

DESIGNING INTERACTIVE INSTRUCTIONAL TOOLS TO SERVE
BOTH STUDENTS AND INSTRUCTORS - A CASE HISTORY

Henderson, R. C1., Lowhorn, D. E.2, Tindall, W. R.3, Larimore, D. L.4

1Dept. of Civil & Environmental Engineering, Tennessee Technological University
2Educational Technologies Center, Tennessee Technological University

3Dept. of Computer Science, Tennessee Technological University
4Dept. of Curriculum & Instruction, Tennessee Technological University

Abstract

The Homework Laboratory® (The HWL) is a

CD-based educational tool for use in
fundamental science and engineering courses.
Capable of being used with virtually any
quantitative course of study, it is intended to
help students learn the course material in a more
effective manner and to make the administration
and presentation of the course easier for the
instructor. The National Science Foundation
sponsored the testing of the software (using
control and experimental groups of students) to
assess its effectiveness at improving student
understanding. The test program was conducted
over a three-year period in engineering
mechanics classes at The University of Texas at
Austin (UT) and Tennessee Technological
University (TTU). Also, in order to assess the
modularity of the program (that is the ease with
which new courses may be implemented) the
software was modified and implemented in a
high school statistics course.

This paper explores the technical design

approaches, implementation, and lessons
learned throughout the three-year development
and modification of The HWL.

Introduction

Software researchers have identified
numerous discrete phases inherent in software
development.[9] These include the following:

1. Problem Definition
2. Requirements Analysis
3. Architecture Design
4. Detailed Design
5. Coding and Debugging

6. Unit Testing
7. System Testing
8. Corrective Maintenance
9. Functional Enhancements

Each of these phases is, to a large degree,

cyclic and interdependent and must be revisited
throughout the life of the software in order to
maintain usefulness and efficiency. This paper
discusses the development of an educational
software instrument entitled The Homework
Laboratory® (The HWL), and the above
development phases will be used as a
framework for discussion. Items 4,5, and 6
represent what is commonly called software
construction, where much of the development
effort is focused; thus, these elements will be
emphasized herein.

Problem Definition

One of the primary means for an instructor to
help a student master a fundamental science or
engineering topic is to require the completion of
representative homework problems. Core
courses are often homework intensive, and for
the student to achieve the most benefit from the
homework process, the instructor must spend a
significant amount of time grading and
correcting assigned problems. Despite this
effort, however, most instructors have observed
students with near-perfect homework scores
who perform very poorly on tests. Since testing
concepts are generally based on the principles
learned by completing homework, one must
conclude that the student did not really
understand these principles and/or was unable to
apply them under time constraints. This
phenomenon happens frequently and is
generally an indicator that the student relied

36 COMPUTERS IN EDUCATION JOURNAL

heavily on other sources (group study,
homework files, etc.) in attempting to learn the
material.

The objective of The HWL was to reduce this

lack of preparedness on the part of the student
(and the associated deficiency in real learning)
while at the same time save the instructor a
considerable amount of time normally
associated with grading and coaching. To
determine the effectiveness of this learning
instrument, the National Science Foundation
(NSF) funded a three-year study comparing use
of The HWL with the traditional homework
model. This was accomplished using
experimental and control groups of students at
The University of Texas at Austin (UT),
Tennessee Technological University (TTU), and
Monterey High School (MHS).

Requirements Analysis

Before initiating development of The HWL, a

literature review indicated that computer-based
instruction had been proven to be effective at
enhancing student comprehension and
retention.[8] Likewise, over the last decade,
budgetary constraints and improvements in
multimedia technology have been pushing
universities toward more reliance on
technological approaches.[6,4,11] Furthermore,
computerized apprenticeship methods for
learning, emphasizing practice and often
involving commercial software and other tools,
have been shown helpful for students in
fundamental engineering and/or science
courses.[10,7]

However, many of the computerized methods,

helping students learn concepts by simulation,
parametric examination, audio/ video coaching,
etc., were often found to have two primary
disadvantages:

(1) they were unrelated to the student's grade

and, therefore, were frequently viewed as
another expense for which the student had
little need, and

(2) the instructor often perceived them to be
peripheral material with little added
benefit over text and classroom
explanations.

