriculum.” IEEE Frontiers in
Education Conference.

http://www.bls.gov/oco/ocos027

COMPUTERS IN EDUCATION JOURNAL 47

14. Can’t include this reference in the
submission because of the double-blind
review process.

15. Carter, M., Ferzli, M., Wiebe, E. N. (2007).

“Writing to learn by learning to write in the
disciplines.” Journal of Business and
Technical Communication 21(3), 278-302.

16. Russell, D. R. (2002). Writing in the

academic disciplines: A curricular history.
2nd Ed. Carbondale: Southern Illinois
University Press.

17. Paine, C., Gonyea, B., Anson, C., Anderson,

P. (2009).“The so-called ‘best practices’ for
writing: Do they make a difference for
engagement and learning?” Paper presented
at Annual Meeting of the American
Association of Colleges and Universities.

18. Bangert-Drowns, R. L., Hurley, M. M.

Wilkinson, B. (2004).”The effects of school-
based writing-to-learn interventions on
academic achievement: A Meta-Analysis.”
Review of Educational Research 74(1), 29-
58.

19. Carter, M. (2007). “Ways of knowing,

doing, and writing in the disciplines.” CCC
58(3), 385-418.

20. Ferzli, M., Carter, M., Wiebe, E,. (2005).

“LabWrite: Transforming lab reports from
busywork to meaningful learning
opportunities.” Journal of College Science
Teaching 35, 31-33.

21. Sageev, P. Bernard, K., Prieto, F.,

Romanowski, C. (2005).“Safe passage
through the engineering curriculum: guiding
subject experts toward integration of
communication instruction and outcomes
assessment.” Proceedings of the
International Professional Communication
Conference, 139-146.

22. Adamczyk, B., Blauch, A. (2005). “Work in

progress—Unified technical writing
guidelines for engineering courses.”
ASEE/IEEE Frontiers in Education
Conference, F3E-10-F3E-10.

23. Writing-Enriched Curriculum Program,
University of Minnesota. http://www.wec.
umn.edu/

24. Bean, J. C. (2001). Engaging ideas: The

professor’s guide to integrating writing,
critical thinking, and active learning in the
classroom. San Francisco: Jossey Boss.

25. Dannels, D.P. (2002).” Communication

across the curriculum and in the disciplines:
Speaking in engineering.” Communication
Education, 51(3), 254-268.

26. Cunningham, S.J. (1994).“Learning to write

and writing to learn: integrating
communication skills into the computing
curriculum.” Proceedings of the IEEE
Software Education Conference, 306-312

27. Larkin-Hein, T., Budny, D. (2001).

“Learning the “write” way in science and
engineering.” Proceedings of the Frontiers
in Education Conference, T1B.7-T1B.13.

28. Wang, A. I., Sorenson, C.-F. (2006).

“Writing as a tool for learning software
engineering.” Proceedings of the
Conference of Software Engineering
Education and Training, 35-42.

29. Hendricks, R.W., Pappas, E. (1995).

“Writing- and communications-across-the-
curriculum in the Materials Science and
Engineering Department at Virginia Tech.”
Proceedings of the Frontiers in Education
Conference, 2, 4a4.10-4a4.14.

30. Stevens, D.D., Levi, A. (2005). Introduction

to rubrics: An assessment tool to save
grading time, convey effective feedback, and
promote student learning. Sterling, VA:
Stylus.

31. Rice, R., Boysen, A., Stetler, L. (2004).

“Assessing oral presentation and writing
skills. Proceedings of the International
Professional Communication Conference,
147-150.

http://www.wec/

48 COMPUTERS IN EDUCATION JOURNAL

Biographical Information

Janet Burge is an Associate Professor in the Miami
University Computer Science and Software
Engineering Department. She received her Ph.D. in
Computer Science from Worcester Polytechnic
Institute (2005) and performed her undergraduate
work at Michigan Technological University (1984).
Her research interests include design rationale,
software engineering, AI in design, and knowledge
elicitation. She is a co-author (with Jack Carroll, Ray
McCall, and Ivan Mistrik) of the book ”Rationale-
Based Software Engineering”. Dr. Burge is a
recipient of a NSF CAREER Award for her project
”Rationale Capture for High-Assurance Systems”.
She has been at Miami University since 2005. Prior
to that point, she worked for more than 20 years in
industry as a software engineer and research
scientist.

Paul Anderson is the Roger and Joyce L. Howe

Director of the Howe Center for Writing Excellence
at Miami University, Oxford, Ohio. His publications
on technical communication have won awards from
the National Council of Teachers of English and the
Society for Technical Communication. His textbook,
Technical Communication: A Reader-Centered
Approach, is in its seventh edition. His current
research focuses on the ways college faculty in all
disciplines can help their students develop high-level
writing abilities in college. Anderson is a Fellow of
the Society for Technical Communication,
Association of Teachers of Technical Writing, and
Miami University’s Institute of Environmental
Sciences.

Michael Carter is Professor of English and

Associate Dean of the Graduate School at NC State
University. His research interests are in writing and
rhetoric with a particular interest in the connection
between writing and learning in the disciplines. He
is the author of Where Writing Begins and many
articles in a variety of journals. He has been PI or
co-PI on NSF grants, including one that created
LabWrite, an online instructional guide to writing
better lab reports. He is currently working on
projects related to teaching science in elementary
schools.

Gerald C. Gannod is a Professor in the Department
of Computer Science and Software Engineering and
Director of the Mobile Learning Center at Miami
University in Oxford, Ohio. He received the
MS(’94) and PhD(’98) degrees in Computer Science
from Michigan State University. His research
interests include service-oriented computing,
software product lines, mobile learning, software
reverse engineering, formal methods for software
development, software architecture, and software for
embedded systems. He is a recipient of a 2002 NSF
CAREER Award.

Mladen A. Vouk received the Ph.D. from the

King’s College, University of London, U.K. He is
Department Head and Professor of Computer
Science, and Associate Vice Provost for Information
Technology at N.C. State University, Raleigh, N.C.,
U.S.A. Dr. Vouk has extensive experience in both
commercial software production and academic
computing. He is the author/co-author of over 250
publications. His research and development interests
include software engineering, scientific computing,
information technology (IT) assisted education, and
high-performance computing and networks. Dr.
Vouk has extensive professional visibility through
organization of professional meetings, membership
on professional journal editorial boards, and
professional consulting. Dr. Vouk is a member of
the IFIP Working Group 2.5 on Numerical Software,
and a recipient of the IFIP Silver Core award. He is
an IEEE Fellow, and a member of several IEEE
societies, ASQ , ACM, ASEE, and Sigma Xi.

	Introduction
	Project Description
	Required Communication Skills
	Challenges Encountered
	Strategies
	Communication Skills Outcomes
	Rubrics to communicate expectations and guide assessment
	Instructor Supports
	Framework for Assignment Development

	Summary and Conclusions
	Acknowledgements

