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Abstract 
 

This article presents an Excel package to 
illustrate Bayes’ Theorem. It does so in two 
ways: First, a graphical approach is presented 
that represents the various probabilities involved 
in Bayes’ Theorem. Secondly, an intuitive 
approach is used that to many people is easier to 
understand than the traditional Bayes’ formula. 

  
Introduction 

 
Bayes’ Theorem is a very important topic in 

probability and statistics. Often, conditional 
probabilities are in one form and they need to be 
in another. At its simplest, Bayes’ Theorem 
involves switching around these conditional 
probabilities. Suppose, for example, that a drug 
test is 98% “accurate” for drug users and 92% 
“accurate” for non-users. Someone unfamiliar 
with Bayes’ Theorem might say, then, that if 
someone tests positive on the test, indicating 
that he or she is a user, the probability that the 
subject is actually a user is 98%. Likewise, if a 
person tests negative, indicating that he or she is 
a non-user, the probability the subject is a non-
user is 92%. Neither of these conclusions is 
correct, however, except in a certain special 
case, as discussed later. The problem is that the 
conditional probabilities of 98% and 92% are in 
one direction and the desired probability is in 
the other.  

 
Bayes’ Theorem is useful in many areas: It is 

used in oil exploration to revise the probability 
of a drilling site producing oil given previous 
experience [1, 2]. In drug testing, it is important 
in determining the probability of a person’s 
being a drug user given a positive result on a 
drug test [3]. In medical diagnosis screening 
tests are given to determine if the probability of 

a patient’s having a disease is high enough to 
warrant further procedures, such as a biopsy [4]. 
It is very important in the area of legal evidence. 
Very often, probabilities introduced into 
evidence are in one form of a conditional 
probability and the transposed probability is the 
appropriate one to use [5, 6, 7].  

 
In addition to having many specific 

applications, a knowledge of Bayes’ Theorem is 
fundamental to an understanding of statistics 
and exactly what is meant in interpreting a 
confidence interval or a test of hypotheses. 
Furthermore, there is a Bayesian approach to 
hypotheses testing which offers a completely 
different approach than the one most commonly 
used [8, 9]. 

 
An  Example 

 
Suppose a test is used to detect the presence of 

drugs. Adopting the following notation: 
 

D = the subject is a drug user 
Dc (D-complement) = the subject is a non-user 
T = positive result on the test 
Tc (T-complement) = negative result on the 

test 
 

Then the probabilities in the previous section 
are: 

 
 P(T|D) = .98  
 

and  
 

 P(Tc|Dc) = .92  
 

P(T|D) is referred to as the sensitivity of the 
test; P(Tc|Dc) is called the specificity. When a 
test is conducted and a positive result occurs, 
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the following conditional probability is the one 
desired: 

 
 P(D|T)  
 

That is, given a positive result, what is the 
probability that the subject is actually a user? It 
would be more convenient, of course, if the 
original probabilities were in this form. The 
reason they aren’t is that the original likelihoods 
are dependent only on the accuracy of the test 
itself. The revised probability, P(D|T), is 
dependent on both the accuracy of the test and 
the proportion of drug users in the tested 
population. This is true not only in drug testing. 
In any medical test, the original likelihoods, 
P(T|D) and P(Tc|Dc), describe the accuracy of 
the test, but a physician or patient would like to 
know the probability of having a condition 
given a positive result on the test.  

 
The task, then, is to “switch” the conditionals 

given, and this is the task of Bayes’ Theorem. 
There are many formulations of Bayes’ 
Theorem, but the following, in the opinion of 
this author, is the most easily understandable: 

 
 P(D|T) = P(D∩T)

P(T)    (1) 
 

Where P(D∩T) is the joint probability of the 
tested subject being a drug user and yielding a 
positive test result. It is calculated using the 
following formula: 

 
 P(D∩T) = P(D)P(T|D) (2) 

 
If 5% of the population being tested are users, 

then P(D) = .05 and: 
 

 P(D∩T) = .05 x .98 = .049  
 

The denominator of Bayes’ Theorem is the 
marginal (or simple) probability of a positive 
result on the test. It is calculated using the 
following: 

 
 P(T) = P(D∩T) + P(Dc∩T) (3) 
 

The second term in the above equation is the 
joint probability of the subject’s being a non-
user and having a positive result on the test. It is 
calculated as: 

 
 P(Dc∩T) = P(Dc)P(T|Dc) (4) 
 

To solve the above equation, it is easy to find 
 

 P(Dc) = 1 - P(D) = 1 - .05 = .95  
 

and 
 

 P(T|Dc) = 1 - P(Tc|Dc) = 1 - .92 = .08  
 

so that 
 

 P(Dc∩T) = .95 x .08 = .076  
 

and 
 

 P(T) =.049 + .076 = .125  
 

and finally: 
 

 P(D|T) = .049
.125

 = .392  
 

This means that if a person tests positive on 
the test, the probability that he or she is actually 
a drug user is 39.2%. Not surprisingly, many 
people find this hard to accept. After all, the test 
is 98% accurate for drug users, yet the 
probability that a person who tested positive is a 
drug user is only 39.2%. On the face of it, this 
doesn’t seem like a very good test. The 
explanation lies in the fact that only 5% of the 
tested population are drug users and 95% are 
non-users. In this case, the number of non-users 
who test positive will outnumber the number of 
users who test positive. So there’s nothing 
wrong with the test. The problem is that the 
proportion of users is vastly outweighed by the 
proportion of non-users. The test is, as a matter 
of fact, very good. It took the original 
probability of 5% and leveraged (or, in 
probabilistic terminology, “revised”) it into one 
of 39.2%. 
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A  Graphical  Explanation 
 