Since both students and instructors are heavily

involved in using any computer-based approach,
the learning instrument must provide benefits
for both audiences. Therefore, to accomplish
the objective of improved student learning and a
reduction in course responsibilities for the
instructor, the requirements analysis indicated
that a computer-based learning instrument must
accomplish the following specific functions:

(1) randomize the variables for a student's

homework so that each problem is
different for every student;

(2) score each homework problem;
(3) instruct the student as necessary

regarding calculation errors;
(4) keep track of individual and class

homework scores for the instructor;
(5) create randomized and timed practice

tests for the student; and
(6) provide a virtual classroom to assist the

student with general concepts before
attempting homework or a test.

Architecture Design

The six specific elements listed above were

accomplished using an instructor version
(whereby the instructor can assign homework,
track grades, etc.) and a student version (that
grades homework, coaches the student, tests the
student, and teaches the student in the virtual
classroom as shown on the main screen of
Figure 1). In addition, it was determined that
the overall software must be modular in nature
(i.e., designed with a clear separation between
navigational and computational functions so that
new subject areas may be easily implemented).
The following components of the software
architecture were crucial to achieving these
design criteria:

(1) the development environment;
(2) the database;

COMPUTERS IN EDUCATION JOURNAL 37

(3) the Student Data File (SDF);
(4) the main navigation and operation code

(NavOp Code); and
(5) the problem code.

Development Environment: Several

different programming languages/environments
were considered. The original prototype of the
program was developed using Macromedia's
Authorware®. While Authorware® provided for
good interface development, it did not provide
sufficient power or calculation tools for the
necessary mathematical programming. Visual
Basic was also considered, but was decided
against because of the amount of code that it
needed to perform certain operations. Finally,
programming in C was investigated. However,
at the time, the graphical portion of the
programming in C was significantly more labor
intensive than for either Visual Basic or Delphi.
Delphi[2] was eventually chosen as a mix
between low-level code control and high-level,
Rapid Application Development (RAD) tools.

Delphi's RAD interface takes input from the

programmer in two primary ways: through
graphical forms and through code units. Forms
in Delphi act as a canvas on which the
programmer designs the layout of the graphical
user interface (GUI). Each of these forms then
has a unit associated with it, and it is in this unit
that the code is written that drives the actions of
the form. The forms also function as a container
for components (e.g., timers, list boxes, etc.)
that respond to user input. Figure 2 shows the
main form used by the HWL. Many of the
operations of the program are initiated by code
associated with this form. For example, the
main screen shown in Figure 1 is one
configuration of the main form (though only a
small portion of the components of Figure 2 are
used for the main screen). Likewise, the Tgauge
and Ttimer shown in Figure 2 are Delphi
components that are used within the HWL to
monitor student progress on tests and homework
as well as to provide messages and initiate
administrative functions periodically. The
combination of RAD tools and Object Pascal in
Delphi was found to simplify the development

of the user interface and provide the speed,
efficient memory usage, and calculation power
necessary for The HWL project.

Database: Though The HWL can be used

with any text or quantitative course of study,
Engineering Mechanics – Statics[1] was chosen
for the research. The text contains 1502
problems and all were programmed into the
software. [The instructor, using the instructor
version, decides which of these will be
homework problems and which will be available
for practice.] Each problem consists of a unique
set of data that includes the problem number,
image name (if applicable), the problem text, all
of the information necessary to properly display
the problem, and the problem code. This
information can become voluminous and much
of it must be displayed graphically as shown in
Figure 3.

Therefore, a series of Paradox database tables

(managed using Borland’s Database Desktop)
are used to store all of this information for each
problem except for the problem code. The
Borland Database Engine (BDE) is then used to
connect the program with the database tables.
Each table in the database is associated with one
chapter in The HWL. By doing this, related
problems are grouped together. This makes it
easier during the development stage by allowing
one person to work on one chapter while
another works simultaneously on another.

When a problem is executed, the information

needed to correctly draw the screen is retrieved
from that problem's entry in the corresponding
database table. The key values in the database
tables are the concatenation of the needed data
to uniquely define a given problem. The key
takes the format of [Chapter] [Section]
[Problem]. For example, the information for
problem number 16 in Chapter 3, Section 3, is
retrieved from the database as 33016 in the
Delphi code.

