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Abstract 

 
Engineering and science students should be 

exposed to techniques of computer modeling of 
materials. Monte Carlo methods provide an 
opportunity for students to develop computer 
skills while also deepening their knowledge of 
the behavior of materials.  The graphics 
capabilities of the Maple software package 
allow one to easily visualize the change in 
ordering which takes place at higher densities. 
This kind of project is ideal for students who are 
interested in modeling. 

 
Introduction 

 
In a previous publication in this journal 

Harnett and Bishop [1] presented a Monte Carlo 
simulation of a one dimensional hard particle 
system. In this article their methods are 
extended to two dimensions. We also 
demonstrate how the graphics capabilities of the 
Maple software package can be combined with 
a C++ simulation program to investigate the 
onset of ordering in hard disk systems.  

 
An important property of multi-particle 

systems in any dimension is the pair correlation 
function [2], G(R) which measures the relative 
number of particles at a distance |R| from the 
center of a reference particle. The change in the 
shape of the pair correlation function mirrors the 
underlying particle arrangements. It is well-
known [3] that in the gaseous state there is little 
order and that particles are distributed at random 
whereas in the solid state the particles pack into 
long-ranged ordered crystals. The appearance of 
multiple, well defined peaks in the pair 
correlation function at higher densities, indicates 
the onset of localization behavior. 

Method 
 
A periodic two dimensional hard particle 

system has been studied with a Monte Carlo 
computer simulation [4-7] method.  In this kind 
of simulation a random walk, which 
asymptotically converges to the exact result 
after a large number of steps, is performed. The 
particles are started at fixed positions in a lattice 
and then moved by the standard Metropolis 
Monte Carlo method [4] until an equilibrated 
state is achieved. The details of this type of 
computation for any dimension are given in 
Bishop, Whitlock and Klein [8] but the key 
ideas for two dimensional systems can be 
summarized as follows. The number of 
particles, N = 100, and the number density, ρ, of 
interest are input parameters. The particles are 
started on a triangular lattice which determines 
the length, Lx, and the width, Ly, of the 
rectangular simulation box: 

 
                      Lx = [2 N / (31/2 ρ) ] 1/2     (1a) 
 
                      Ly = 31/2 Lx / 2                  (1b) 

 
Figure 1 illustrates the triangular starting 

lattice when ρ = 0.40. 
 
The calculation proceeds by attempting to 

move, in turn, each of the particles in the 
simulation box. A pass is defined as a sequence 
of steps in which an attempted move is made for 
each of the N particles. To move a particle from 
its original location, (Xoriginal, Yoriginal), two 
uniform random numbers, RN1 and RN2, 
between 0 and 1 are generated and used to select 
a new trial position, 

 

42  COMPUTERS IN EDUCATION JOURNAL 



 
Figure 1:  The starting triangle  

lattice for ρ = 0.40. 
                                      
 

  Xtrial = Xoriginal + (2 * RN1-1) * MAXDX    (2a) 
    
Ytrial = Yoriginal + (2 * RN2-1) * MAXDY    ( b) 

 
Here, MAXDX and MAXDY are the 

maximum magnitude of an allowed 
displacement in the X and Y directions, 
respectively, measured from the particle’s center 
of mass. It is the largest possible move. In the 
current simulations MAXDX and MAXDY 
have been set to 0.1 in reduced units for which a 
particle has a diameter of 1.0. A move is 
rejected whenever a particle overlaps another 
particle; e.g. the separation between their 
centers becomes less than 1.0. If the new 
position is not accepted, the test particle remains 
at its current location. The acceptance ratio, the 
number of accepted moves divided by the 
number of total moves, is monitored. The 
acceptance ratio was 0.89 when ρ = 0.4 and 0.54 
when ρ = 0.8. Standard periodic boundary 
conditions [9] are employed. This means that if 
a particle is moved such that if X and/or Y 
becomes either less than 0 or larger than Lx or 
Ly, respectively, an identical particle is placed 
in the box at position modulo Lx and/or Ly. 

This procedure maintains the number of 
particles in the box and makes the simulation 
more representative of bulk matter. 
 

Since the successive positions of the particles 
are not independent, it takes many passes to 
converge from the initial state to an equilibrated 
state. Only the equilibrated passes are employed 
in the final calculations. Hence, some number of 
passes must be discarded; we have discarded 
10,000 passes and continued the runs for an 
additional equilibrated 20,000 passes. Even after 
the equilibrated regime is attained there is still 
serial correlation between each pass in the MC 
process. We have addressed this problem by 
computing G(R) only at fixed intervals of 50 
passes.  Hence, G(R) is averaged over 400 
samples in our simulations. 

 
The pair correlation function is calculated by 

computing a histogram of the average number 
of particle separations as a function of 
separation distance (see Allen and Tildesley 
[9]). This histogram is normalized by dividing 
by the differential "volume" occupied by the 
particles, π ((R +ΔR)2  –  R2), and the actual 
number density of particles, ρ. 

 
Sample Monte Carlo codes are available from 

many sources; see for example, Gould and 
Tobochnik [7], and Allen and Tildesley [9]. We 
have developed the simulation using the Dev 
C++ compiler on a PC. 
 

Results 
 
Figure 2 presents a snapshot of the system at ρ 

= 0.4 and its corresponding pair correlation 
function.  We have employed Maples’ plottools 
package to draw disks centered on the system 
particles. Also we have used the plot facility of 
Maple to obtain the G(R) plots presented. Figure 
3 presents the same information at a density of 
0.8.
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Figure 2: A typical configuration of a 100 particle system and its pair correlation when the density is 0.4.
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Figure 3: A typical configuration of a 100 particle system and its pair correlation when the density is 0.8. 

 
One can easily notice the larger free space at 

the lower density. This fact is mirrored in the 
behavior of G(R) which develops a sharper first 
peak and a well developed secondary peak as 
the density increases from 0.4 to 0.8. The 
secondary peak indicates strong correlations 
between second-nearest neighbors. G(R) is zero 
when R ≤ 1.0 since particles cannot penetrate 

each other. When G(R) attains a value of 1.0 the 
fluid is uniform in its structure. 

 
Conclusion 

 
We have investigated two dimensional 

periodic hard disk systems by Monte Carlo 
simulations and have indicated how the pair 
correlation function reveals the underlying 
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molecular structure of materials. Graphic tools 
such as those employed here provide a clear 
demonstration of some aspects of the behavior 
of materials and thus strongly enhance student 
understanding and intuition.  
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