The preceding is difficult to explain to 
undergraduates, or for that matter almost anyone 
else. Therefore the Excel package presented 
here was undertaken in an effort to explain the 
problem graphically [10]. Figure 1 shows the 
input section and resulting graph for the 
problem described above. The original 
probabilities are entered into the gray-shaded 
cells and the other parts are calculated 
automatically. The comments show each result 
in probabilistic notation. In the figure here, the 
comments are shown, although in the 
spreadsheet itself they appear only when the 
cursor moves over them. The spreadsheet then 
takes this information and performs the 
calculations necessary for the graph. In this 
graph, the proportion of users in the tested 
population, 5%, is in the smaller bar to the left. 
The proportion of non-users, 95%, is in the 
larger bar to the right. The proportion of true 
positives, P(D∩T) = 4.9%, is represented in the 
larger, darker portion of the bar representing the 
users. The remainder (.1%) is light-colored but 
barely visible. Likewise, the smaller portion of 
the bar for non-users represents the proportion 
of false positives, [P(Dc∩T) =  7.6%]. The light 
portion of this bar is the proportion of true 
positives, or 87.4%. The test did its job; it 
correctly identified 98% of the users and 92% of 
the non-users. However, since there were many 
more non-users than users, and because there 
were more false positives than true positives, the 
final probability that a person who tested 
positive is actually a user is only 39.2%. 

 
Parenthetically, in order for the final answer, 

P(D|T), to be the original 98% “accuracy,” both 
the sensitivity and the specificity would have to 
be 98%, which would be very unlikely, and the 
proportion of users in the tested population 
would have to be 50%.  

 
In the package, a sheet runs through the 

calculations above, shown in Figure 2. 
 

 
 

Figure 1. Input section and graph. 
 

 

 
 

Figure 2. Calculation section for  
Bayes’ Theorem. 

 
An important side-benefit of this sheet is that 

students can use it to make up their own 
problems for additional practice. All they have 
to do is key in the original information in the 
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input section and the package goes through the 
calculations. 

 
Another  Explanation  Using  Frequencies 
 
There is a more intuitive way of applying 

Bayes’ Theorem that many find easier to 
understand. Suppose that there are 1,000 people 
in the population to be tested. If that is the case, 
the expected number of users in the population 
would be: 

 
.05 x 1,000 = 50 

 
The term “expected” means not there will 

always be 50 drug users in a population of 
1,000, but that if this experiment is repeated 
many, many times, on average there will be 50 
users in a population. Of these 50, the expected 
number of positive results would be: 

 
50 x .98 = 49 

 
This is the expected number of true positives 

in the tested population. 
 
Likewise, there would be 950 non-users in the 

population, calculated either as: 
 

1,000 - 50 users = 950 
or: 

1,000 x (1 - .05) = 950 
 
Of these 950 non-users, there are expected to 

be 874 negative results (950 multiplied by the 
92% accuracy for non-users) and 76 (950 – 874) 
positive results. The figure of 76 represents the 
expected number of false positives. 
 

Then the total number of positive results is: 
 

Total positives = True positives + False positives 
or: 

 
Total positives = 49 + 76 = 125 

 
Finally, the proportion of true positives to 

total positives is: 
 
 

49/125 = .392 
 

This is the probability of a subject who tests 
positive being a user, or P(D|T), the number 
previously calculated using Bayes’ Theorem. It 
will be noticed that each of the expected 
frequencies in the above solution mirrors one of 
the probabilities used in the formulaic approach 
to Bayes’ Theorem in Figure 1. For example, 
the 49 true positives corresponds to 
P(D∩T) = .049.  

 
There is a sheet showing the calculations for 

the intuitive approach in the spreadsheet. This is 
shown in Figure 3.  

 

 
 

Figure 3. Calculation section for the intuitive 
approach to Bayes’ Theorem. 

 
 

In this sheet, the probabilities specified in the 
original entries (Figure 1) are automatically 
carried over so that the user can see how they 
are used in the intuitive approach. The 
population size in cell E18 is determined so that 
all the frequencies are integer-valued. First, the 
LEN function is used to find the length beyond 
the decimal point of each of P(D∩T) and 
P(Dc∩T). Then the larger of these (in this case, 
both are the same) is taken to determine the 
sample size, n, using the following relationship: 
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n = 10Max length[P(D∩T),  P(Dc∩T)]  
 
Since P(D∩T) = .049 and P(Dc∩T) = .076, 

and Max length[P(D∩T),  P(Dc∩T)] = 3, 
 

n = 103 = 1,000 
 

There is one last sheet in the package, 
showing a graph of the expected frequencies. 
Since this graph is essentially a repeat of Figure 
2, it is not shown here. 
 

Conclusion 
 

Since Bayes’ Theorem is one of the more 
difficult topics in statistics, it is important to 
present it in an easy-to-understand manner. The 
graphical approach illustrates why it often 
occurs that a revised probability is different 
from what common sense would suggest. The 
intuitive approach using frequencies will often 
make more sense to a student than Bayes’ 
Theorem itself. Both of these methods 
combined have helped students understand the 
concepts behind Bayes’ Theorem more easily. 
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