The primary advantage of the database

approach is the isolation of problem data and
coding from the main navigation and operation

38 COMPUTERS IN EDUCATION JOURNAL

code. In this way, a new course may be
implemented by extracting the old database
information (and associated code) and inserting
that for the new text.

Student Data File: The HWL also uses and

creates data associated with the current user.
This data is stored in the current user's Student
Data File (SDF). The user must supply an SDF
and the password for that file before accessing
any of the features of the program. This file
contains the following information: (1) the
user's name and password; (2) a record of how
much time the user has spent in each section of
The HWL; (3) which problems are assigned as
homework problems for the course; (4) seed
values for random number generation for
problems that the user has started; (5) grades for
homework problems the user has completed;
and (6) a record of practice problems the user
has completed or started and grades for the
completed ones.

This file is encrypted and is updated

throughout the use of the program, not just
when the user closes the application. A generic
SDF is created by the instructor (using the
instructor version) at the start of a semester and
distributed to each student. The HWL modifies
this SDF as the student uses it throughout the
semester. Encryption of SDFs will be discussed
in more depth later in this paper.

Main Navigation and Operation Code: The

main navigation and operation code, or NavOp
Code, is where all GUI design, navigation
operations, and data handling/processing
functionalities are implemented. This body of
code manages the GUI, implements program
response to user actions, accesses the database
for problem data, handles retrievals and updates
involving the current SDF, and calls problem
procedures. The NavOp code is stored in
various units, most of which are associated
directly with a specific form. Each of these
units of code handles interaction with the user
when the user is viewing its associated form.
There are also a few units of code that are not
directly associated with a form, but instead

contain global procedures and variables that are
used at various stages during the flow of the
program's execution.

Problem Code: The calling of a problem

procedure is where the NavOp code transfers
responsibility to the final division of The HWL's
software architecture, the problem code. In
Delphi, forms are the design palette for the GUI
that a program uses, while units are where the
code is stored that drives those forms.
However, a program can also have units that are
not directly associated with a specific form.
These merely contain code. That is how the
problem code is stored. There is an individual
unit for each chapter that contains procedures
associated with a given problem. These
procedures perform the randomization of the
problem variables and the actual mathematical
calculations necessary to work the problem.
These answers are then passed back to the
NavOp code to be compared to the user's
proposed solution(s).

Figure 4 shows the code for problem 33016

(i.e., Chapter 3, Section 3, Problem 16;
displayed graphically in Figure 3). This
problem has three variables (W1, W2, and theta)
and a one-part solution (F). For any problem, up
to six randomized input values and six solution
values may be required. In Delphi, all variables
for a procedure must be declared at the
beginning of the procedure in the var section
(Lines 2-5). Then, the main body of the
procedural code starts (Lines 5-17). The first
task this procedure performs is to randomize the
variables and display them on the screen. The
displaying of the randomized variables by the
problem procedures is the only overlapping of
the main NavOp code and the problem code
divisions.

As shown on Line 10, not all of the variables

are randomized. In general, no more than 3
variables are randomized on a given problem.
[Randomization of multiple variables can lead
to numerical solutions that, though
mathematically correct, are physically
impractical or impossible. The intent is to

COMPUTERS IN EDUCATION JOURNAL 39

provide enough unique solutions to prevent
duplication, while avoiding the problems
associated with broad randomization. It was
found that for engineering mechanics, generally,
1000 unique problems are easily achievable by
randomizing only two variables.]

After the variables are set, the solution is

calculated (Line 13). Then, the solution, F, is
passed out to the Answer array, which is used
by the NavOp Code to determine if the user's
input solution is correct. Though there are
numerous problems in a text, the coding for
each problem is generally short – usually taking
a qualified student programmer about 20 to 30
minutes to complete.

Construction

Software construction generally includes

elements of detailed design, coding and
debugging, and unit testing. As these phases
were cycled through, the following three main
design goals were the focus of the construction
process for The HWL:

(1) simple and intuitive navigation;
(2) appealing and appropriate GUI; and
(3) emphasis on function and order.

