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Introduction 

 
Fluid flow analysis in a piping system is 

governed by the principle of conservation of 
energy. Every fluid particle has energy from 
three sources, namely energy due to pressure, 
potential energy and kinetic energy. Pumps add 
energy to the system, and friction takes energy 
out of the system. Additionally, some piping 
systems are designed to provide fluid for doing 
work. Once fluid does work, its energy is 
reduced. 

 
Friction losses are a function of fluid velocity. 

Consequently, if the velocity of fluid at every 
point in the system is known, the energy balance 
equations can be used to obtain the piping 
system equations and the number of 
independent equations and unknowns will be 
equal and the equations can be solved by 
standard algebraic techniques. 

 
However, since friction losses are a function 

of velocity, and velocity is a function of fluid 
flow rates and pipe sizes, if either the flow rates 
or the pipe sizes are unknown, there will be 
more unknowns than number of available 
independent equations. In such situations the 
equations cannot be solved by standard 
algebraic techniques, and iterative techniques 
must be used that are time consuming if done by 
classical techniques (hand calculation). Efficient 
iterative solution of these problems require use 
of computers. 

 
The theme of this article is to use EXCEL to 

automate routine labor intensive calculations, 
and then using the EXCEL files to produce 
sufficient data points to be able to use the 
graphical capabilities of EXCEL to solve piping 
scenarios that require iterative techniques. 

 

The article contains 3 examples. In Example 
1, flow velocities are defined and the problem 
can be solved by the use of a standard algebraic 
procedure, namely the “N equations and N 
unknowns” technique. In Examples 2 & 3, flow 
velocities are not known and standard algebraic 
solutions are not applicable and EXCEL 
graphical techniques are used to solve the 
problems without resorting to iterative 
techniques. 

 
The examples in this article are limited to 

serial piping systems. However, the techniques 
can also be used on parallel piping systems with 
minor modifications.  

 
It must be emphasized that pumps can cavitate 

as flow rates decrease and the calculations in 
this article do not address this condition. This 
article emphasizes the mathematics of solving 
fluid flow equations without taking into account 
pump cavitation considerations. 
 

Nomenclature 
 

P: Pressure (pound force per square ft). 
Ƴ: Weight density (pound force per cubic ft). 
V: Velocity (ft / sec). 
g: Specific gravity constant ( 32.2 ft / sec2). 
Z: Elevation (ft). 
hA: Added head by pumping action (ft). 
hR: Removed head due to work performed by  
       fluid system (ft). 
hL: Head lost due to friction (ft). 
K: Coefficient for determination of head loss  
      due to friction (dimensionless). 
L: Length of straight pipe (ft). 
D: Pipe inside diameter (ft). 
f:   Friction factor for straight pipes   
     (dimensionless). 
NR: Reynolds number (dimensionless). 
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ν: Fluid kinematic viscosity (ft2/ sec).  
Ɛ: Pipe material roughness (ft). 
Q: Rate of fluid flow (ft3/sec). 
A: Cross sectional area of fluid flow (ft2). 
x, y & N: Component data for a second degree 
polynomial fit. 
 

Theoretical  Background 
 

Flow of fluids in a piping system is governed 
by the principle of conservation of energy. 
There are three types of energy associated with 
a fluid particle at any location in a piping 
system. They are: 

 
• Energy due to internal fluid pressure. 
• Energy due to fluid velocity. 
• Energy due to fluid elevation.    
 
Additionally energy can be added to a fluid 

system by using a pump, and energy is removed 
from the system when work is done by the 
system. Furthermore, energy is always lost due 
to frictional losses. The conservation of energy 
principle in a piping system can be 
mathematically represented by equation (1).[1] 

 
 

PA/Ƴ + (VA
2/ 2g) + ZA + hA – hR – hL 

        = PB/Ƴ + (VB
2/ 2g) + ZB                        (1) 

 
Subscripts A and B for P, V and Z represent 

points of interest in a fluid system. 
 
Figure 1 is an illustration of a fluid system 

where equation (1) can be applied for system 
analysis. 

