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Abstract 
 

Most modern commercial microprocessors are 
too complex to be used as introductory 
examples.  Many digital design courses and 
texts use hardware description language models 
of these processors, but they are often ad hoc.  
What is needed is a basic processor with 
sufficient complexity that can be modified, 
programmed, and tested. 

 
An instructional processor has been developed 

for use as a design example in an Advanced 
Digital Systems course at The Citadel.  The 
initial architecture provides sufficient complex-
ity to demonstrate fundamental programming 
concepts and the entire system is modeled and 
simulated in VHDL.  A collaborative project 
between the Department of Electrical and 
Computer Engineering and the Department of 
Mathematics and Computer Science has added 
new capabilities to the design, including 
expanded memory, additional instructions, and 
more addressing modes.  Machine code from a 
compiler or assembler can also be uploaded 
without modification of the VHDL model. 

 
The instructional processor is now in its third 

iteration with additional capabilities, an updated 
controller design, and a new memory model.  
Feedback is very positive that the VHDL model 
and FPGA implementation of the processor 
illustrate fundamental design concepts without 
unnecessary complexity.  The expanded project 
continues to achieve its goal as a valuable 
instructional tool for Advanced Digital Systems 
with future utilization as an implementation 
platform for a Compiler Design course. 

Introduction 
 

Teaching Advanced Digital Systems involves 
use of many design examples including 
counters, registers, arithmetic logic units, and 
memory.  The design of a computer processor 
combines these components into an integrated 
digital system.  Most modern commercial 
microprocessors are too complex to be used as 
introductory examples of processor design.  
Hardware description language models of these 
processors exist, but are often ad hoc and don't 
divide the architecture into teachable subsets 
[1,2].  Other microprocessor designs are part of 
larger or follow-on courses in computer 
architecture [3,4].  What is needed is a basic 
processor with sufficient complexity to illustrate 
major design elements that can be modified, 
programmed, and tested. 

 
An instructional processor has been developed 

for use as a design example in ELEC 418 
Advanced Digital Systems at The Citadel [5].  
The initial architecture provides sufficient 
complexity to demonstrate fundamental 
programming concepts.  The entire system is 
modeled in VHDL and can be simulated to 
demonstrate operation of the processor.  Since 
the original design was kept very simple, there 
are many opportunities for improvement of both 
the instruction set architecture and the 
programming environment. 

 
A collaborative project between the Depart-

ment of Electrical and Computer Engineering 
and the Department of Mathematics and 
Computer Science has added new capabilities to 
the instructional processor.  Initially targeted to 
provide improved higher-level language support 
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for CSCI 412 Compiler Design, the project has 
resulted in the evolution of the processor 
architecture into a more capable design, while 
still retaining its core function as an 
instructional tool. 
 

Instruction Set Architecture 
 

The instruction set architecture of the example 
processor has been designed to illustrate 
multiple operations and basic addressing modes.  
It is based on a three bus organization of a 16-
bit data path with a four-word register file 
(REGS) [6].  Key registers include:  program 
counter (PC), instruction register (IR), memory 
data register (MDR), and memory address 
register (MAR).  New to this version of the 
design are a subroutine STACK and a higher 
capacity, 4K word by 16-bit, memory (MEM).  
The complete data path is shown in Figure 1. 

 
Addition of new instructions and addressing 

modes required modification of the processor 
instruction format, including redefining and 
resizing several fields.  The new format 
provides four new conditional branch 
instructions with a larger, 10-bit, relative offset.  
An additional destination addressing mode 
allows for pointers for accessing the expanded 
memory, but at the expense of a smaller 
absolute address range.  The resulting data and 
branch instruction formats contain fields for the 
opcode (OP), operand source (SRC), operand 
destination (DST), and branch mode (MD), as 
shown in Figures 2 and 3. 

 
The expanded instruction set provides suffi-

cient complexity to demonstrate fundamental 
programming concepts such as data transfer, 
counting, indexing, and looping.  Addition of a 
subroutine capability allows for modularization 
of programs and support for top-down design.  
Library functions can be created for more 
complex operations not defined by the basic 
opcodes. 
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Figure 1:  Data Path for Instructional Processor. 