Designing an interface that was easy to use

was of paramount importance. Typical science
and engineering courses inherently involve a
great deal of work for students (i.e., attending
class, reading the text, studying lecture notes,
working homework, etc.) as well as for
instructors. Thus, learning a new software
package detracts from the primary focus – the
course material. Therefore, straightforward
access to the major segments of the program
(Homework, Practice, Classroom and Test; see
Figure 1) was the driving force in the interface
layout. A significant amount of construction
time and effort was also invested in, making the
program similar (in terms of graphics and
layout) to the text it was accompanying. The
intent was for the students to view the software
as a seamless extension of the required text, not
supplementary software. Inside all of that, a

conscious push was made toward making the
interface as minimal as function would allow.
The GUI needed to be easy to use and intuitive,
but it did not need any unnecessary
options/functionalities that would only clutter
the interface.

 While designing The HWL with these three

major goals in mind, several smaller, more
specific areas of software construction took on
major importance. These areas, listed below,
were the principal areas of effort and planning
for The HWL and will be discussed in this
section.

• Thumbnail Images and Problem Selection
• Classroom Topical Search
• Encryption of the SDF
• Integration of PowerPoint and Excel
• Button Highlighting

Thumbnail Images and Problem Selection:

Thumbnail images on the problem selection
screen (as shown in Figure 5) were designed and
implemented as a response to each of the design
goals. When a student highlights a section of a
chapter from which to work a problem, a box
appears that lists all of the available problems
from that section. A thumbnail of the image
associated with it accompanies each problem.
In this way, the student sees immediately all of
the problems in that section that have been
assigned by the instructor (all other problems in
the section are available in the practice portion
of The HWL).

Furthermore, the thumbnail graphic (which is

a smaller version of the actual problem graphic)
helps the student to determine the type of
problem that has been assigned (without the
necessity of beginning the solution process).
The construction of this tool was completed
using an instance of the Object Pascal TlistBox
component. As the cursor moves over the
chapter section, a subroutine displays the
TlistBox, which has been previously filled using
the AddObject method. The AddObject method
allows for a string of text as well as a Tobject to

40 COMPUTERS IN EDUCATION JOURNAL

be associated together as one entry in the
TlistBox.

Classroom Topical Search: The classroom

section is designed to help users learn about
topics covered in the current textbook. It does
this by allowing the user to select a section to
review or to search for a topic to review. It then
lists the related sections. If the user wishes to
select a section to review, then the sections are
simply listed in the "By Section" option (Figure
6). However, if they wish to search the text for
a given topic and see all related sections, they
can use the "By Keyword" option. Searching by
Keyword is available because many times users
want to review a topic, not necessarily a section.

To make the search fast and easily understood,

an input box and a result box are shown. The
searching is setup so that when the keyword
input value changes (even by only one
character), the result box is updated
automatically. This way, when the user finishes
typing in the desired keyword, the results of that
search are already finished and are being
displayed.

This method of searching and displaying the

results is accomplished using a second thread.
While the main process thread continues to
handle the main interactions with the form, the
second thread is setup to react to any changes to
the keyword input box. By using a second
thread, the searching is done virtually
simultaneously with the input.

Encryption of the SDF: With The HWL, as

with most software packages involving
individual user data, security of that data is very
important. For educational software involving
grades and network availability to students, it is
just as important to keep the user from
unauthorized access to their data as it is to keep
other users from accessing it. Therefore, the
SDF must be encrypted to secure passwords and
to prohibit the viewing of grades by anyone
except the instructor.

The SDF is a text file that is encrypted at the
bit level, with each string in the file being
encrypted/decrypted based on a different
random key. It is a symmetric encryption
algorithm, which means that the same keys are
used to encrypt the data as are used to decrypt
the data.

Integration of PowerPoint and Excel: The

classroom section uses an external program,
namely Microsoft's PowerPoint Viewer. The
final goal of the classroom section, whether the
user directly selects a section or searches for a
topic, is to provide a way for the user to review
the desired subject matter. The actual review is
displayed as a PowerPoint Presentation using
Microsoft's PowerPoint Viewer program (Figure
7). (The Microsoft PowerPoint Viewer is
included on The HWL CD-ROM, and, if
needed, is installed when The HWL is
installed.) The presentations are designed to be
visually similar to the text as well as other
sections of The HWL and to provide a sense of
continuity to the user.

When the user selects a section, the

PowerPoint Viewer is started with the
corresponding presentation passed in as a
parameter. This is accomplished using the
CreateOLEObject procedure, which takes as a
parameter the CLSID for the object to be
created. The CLSID is the value that represents
the program in the Windows Registry. The
CreateOLEObject procedure takes the CLSID,
accesses the registry, and then creates an object
of the associated class. This object is then
started using its newShow method with the
filename of the appropriate PowerPoint
presentation passed in.