 
Friction losses in a system can be determined 

by a general relationship shown in equation 
(2).[1] 

 

                   hL= K (V2 / 2g)                            (2) 
 

Coefficient K in equation (2) for a straight 
pipe can be determined by equation (3).[1] 

 

                    K = fL / D                                   (3) 
 
Flow in a pipe is either classified as laminar or 

turbulent. The classification is determined by 
calculating a quantity referred to as Reynolds 
number for the flow of fluid in a pipe. If the 
Reynolds  number is  less than  2000 the  flow is 

 

 
 

Figure 1: Representation of a fluid system clarifying equation (1)[1]. 
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laminar. Between Reynolds numbers of 2000 
and 4000, it is not possible to determine the 
flow classification. For Reynolds numbers 
greater than 4000, the flow is turbulent. 
Reynolds number for flow in a pipe can be 
determined from equation (4).[1] 

 

                  NR= VD/ ν                                     (4) 
 

By having the relative roughness of a pipe 
(D/Ɛ) and the Reynolds number of fluid flow in 
a pipe, the friction factor can be read from 
Moody’s diagram. However, use of Moody’s 
diagram is not suitable for computerized 
analysis of piping systems. In place of Moody’s 
diagram formulas (5) and (6) can be used. 
Formula (5)1 is for laminar flow conditions and 
formula (6)2 is for turbulent flow conditions. 
Generally fluid flow is considered to be laminar 
below a Reynolds number of 2000 and turbulent 
above a Reynolds number of 4000, and flow 
condition is unknown between Reynolds 
numbers of 2000 and 4000. Since the theme of 
this article is computerized analysis, an 
unknown region will lead to programming 
errors. Consequently, an approximate 
compromise has been chosen by considering 
flow to be laminar below a Reynolds number of 
3000, and turbulent above it. 

 
             f= 64 / NR                                                    (5) 
 

f= 0.25 / {[log (1 / 3.7 (D/Ɛ)) + (5.74/ NR
0.9)]2}                 

                                                                        (6) 
 

Fluid flow rate and velocity of flow and cross 
sectional area of a pipe are related as shown in 
equation (7). 
 
                  Q= VA                                      (7)[1]  

 

The apparent power output by a pump 
(ignoring pump efficiency) can be calculated by 
equation (8). The unit of power calculated by 
equation (8) is in “ft-lb/sec”. Dividing “ft-
lb/sec” by 550 results in the power being 
presented in units of Horse Power (HP). 

 
 

                Power = hAƳQ                             (8)[1] 

 

Exact solutions are not possible for many 
classes of serial piping systems because there 
are more unknowns than independent equations. 
This situation can be addressed by repeating the 
calculations at frequent assumed conditions by 
using EXCEL. The results of EXCEL runs can 
be plotted and polynomial curves can be fitted 
(interpolated) through the points for selected 
intervals. Excel can be used for calculating the 
polynomial equations. 
 

Examples 
 

There are 3 examples in this article. The 
examples demonstrate that all fluid systems can 
be solved by the use of techniques described in 
section III. The examples will also show that 
without using a computerized technique such as 
using EXCEL, the solutions will be time 
consuming to the point of becoming impossible 
for moderately complex scenarios. 
 

In all the examples, K values for entrance into 
tanks and exit from tanks, elbows, valves and 
sudden enlargement and/or contractions have 
been obtained from reference [1]. These values 
are a function of their size and geometry and are 
not related to fluid flow rate in the system and 
their values are summarized in various 
hydraulics handbooks. 
 
Example 1: 
 

For the system shown in Figure 2, calculate 
the vertical distance between the surfaces of the 
two reservoirs when fluid flows from A to B at a 
rate of 0.03 ft3/sec (13.47 gallons per minute). 
The inside diameter of the 3 inch pipe is 
assumed to be 3 inch and the inside diameter of 
the 6 inch pipe is assumed to be 6 inch. The 
total length of 3 inch pipe is 330 ft and the total 
length of the 6 inch pipe is 990 ft. Fluid 
kinematic viscosity is assumed to be 14X10-6 
ft2/sec. 
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Figure 2: schematic diagram of examples 1, 2 & 3 (not to scale)[1]. 

 
Solution: 
 

The energy balance relationship shown in 
formula (1) can be used to determine the 
required height difference between fluid 
surfaces. Since the velocities at points A and B 
are approximately zero, the velocity terms drop 
out. Since the pressures in both tanks are 
atmospheric, the pressure terms drop out. 
Consequently, the required height turns out to 
be the total lost head which is the sum of the 
head losses in the 3 inch and the 6 inch sections 
of the piping system.  