 
 

Key to the management of the increased 
memory capacity is a new memory model, 
shown in Figure 4, defining locations of 
memory-mapped input/output (I/O), data, and 
programs.  Both the I/O and data segments can 
be accessed via the absolute addressing mode, 
while additional data locations can be created at 
the bottom of the memory space by using 
register indirect addressing for pointers.  The 
location of the program segment determines the 
initial value of the PC for the beginning of the 
fetch sequence.  This memory model provides 
the necessary structure while still maintaining 
enough flexibility for efficient resource 
utilization. 
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15 14 13 12 11 10  9 8  7  6  5  4  3  2  1  0  
OP SRC DST VALUE IR 

 
 Mode REG # Name Syntax Effective Address 

SRC 
or 

DST 

00 00-11  Register Direct  Rn  EA = Rn 
01 00-11  Register Indirect  [Rn]  EA = (Rn) 
10 vv  Absolute  [Value]  EA = Value 
11 vv  Immediate  Value  Operand = Value 

      

OP Fn Assembly Language Register Transfer Notation 
000 MOVE  MOVE SRC,DST  DST ← SRC 
001 ADD  ADD  SRC,DST  DST ← SRC + DST 
010 INV  INV  SRC,DST  DST ← not SRC 
011 AND  AND  SRC,DST  DST ← SRC and DST 
100 SHL  SHL  SRC,DST  DST ← SHL(SRC) 
101 ASHR  ASHR SRC,DST  DST ← ASHR(SRC) 
110 …   

 
 

Figure 2:  Data Instruction Format. 
 
 
 
 

15 14 13 12 11 10   9  8  7  6  5  4  3  2  1  0  
OP MD OFFSET IR 

 
OP MD Fn Assembly Language Register Transfer Notation 

111 

000 BRA  BRA Offset  PC ← PC + Offset 
001 BZ  BZ  Offset  PC ← PC + Offset (Z = 1) 
010 BNZ  BNZ Offset  PC ← PC + Offset (Z = 0) 
011 BN  BN  Offset  PC ← PC + Offset (N = 1) 
100 BNN  BNN Offset  PC ← PC + Offset (N = 0) 
101 …   
110 BSR  BSR Offset  STACK ← PC; PC ← PC + Offset 
111 RTN  RTN  PC ← STACK 

 
 

Figure 3:  Branch Instruction Format. 
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Figure 4:  Processor Memory Model. 
 

VHDL Model 
 

Design of the instructional processor is taught 
in sections covering the instruction set architec-
ture, followed by implementation of the data 
path, and finally the fetch, decode, and execute 
sequences for the control unit.  Each component 
is modeled in VHDL and functionally verified 
using the Xilinx ISE [7]. 

 

The VHDL model is created in phases with 
new capabilities added in each phase.  Phase 1, 
for example, includes the components of the 
data path, which have been developed 
throughout the course.  These include the 
memory, registers, multiplexers, and ALU 
shown in Figure 1.  Implementation of the 
controller follows the state machine design 
techniques used in many previous examples.  A 
sample of the register transfer notation and 
control signals for the instruction fetch sequence 
is shown in Figure 5, and the resulting VHDL is 
shown in Figure 6. 

 
Programming  Environment 

 
In previous versions of the instructional 

processor, programs were written in 
hexadecimal machine code and loaded into 
memory by modification of the VHDL 
component model.  The collaborative project 
with the Department of Mathematics and 
Computer Science has also produced a 
programming environment that includes an 
assembler for generation of machine code from 
user programs.  This binary machine code can 
now be loaded into memory, via file input, 
without modification of the VHDL model. 

 
 

Step  Register Transfer Notation  Control Signals  
T0  MAR ← PC, PC ← PC + 1  BUS_B <= PC  

ALU_OP <= Pass_B  
Load_MAR <= ‘1’ 
Inc_PC <= ‘1’ 

T1  MDR ← MEM(MAR)  MEM_Read <= ‘1’ 
Load_MDR <= ‘1’ 

T2  IR ← MDR  BUS_B <= MDR 
ALU_OP <= Pass_B  
Load_IR <= ‘1’ 

 
Figure 5:  Instruction Fetch Sequence. 
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Control : process(STEP, IR, STATUS) 
begin  
  case STEP is -- Fetch 
    when T0 => 
      BUS_B <= "0000" & PC; 
      ALU_OP <= Pass_B; 
      Load_MAR <= '1'; 
      Inc_PC <= '1'; 
    when T1 => 
      MEM_Read <= '1'; 
      Load_MDR <= '1'; 
    when T2 => 
      BUS_B <= MDR; 
      ALU_OP <= Pass_B; 
      Load_IR <= '1'; 

 
Figure 6.  VHDL Model for Control Unit. 