The Instructor Version of The HWL also uses

an external program to open SDFs and show the
instructor the grades for the student. The
instructor may also open multiple SDFs at once.
After doing this, they have several options:

1. save the information for the opened files in

a text file or a comma-separated file (CSV
File);

COMPUTERS IN EDUCATION JOURNAL 41

2. copy the information to the Windows
clipboard; or

3. start Microsoft Excel with the opened
information passed via a CSV File (if
Excel is installed).

With the third option, the instructor has all of
the tools associated with Microsoft Excel with
which to manipulate the data.

 The method used to start Microsoft Excel is
different from the method used to start the
PowerPoint Viewer. Delphi comes packaged
with some helpful file-interaction procedures
contained in the FMXUtils unit. One of these
procedures is ExecuteFile. This procedure acts
as a wrapper for the Windows API function,
ShellExecute. While ShellExecute requires
several obscure parameters, the ExecuteFile
procedure only requires the name of the file to
execute (in this case, 'excel.exe'), the name of a
file to pass in, a default directory to look in for
the file, and the required method for window
display.

The two different approaches for launching

external programs were implemented at
different stages during the development process.
After comparing the two, the first method (i.e.,
OLE procedure) is preferred due its simplicity
in interacting with the external program.

Button Highlighting: The major method of

interacting with The HWL is through buttons.
There are buttons on almost every screen that
provide the user with clearly defined options for
navigating through the program. These buttons
are semi-transparent and are highlighted when
the cursor is over them.

This is accomplished by using several

instances of the Timage component. One is
called the mousefield and the others are called
hotspots. The mousefield is set to cover the
entire screen, while the hotspots are aligned
with the button images that are drawn as part of
the background. Whenever the user moves the
pointer on the form, the mousefield's
onMouseMove procedure is called. This

procedure, using several other subroutines,
checks to see if the pointer is currently over one
of the active hotspots. If it is, that hotspot is
highlighted and all others are de-highlighted. If
the mouse is not over a hotspot, then any
previously highlighted hotspot is de-highlighted.

The development of The HWL also involved

numerous cycles of coding and debugging. For
most of the major elements of the program, test
applications were written to test each discrete
element. For example, the TListbox for section
selection (described above) was first developed
as a separate application. After the debugging
was complete on the test unit, it was
implemented in The HWL. Most of the major
elements of The HWL were coded, debugged,
and integrated in this way.

System Testing

System testing of the program involved both

in-house testing by the development team and
external testing by three different institutions
(UT, TTU, and MHS). The HWL software was
developed for the Windows operating system,
and students accessed the software by campus
network or loading the software onto individual
PCs via CD. The in-house tests involved
numerous cycles of checking all of the options
of The HWL (both on the network and on
individual machines) for expected performance
and changes to the code to fix any bugs found.
These formal tests were performed by lead
programmers on the project, whose goals were
specifically to try to find faults in the program.
Other project personnel conducted informal
tests as they used the program to check the
problem coding and the database for errors.
[Approximately 30 people contributed in
various capacities to the software development.]
As they encountered problems during their use
of the program, they were reported and
remedied.

During external testing, instructors and

students at UT, TTU, and MHS used the
program and reported both problems and
suggestions throughout each semester via

42 COMPUTERS IN EDUCATION JOURNAL

formal and informal surveys. [Approximately
800 students used the software over both a large
campus network (UT) and a smaller campus
network (TTU), as well as individual machines.]
The development team then investigated these
problems and suggestions and, when
appropriate, changes were made. The input from
these impartial instructors and students also
provided valuable feedback on the effectiveness
of The HWL as a learning tool.[5]

Corrective Maintenance

Data gathered from the internal and external
testing prompted changes to The HWL in terms
of both corrective maintenance and functional
enhancements. Early in the development
process, most of the corrective maintenance
issues were low-level in nature and often
involved individual problem code or the
appropriate functioning of utilities such as
printing, saving files, or navigation. These
types of corrections were made frequently
throughout the software development and
implementation cycles in response to
suggestions made by students and instructors
each semester.