 
Head loss in the straight portion of pipe is a 

function of pipe roughness, pipe diameter and 
Reynolds number. Reynolds number is a 
function of fluid properties, flow velocity and 
pipe diameter.  

 
Head losses for entrance from a tank, exit 

from a tank, elbows, valve and sudden 
enlargement are constants and not dependent on 
flow rate. Values of these k coefficients are 
obtained from reference [1] and they are: 
 

K for exit from a tank = 0.5 
K for entrance into a tank = 1.0 
K for 3 inch elbow = 0.54 
K for 6 inch elbow = 0.45 
K for ½ gate valve attached to a 3 inch pipe = 
2.88 
K for sudden enlargement from a 3 inch pipe 
into a 6 inch pipe = 0.5625 
 

Value of pipe roughness for coated ductile 
iron pipe (Ɛ) is also taken from reference [1] and 
it is 0.0004 ft. 

 
By determining the K values for various 

components in the piping system and using 
equation (2) for head loss calculation for each 
component and adding the head loss 
components, the total frictional head loss can be 
determined.   

 
The following calculations have been obtained 

from an EXCEL file that is specifically setup for 
expediting the calculations for the piping system 
shown in Figure 2. The constants and formulas 
discussed earlier are used in the EXCEL file. 
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Beginning of EXCEL calculations 
(Note: Details of the calculations performed by EXCEL are shown in appendix A). 

 
Inside diameter of 3 inch pipe (inch)= 3 

Inside diameter of 6 inch pipe (inch)= 6 

Length of 3 inch pipe (ft)= 330 

Length of  6 inch pipe (ft)= 990 

K for exit from tank A= 0.5 

k for 3 inch elbow =  0.54 

k for 6 inch elbow = 0.45 

K for sudden enlargement from 3 inch pipe to 6 inch pipe = 0.5625 

K for entrance into tank B= 1 

Cross sectional area for 3 inch pipe (square feet)= 0.0490625 

Cross sectional area for 6 inch pipe (square feet)= 0.19625 

Fluid flow rate (cubic feet per second) = 0.03 

Velocity of fluid flow in 3 inch pipe (ft/sec)= 0.611464968 

Velocity of fluid flow in 6 inch pipe  (ft/sec)= 0.152866242 

Ɛ for coated ductile iron pipe (ft)= 0.0004 

Fluid viscosity (square feet/ sec) = 0.000014 

Reynolds number for 3 inch pipe =  10919.01729 

Reynolds number for 6 inch pipe =  5459.508644 
f for 3 inch pipe= 0.032977148 

f for 6 inch pipe= 0.037900659 

K value for straight portion of 3 inch pipe= 43.52983543 

K value for straight portion of 6 inch pipe= 75.04330559 

K value for 1/2 open gate valve attached to a 3 inch pipe= 2.88 

Total k for 3 inch part of piping system excluding the pipe itself  consists of sum 
 of "K for exit from tank A" + "K for 1/2 open gate valve" +  
 "K for 2 '3 inch' elbows"   + "k value for sudden enlargement" 5.0225 

Total k for 6 inch part of piping system excluding the pipe itself  consists of sum 
 of "k for entrance into tank B" + "K for 2 '6 inch elbows' = 1.9 

total head loss for 3 inch pipe portion  (ft)= 0.281882048 

total head loss for 6 inch pipe portion (ft)= 0.027919533 

 
End of EXCEL calculations  

 
Required vertical distance (ft) = Total head 

loss for 3 inch section (ft) + Total head loss for 
6 inch section (ft) = 0.28188 + 0.027919 = 0.31 
ft 

 
Discussion of Example 1: 

 
The implementation of the formulas shown is 

time consuming without the use of EXCEL. 
However, for a scenario such as Example 1 

where the flow rate is defined this task is 
possible. However, the task becomes very time 
consuming for a problem similar to Example 1 
if the flow rate is to be calculated for a given 
height. The reason for the additional complexity 
resulting from the unknown flow rate is that the 
losses are a function of the velocity in the piping 
system, and the velocity is a function of flow 
rate. Consequently, there will be more 
unknowns than the number of available 
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equations and iterative procedures must be used 
to arrive at a solution. However, by using the 
EXCEL file created for Example 1, a table of 
heights versus flow rates can be quickly 
generated, and then a plot of height versus flow 
rate can be created. The combination of the 
table and plot will define the system 
performance. 