 
The assembler serves as an intermediate step 

for a high-level language compiler to be taught 
in a future Compiler Design course.  It supports 
all the syntax defined in the instruction formats 
in Figures 2 and 3, as well as basic assembler 
directives for program/data labels and macros.  
A demonstration program, which illustrates 
memory-mapped I/O, conditional branching, 
looping, and a subroutine, is shown in Figure 7.  

 
Test programs can be simulated using Xilinx 

ISim [7] to verify their operation.  A sample 
simulation trace is shown in Figure 8.  The 
VHDL model, including the test program, can 
also be synthesized for a target Xilinx Spartan 
3e FPGA and loaded onto a Digilent BASYS 2 
board [8].  The SWITCH port is mapped to 
eight input switches on the board, while the 
LED port is mapped to eight LEDs.  The final 
hardware implementation, shown in Figure 9, 
utilizes approximately 50% of the FPGA 
resources, while fully exploiting the available 
4K of block RAM. 

  
Student homework assignments involve 

expansion of the instructional processor by 
adding new addressing mode and opcode 
combinations.  For example the assembly 
language instruction MOVE [Rs],Rd uses 
register indirect addressing for the source and 
register  direct  addressing  for  the   destination.   

 
 

.define SWITCH [0] 

.define LED    [1] 

.macro  SUB   arg1 arg2 
        INV   arg1, arg1 
        ADD   1, arg1   
        ADD   arg1, arg2 
.endm 
 
.code 
START:  MOVE  0x67, R1 
REPEAT: MOVE  SWITCH, R0 
        MOVE  R0, R3 
        AND   0x01, R0 
        BNZ   ON 
        INV   R1, R1 
        BRA   OUTLED 
ON:     ASHR  R1, R1 
OUTLED: MOVE  R1, LED 
        BSR   DELAY 
        BRA   REPEAT 
DELAY:  MOVE  0, R2 
LOOP:   ADD   1, R2 
        BNZ   LOOP 
        MOVE  1, R0 
        SUB   R0, R3 
        BNZ   DELAY 
        RTN 

 
Figure 7.  Assembly Language Program. 
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Figure 8:  VHDL Simulation Waveform. 
 

 
Figure 9.  FPGA Implementation. 

 
 
Students first determine the register transfer 
notation sequence necessary to execute the 
instruction, then they translate that into the 
appropriate VHDL control signals for the data 
path.       A  test  program  can  then  be  written,          

 
assembled, loaded, and simulated to verify the 
correct function of the new instruction. 
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Results  and  Conclusions 
 

The instructional processor is now in its third 
iteration with additional capabilities, an updated 
controller design, and a new memory model.  
The processor is used as a design example to 
replace the existing MIPS microprocessor in the 
current course text [1].  Because the new design 
uses examples throughout the semester, it 
integrates directly into the flow of the course.  
Development of the model in phases allows 
separate coverage of the data path and the 
sequential controller. 

 
Students already have familiarity with assem-

bly language programming from the prerequisite 
ELEC 330 Digital Systems Engineering course, 
allowing straightforward integration of the new 
programming environment.  Realization of only 
a subset of the processor instructions provides 
sufficient capabilities to demonstrate fundamen-
tal programming concepts.  Additional instruc-
tions, implemented as student homework 
assignments, allow direct application of the 
design techniques taught in class.   

 
Student feedback is very positive that the 

VHDL model and FPGA implementation of the 
processor illustrate fundamental design concepts 
without unnecessary complexity.  Responses 
from the end of course Student Evaluation of 
Learning indicate that 86% of the students either 
agreed or strongly agreed that "My ability to 
design a system to meet a specified requirement 
improved as a result of this course." 

 
Results from homework assignments demon-

strate that students can successfully design 
modifications to the processor and test them via 
program simulation.  The average score for the 
processor homework and corresponding final 
exam question was 81%.  When asked "What 
did you like most about this course?" multiple 
responses specifically cited the processor design 
and VHDL projects. 

 
The collaborative project between the Depart-

ment of Electrical and Computer Engineering 
and   the    Department   of    Mathematics    and  

Computer Science at The Citadel has resulted in 
the evolution of the instructional processor into 
a more capable design with an improved 
programming environment.  The expanded 
project continues to achieve its goal as a 
valuable instructional tool for Advanced Digital 
Systems with future utilization as an 
implementation platform for a Compiler Design 
course. 
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