A larger maintenance issue involved the

installation of the program. The changes in
configuration from one PC to another required
an installation script that was robust enough to
perform correctly under a wide array of
hardware, software, and network configurations.
The installation script was originally developed
using InstallShield Express for Delphi.
However, as the size of The HWL grew to over
6,500 files, a more powerful and flexible
installation protocol was required. Thus,
ultimately, the full version of Install Shield was
used on the TTU and UT campuses. Final
versions of the installation script included
provisions for several different installation
settings. Traditional, Full, and Compact
installations were made available, and options
regarding implementation on a stand-alone
machine or via a multi-user network were also
available. As a result, the installation
procedure proved to be quite flexible, installing

the necessary database lock files in the
appropriate locations according to the user-
selected installation criteria.

Functional Enhancements

Functional enhancements involved alterations
to The HWL – usually in response to survey
suggestions – intended to improve program
utility for the users (students and instructors).
There were also changes made to the program
by the development team following the system
testing in order to increase the modularity of the
program. Several prominent examples of
functional enhancements follow.

Time Recording: After the program had

been used by instructors in multiple classrooms,
it was decided that instructors would benefit by
being able to see how much time a student had
spent in each section of The HWL – particularly
the classroom section. To do this, a clock-
triggered procedure was added to the software,
along with five new variables: homeTime,
pracTime, testTime, classTime, and idleCount.
The procedure is performed once every second
and, depending on which section of The HWL
the user is currently in, increments the
appropriate variable by one. The idleCount
variable is used to ensure that excessive idle
time is not included. This information is written
out to the student's SDF before they close the
program and can be viewed by the instructor
using the Instructor Version.

Multi-Open Enhancements: Enhancements

were also made to the Multi-Open option of the
Instructor Version. The Multi-Open option,
which allows instructors to view multiple SDFs
simultaneously, was modified based on
instructor recommendations. Statistical data
was added on each student so that an instructor
could quickly ascertain how many problems the
student had started and completed as well as a
breakdown of their grades. The provisions for
an instructor to save the data from all of the
selected SDFs out to a CSV text file, or to copy
all of the data to the Windows clipboard, or to

COMPUTERS IN EDUCATION JOURNAL 43

open the data in Microsoft Excel were also
made in response to user requests.

Changing of the Student Password: From

early in the program development, the Instructor
Version of The HWL had allowed the instructor
to view a student's password and even reset it.
However, students did not have the ability to
change their password after the initial setup of
their SDF. This was found to be impractical and
was modified appropriately.

Changing the Answer Mode: Originally, the

instructor could start The HWL in "answer
mode" using the Instructor Version. This
enabled them to see the answers for a problem
using a student's SDF. That way, if a student
had a question about why they had missed a
problem, they could go to the instructor and ask
to see what the answer was for their particular
set of randomized variables.

However, this approach required that the

instructor use the student's SDF to start "answer
mode" via the Instructor Version. This was
found to be cumbersome, as students often
forgot to bring their SDF on disk. Thus, the
answer mode was modified to allow the
instructor to input any set of variables into any
problem and see what the answer would be.
This way, the instructor could check answers for
students, as well as input the original variables
from the textbook for verification that the
program was working the problem correctly.

MultiPrint Feature: The addition of the

MultiPrint feature (Figure 8) was one of the
most significant enhancements made to the
Student Version. It was added in order to allow
students to do two things: (1) print out multiple
homework problems at once, and (2) print out
previously completed but unprinted homework
problems. Before this was added, students had
to remember to print their homework problems
before entering a correct answer. If they forgot,
then they would have to start the problem over
with newly randomized variables in order to
print the problem. This addition enabled
students to print the problems out in a batch

load as well as print them out after submitting
the correct answer and closing the problem.

Increase in the Role of the Database: The

final major enhancement to The HWL was more
of an architectural change than an addition of
any new feature. One of the primary
requirements set forth at the beginning of
development was that the program would be
modular (i.e., new subject areas implemented
easily). However, after beginning to switch the
engineering mechanics version of The HWL
(used at TTU and UT) to a statistics version
(used at MHS), it became apparent that much of
the module-specific data either was hard-coded
or was actually part of a background image (this
was the easier approach during the initial phases
of development). For instance, the number of
chapters in the book was hard-coded, while the
titles of each of the sections were drawn as part
of a background image on the section selection
screen. Because of this, a highlighted and de-
highlighted version of each chapter background
image had to be drawn. Changing from module
to module would then require that each of these
images be edited to show the new titles. While
the hard-coded variables could have been reset
for the new text, and the backgrounds could
have been modified using a graphics editor, a
more efficient approach was desirable.