 
Example 2: 
 

Create a table of height difference and flow 
rate for the system of Example 1. Use the table 
to obtain an approximate formula relating fluid 
flow rate to fluid height difference (HD). 
 
Solution: 
 

The EXCEL file created for Example 1 can be 
used to perform the calculations quickly. Table 
1 is showing the flow rates corresponding to the 
height difference between fluid top surfaces for 
the piping system shown in Figure 2. The 
EXCEL file of Example 1 is used to create 
Table 1. Figure 3 is a plot of data in Table 1. 
Such tables and figures can be used to determine 
flow rates for conditions that do not have a 
closed form solution because there are more 
unknowns than independent equations. Use of 
such graphical techniques eliminate the need for 
iterative hand calculation or computerized 
iterative techniques. 
 

Equation (9) is a second degree polynomial 
relationship that has been calculated for the data 
of table 1 using EXCEL. 
 

Q = -5 (10)-6 (HD)2 + 0.0021 (HD) + 0.0249 
                                                (9) (HD in inches) 
 
 

Figure 4 shows the data of Table 1 and the 
results obtained from equation (9) on the same 
plot. Figure 4 shows that the equation 
determined by the second degree polynomial 

curve fitting technique closely resembles the 
piping system behavior. 
 

Table 1 
 

Flow rate versus surface height difference 
for the piping system of Figure 2. 

 
Height difference 

between points A & B 
(Inch) 

Flow rate (ft3/sec) 

0 0 
0.5 0.01 
1.8 0.02 
3.7 0.03 
6.3 0.04 
9.4 0.05 
13.2 0.06 
17.5 0.07 
22.4 0.08 
28.0 0.09 
34.1 0.10 
40.8 0.11 
48.0 0.12 
55.9 0.13 
64.3 0.14 
73.3 0.15 
82.9 0.16 
93.1 0.17 
103.8 0.18 
115.1 0.19 
127.0 0.20 
139.5 0.21 
152.5 0.22 
166.1 0.23 
180.3 0.24 
195.0 0.25 
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Figure 3: Plot of data of Table 1. 
 

 
 

Figure 4: plot of data of Table 1 and second degree polynomial fit for data of Table 1. “Series 1” is a 
plot of data of Table 1 and “series 2” is a second degree polynomial fit of data of Table 1. 
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Example 3:  
 

Change the system of Example 1 by replacing 
the sudden enlargement device by a 3 horse 
power pump that is used to pump the fluid from 
tank B into tank A. Assume the fluid surfaces 
are initially 0.3 ft apart in vertical direction. As 
pumping continues fluid height in tank B 
decreases resulting in less potential energy 
helping the pump, and fluid height in tank A 
increases resulting in more potential energy 
opposing the pump. Calculate the fluid flow rate 
as a function of height difference between fluid 
top levels in tanks A & B. 
 
Solution:  
 
Formula (8) can be used to start the solution. 
 
Power = hAƳQ    
 
3 X 550 = (hA)(62.4)(Q) 
 
hA = Friction head loss + Distance between fluid 
tops = hL + HD 
 
         1650 = (hL + HD)(62.4)(Q)                (10) 

 
Equation (10) is the only independent 

equation available. hL and Q are related. 
However, there is no general fixed formula for 
the relation because the relationship is unique 
for each piping system. Therefore, there are 
more unknowns than equations.  

 
Since the layout of the piping system of this 

example is similar to Example 1, the EXCEL 
file of Example 1 can be used to determine a 
number of data points relating hL and Q. Table 2 
summarizes such results. These results can then 
be used to establish a relationship (by 
interpolation) between hL and Q for the piping 
system. Such a relationship is shown in equation 
(11).  
 
       hL= 236.58 Q2 + 6.81Q -0.24                  (11) 
 
 
 

Table 2 
Summary of friction losses as a  

function of flow rate. 
 