Instead of hard-coding module-specific data

like the number of chapters and the number of
sections in each chapter, this data could be
stored in one or more database tables. Many
changes were made to the code to implement
this new database backend. However, these
were one-time changes. This approach lessened
the rigor of changing from one textbook to
another by requiring fewer changes to the code
and less editing of background image files.

Conclusions and Recommendations

The HWL has been used successfully at UT,

TTU and MHS. The concept, which is intended
to encourage student practice, has been
statistically studied. The study results indicate

44 COMPUTERS IN EDUCATION JOURNAL

that it improves student test scores (overall) by
a few percentage points, and with certain
students (e.g., students with mid-level GPAs), it
improves test scores significantly.
Approximately 70% of the students who used
the software indicated that they prefer it over the
traditional homework approach.

Early in the development, the desire for

modularity was important, but not as important
as functionality. In the middle stage, finalizing
the interface, installation, and debugging the
early code took on the primary focus. In the
final stages of development, the issue of full
modularity became a reality.

The Monterey High School phase of

deployment/testing led to a large increase in the
use of the database as described above. As
those modifications were being made, a more
expansive goal began to take form. Ultimately,
the ideal scenario would be to change from one
textbook to another without having to recompile
any code. If this could be accomplished, the
person making the changes would need minimal
knowledge of how the program works. Instead,
a software utility tool could be developed to
input the new module information. To achieve
this goal, the problem code would need to be
interpreted at runtime. This would slow the
program down some, so the gain in ease of
development would have to be weighed against
the loss in performance.

Much important information regarding

efficient processes for creating educational
software were determined throughout the
project – often by mistakes, but occasionally
through successful preplanning. Clearly,
educational software is being shown to be
efficient and cost effective.[12] However,
despite the success of the software as a learning
tool, two significant obstacles remain in terms
of widespread dissemination. First,
development of learning software is often
programming intensive and may require
significant initial expenditures.[5,3] Secondly,
the publishing industry is changing rapidly due
to the advent of Internet publishing and other

web-based teaching approaches. These rapid
changes produce uncertainties regarding the
industry’s future role in print media as well as in
the relationship supplementary pedagogical
instruments will have with traditional textbooks.
Given the merit of the approach, however, it is
felt that these obstacles will be overcome –
particularly by using integrated teamwork
approaches between the publisher and
developer. It is hoped that the description of the
development process for the HWL helps the
reader to make informed decisions about the
design of similar learning instruments.

References

1. Bedford, A. and Fowler, W. (1999).

Engineering Mechanics – Statics 2nd Edition,
Addison Wesley Publishing.

2. Borland International, Inc. (1997) Object

Pascal Language Guide, 100 Borland Way,
Scotts Valley, CA 95067, 1997.

3. Ellis, T.J. (2003). “Engineering and Online

Course: Applying the ‘Secrets’ of Computer
Programming to Course Development,”
British Journal of Educational Technology,
Vol. 34, No. 5, pp. 639-650.

4. Garland, K., Noyes, J. (2004). “The Effects

of Mandatory and Optional Use on Students’
Ratings of a Computer-based Learning
Package,” Journal of Educational
Technology, Vol. 35, No. 3, pp. 263-273.

5. Henderson, R.C. (2005). “Helping Students

Become Proficient at Solving Fundamental
Engineering Problems through Practice –
The Homework Laboratory,” Proceedings of
the ASEE Southeast Conference, The
University of Tennessee, Chattanooga, TN.

6. Huband, F.L. (1997). “Looking Back,”

ASEE Prism, pp. 28-29.

7. Huddleston, D.H. and Walski, T. M., (2003)

“Using Commercial Software to Teach
Hydraulic and Hydrologic Design,”

COMPUTERS IN EDUCATION JOURNAL 45

Daniel Lowhorn is an adjunct faculty member
at Nashville State Community College,
Cookeville Campus. Mr. Lowhorn received his
Master's degree in Computer Science from
Clemson University in 2004. His area of
research focused on efficient caching methods
for multimedia streaming data. Mr. Lowhorn
also works as an independent web developer
and youth minister.

Computers in Education Journal, v 13, n 3,
pp. 43-52.

8. Katz, S., & Lesgold, A. (1993).

“Collaborative problem Solving and
assessment in SHERLOCK II,” Proceedings
of the World Conference on Artificial
Intelligence in Education.

 9. McConnell, S. (1993). Code Complete,

Microsoft Press, Redmond, Washington. William R. Tindall holds a B.S. degree in
Electrical Engineering from Tennessee
Technological University. He has over 10 years
of experience in multimedia applications in
higher education. He is currently employed by
Dealer Software Associates in Franklin, TN.

10. Ohlsson, L. (1995). “Practice Driven

Approach to Software Engineering
Education,” IEEE Trans. Edu., v 38, n3, pp.
291-295.

Dr. David L. Larimore is currently Professor

of Education at Tennessee Tech University in
Cookeville, Tennessee. Dr. Larimore received
his Ph.D. from The Ohio State University in
1969. In addition to being a professor, he
served as Vice President for Administration and
Planning at TTU for 24 years. He has had
grants and contracts dealing with the use of
communications satellites to deliver graduate
education to remote locations and he teaches
graduate level courses in educational research
design, educational measurement and
evaluation, and statistics for Ph.D. students.

11. Thai, C.N. (2004). “Development of a
Collaborative Distance Education
Classroom,” Computers in Education
Journal, v 14, n 1, 2004, pp. 65-75.

12. Wyman, G.A. (2004). “Snowflake USD

Discovers a Cost-effective Way to Deliver
Technology to All Students,” T.H.E.
Journal, Vol. 31, No. 10, pp. 60,63.

Biographical Information

Dr. Craig Henderson is currently Associate
Professor of Structural Engineering at
Tennessee Tech University. He received his
Ph.D. from The University of Tennessee in
1994. Dr. Henderson’s areas of expertise are in
seismic engineering, structural dynamics and
masonry design. He has conducted research and
published papers on these topics as well as on
pedagogy in engineering education.

46 COMPUTERS IN EDUCATION JOURNAL

Allows the student to
complete homework
assignments for a
grade. Coaching is
provided when
incorrect answers are
entered.

Allows the student to
take randomized and
timed practice tests
compiled from all the
problems in the text.

Allows the student to get view
lectures in the virtual classroom
on a particular topic or section in
the text in order to better prepare
for a specific homework
assignment.

Figure 1. Student Version Main Screen.

Allows the student to
practice any problem
not assigned by the
instructor. As with the
“Homework” section,
coaching is provided.

[TPanel]

[TMediaPlayer]

[TImage]

[TGauge]

[TOpenDialog]

[TShape]

[TSaveDialog]

[TEdit]
[TComboBox][TImageList] [TListView]

[TListBox]

[TPopupMenu]

[TScrollBox]

[TPaintBox]

[TMemo]

[TTimer]

[TFileListBox]

Figure 2. Main Delphi form for the HWL.
COMPUTERS IN EDUCATION JOURNAL 47

Figure 3. Typical Problem Screen.

procedure problem3016;
var
 W1,W2,theta:integer;
 F:single;
begin
 W1:=120+random(17)*5;
 frmprobtemplate.PnlInput1.caption:=inttostr(W1);
 W2:=10+random(15)*5;
 frmprobtemplate.PnlInput2.caption:=inttostr(W2);
 theta:=30;
 frmprobtemplate.PnlInput3.caption:=inttostr(theta);

 F:= W1*sin(pi*theta/180)+W2;

 Answer[1]:=F;
 Answerpointvalue[1]:=20;
end;

 Line

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Figure 4. Code for Problem 33016.

48 COMPUTERS IN EDUCATION JOURNAL

Figure 5. Problem Selection.

Figure 6. Classroom, By Keyword.

COMPUTERS IN EDUCATION JOURNAL 49

Figure 7. PowerPoint Classroom Topic.

Figure 8. MultiPrint Feature.

50 COMPUTERS IN EDUCATION JOURNAL

	Abstract
	Problem Definition
	Requirements Analysis
	Architecture Design
	Construction
	System Testing
	Corrective Maintenance
	Functional Enhancements
	Conclusions and Recommendations
	References