Flow rate (ft3/sec) Friction head losses 
(ft) 

0.05 0.78 
0.10 2.83 
0.15 6.10 
0.20 10.56 
0.25 16.21 
0.30 23.06 
0.35 31.09 
0.40 40.31 
0.45 50.71 
0.50 62.30 
0.55 75.07 
0.60 89.02 
0.65 104.15 
0.70 120.47 
0.75 137.97 
0.80 156.65 
0.85 176.51 
0.90 197.54 
0.95 219.76 
1.00 243.16 
1.05 267.74 
1.10 293.51 
1.15 320.44 
1.20 348.56 

 
 

Figure 5 is a plot of data of Table 2 along with 
results obtained from equation (11). As it can be 
observed on Figure 5, the interpolation formula 
of equation (11) is an accurate representation of 
data for the chosen range of fluid flow. 

 
Equations (10) and (11) can then be combined 

to get equation (12).  
 
26.44 - 237Q3 -6.8 Q2 + 0.24Q = (HD) Q   (12)         
(HD is in feet and Q is in ft3/sec) 
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Figure 5: Plot of flow rate versus friction head loss for piping system of Table 2, and  the corresponding 
second degree polynomial fit for data of Table 2 (equation (11)).  Series 2 data are from equation (11) 
and series 1 data are from Table 2.  The data from series 1 and 2 are so close that they cannot  be 
distinguished on the plot. 

 
 

Equation (12) cannot be readily solved in the 
form of “Q= function (HD)”.  
 
Equation (12) can be rearranged as shown in 
equation (13). 

 
HD = (26.44 - 237Q3 -6.8Q2 + 0.24Q) / Q       (13)           
(HD is in feet and Q is in ft3/sec) 
 

Table 3 is the results obtained from equation 
(13) and Figure 6 is the plot of the data 
summarized in Table 3. As expected, as the 
height difference increases, flow rate slows 
down for a constant power input, and eventually  

 
 

 
 
the pump will not be able to push the fluid in the 
desired direction. 
 

Figure 7 is a second degree polynomial fit for 
the data of Table 3. It can be observed that the 
second degree polynomial fit is not a good one 
especially for lower flow rates. Figure 8 is a 
third degree polynomial fit for the data of Table 
3. The polynomial fit of Figure 8 is acceptable. 
 

The formula for the third degree polynomial 
fit of Figure 8 is shown in equation (14). It must 
be emphasized that equation (14) applies only 
for the conditions of Example 3. If conditions 
change, a new formula must be calculated. 
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Table 3 
Summary of fluid flow as a function of height difference (HD) for piping system of Example 3. 

 
Height difference (ft) Fluid flow rate (ft3/sec) 

0.9 0.47 
11.4 0.44 
22.1 0.41 
33.0 0.38 
44.4 0.35 
56.4 0.32 
69.5 0.29 
84.1 0.26 
101.1 0.23 
121.6 0.20 
147.8 0.17 
183.5 0.14 
237.0 0.11 
328.7 0.08 
528.1 0.05 

 
 
 

 
 

Figure 6: Plot of height difference versus flow rate for data of Table 3. 
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Figure 7: Plot of data of Table 3 along with a second degree polynomial fit. 
 
 

 
 

Figure 8: Plot of data of Table 3 along with a third degree polynomial fit. 
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Flow rate = -(8)(10)-9(HD)3 + (9)(10)-6(HD)2 –
(0.0032)(HD) + 0.4733                                 (14)    
 
(Flow rate in equation (14) is in ft3/sec & HD is 
in ft)        
 

Summary  and  Conclusion 
 

In this article it was shown that EXCEL can 
be used to significantly expedite the solution to 
piping problems that can be solved by classic 
algebraic techniques, and additionally the 
EXCEL files can be used to efficiently get 
sufficient data points for a graphical 
representation of system performance. 

 
Since frictional losses in a piping system are a 

function of fluid velocities, there are more 
unknowns than independent equations when 
fluid velocities are not known. These problems 

require either specialized computer programs or 
time consuming iterative techniques (hand 
calculation). 

 
Through the examples presented in this article, 

techniques for using EXCEL for solving piping 
problems with unknown velocities are 
presented. These techniques are efficient 
replacements for the iterative procedures. 
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Appendix  A 

 
This appendix contains a step by step calculation presenting all the calculations performed for the 
EXCEL file of Example 1. Values defined by superscript * are given. 
 
Inside diameter of 3 inch pipe (inch) =3* 

Inside diameter of 6 inch pipe (inch) =3* 

Length of 3 inch pipe (ft) = 330* 

Length of 6 inch pipe (ft) = 990* 

K for exit from tank A = 0.5* 

K for 3 inch elbow = 0.54* 

K for 6 inch elbow = 0.45* 

K for sudden enlargement from 3 inch pipe to 6 inch pipe = 0.5625* 

K for entrance into tank B = 1* 

Cross sectional area for 3 inch pipe (square feet) =(pi) * (radius of 3 inch pipe in feet)2=  
pi * (3/2/12)2 = 0.0490625 
Cross sectional area for 6 inch pipe (square feet) =(pi) *(radius of 6 inch pipe in feet)2= 
pi * (6/2/12)2 = 0.19625 
Fluid flow rate (cubic feet per second) = 0.03* 

Velocity of fluid flow in 3 inch pipe (ft/sec)=  
(fluid flow rate (cubic feet per second) / cross sectional area of 3 inch pipe (square feet)= 
.03 / .0490625 = 0.611464968 
Velocity of fluid flow in 6 inch pipe (ft/sec)= 
(fluid flow rate (cubic feet per second) / cross sectional area of 6 inch pipe (square feet)= 
.03 / .19625 = 0.152866242 
Ɛ for coated iron pipe (ft) = 0.0004* 

Fluid viscosity (square feet / sec) = 0.000014* 

Reynolds number for 3 inch pipe = 
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{(velocity in 3 inch pipe (ft/sec) * (Diameter of 3 inch pipe (ft)} / Fluid viscosity (square ft. /sec)= 
(.611464968*(3/12)) / .000014= 10919.01729 
Reynolds number for 6 inch pipe = 
{(velocity in 6 inch pipe (ft/sec) * (Diameter of 6 inch pipe (ft)} / Fluid viscosity (square ft. /sec)= 
(.152866242*(6/12)) / .000014= 5459.508644 
f for 3 inch pipe = 0.25 / {[log (1 / 3.7 (Diameter of 3 inch pipe (ft) /Ɛ (ft))) +  
(5.74/ (Reynolds no of 3 inch pipe0.9)]2}=  0.25 / {{log (1 / 3.7 (3/12)/ 0.0004))) + (5.74/ 10919.9)]2= 
0.032977148 
f for 6 inch pipe = 0.25 / {[log (1 / 3.7 (Diameter of 6 inch pipe (ft) /Ɛ (ft))) +  
(5.74/ (Reynolds no of 6 inch pipe0.9)]2}=   0.25 / {{log (1 / 3.7 (6/12)/ 0.0004))) + (5.74/ 5459.9)]2= 
0.037900659 
 
K value for straight portion of 3 inch pipe =  
{(f for 3 inch pipe) * (length of 3 inch pipe)} / diameter of 3 inch pipe (ft) =  
(0.0329977148 * 330) / (3/12) = 43.52983543  
K value for straight portion of 6 inch pipe =  
{(f for 6 inch pipe) * (length of 6 inch pipe)} / diameter of 6 inch pipe (ft) = 
(.037900659 * 990) / (6/12) = 75.04330559 
K value for ½ open gate valve attached to a 3 inch pipe = 2.88* 

Total K for 3 inch part of piping system excluding the pipe itself consists of sum 
of “K for exit from tank A” + “K for ½ open gate valve” +  
“ K for 2 ‘3 inch’ elbows + “K value for sudden enlargement” =  
0.5 + 2.88 + (2* 0.54) + 0.5625 = 5.0225 
Total K for 6 inch part of piping system excluding the pipe itself consists of sum 
of “K for entrance into tank B” + “K for 2 ‘6 inch elbows’=  
1 + (2 * 0.45) = 1.9 
Total head loss for 3 inch pipe portion (ft) = {(‘K for straight portion of 3 inch pipe’ +  
‘ K for non straight portion of 3 inch pipe) * (velocity in 3 inch pipe in feet per second)2}/ 
(2 * 32.2) = {(43.52983543 + 5.0225) * 0.6114649682}/ (2 * 32.2)= 0.281882048 
Total head loss for 6 inch pipe portion (ft) = {(‘K for straight portion of 6 inch pipe’ +  
‘ K for non straight portion of 6 inch pipe) * (velocity in 6 inch pipe in feet per second)2}/ 
(2 * 32.2) = {(73.04330559 + 1.9) * 0.1528662422} / (2 * 32.2) = 0.027919533 
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