

46 COMPUTERS IN EDUCATION JOURNAL

EVOLUTION OF THE INSTRUCTIONAL PROCESSOR

Ronald J. Hayne
Department of Electrical and Computer Engineering

The Citadel

John I. Moore, Jr.
Department of Mathematics and Computer Science

The Citadel

Abstract

Most modern commercial microprocessors are
too complex to be used as introductory
examples. Many digital design courses and
texts use hardware description language models
of these processors, but they are often ad hoc.
What is needed is a basic processor with
sufficient complexity that can be modified,
programmed, and tested.

An instructional processor has been developed

for use as a design example in an Advanced
Digital Systems course at The Citadel. The
initial architecture provides sufficient complex-
ity to demonstrate fundamental programming
concepts and the entire system is modeled and
simulated in VHDL. A collaborative project
between the Department of Electrical and
Computer Engineering and the Department of
Mathematics and Computer Science has added
new capabilities to the design, including
expanded memory, additional instructions, and
more addressing modes. Machine code from a
compiler or assembler can also be uploaded
without modification of the VHDL model.

The instructional processor is now in its third

iteration with additional capabilities, an updated
controller design, and a new memory model.
Feedback is very positive that the VHDL model
and FPGA implementation of the processor
illustrate fundamental design concepts without
unnecessary complexity. The expanded project
continues to achieve its goal as a valuable
instructional tool for Advanced Digital Systems
with future utilization as an implementation
platform for a Compiler Design course.

Introduction

Teaching Advanced Digital Systems involves
use of many design examples including
counters, registers, arithmetic logic units, and
memory. The design of a computer processor
combines these components into an integrated
digital system. Most modern commercial
microprocessors are too complex to be used as
introductory examples of processor design.
Hardware description language models of these
processors exist, but are often ad hoc and don't
divide the architecture into teachable subsets
[1,2]. Other microprocessor designs are part of
larger or follow-on courses in computer
architecture [3,4]. What is needed is a basic
processor with sufficient complexity to illustrate
major design elements that can be modified,
programmed, and tested.

An instructional processor has been developed

for use as a design example in ELEC 418
Advanced Digital Systems at The Citadel [5].
The initial architecture provides sufficient
complexity to demonstrate fundamental
programming concepts. The entire system is
modeled in VHDL and can be simulated to
demonstrate operation of the processor. Since
the original design was kept very simple, there
are many opportunities for improvement of both
the instruction set architecture and the
programming environment.

A collaborative project between the Depart-

ment of Electrical and Computer Engineering
and the Department of Mathematics and
Computer Science has added new capabilities to
the instructional processor. Initially targeted to
provide improved higher-level language support

COMPUTERS IN EDUCATION JOUR NAL 47

for CSCI 412 Compiler Design, the project has
resulted in the evolution of the processor
architecture into a more capable design, while
still retaining its core function as an
instructional tool.

Instruction Set Architecture

The instruction set architecture of the example
processor has been designed to illustrate
multiple operations and basic addressing modes.
It is based on a three bus organization of a 16-
bit data path with a four-word register file
(REGS) [6]. Key registers include: program
counter (PC), instruction register (IR), memory
data register (MDR), and memory address
register (MAR). New to this version of the
design are a subroutine STACK and a higher
capacity, 4K word by 16-bit, memory (MEM).
The complete data path is shown in Figure 1.

Addition of new instructions and addressing

modes required modification of the processor
instruction format, including redefining and
resizing several fields. The new format
provides four new conditional branch
instructions with a larger, 10-bit, relative offset.
An additional destination addressing mode
allows for pointers for accessing the expanded
memory, but at the expense of a smaller
absolute address range. The resulting data and
branch instruction formats contain fields for the
opcode (OP), operand source (SRC), operand
destination (DST), and branch mode (MD), as
shown in Figures 2 and 3.

The expanded instruction set provides suffi-

cient complexity to demonstrate fundamental
programming concepts such as data transfer,
counting, indexing, and looping. Addition of a
subroutine capability allows for modularization
of programs and support for top-down design.
Library functions can be created for more
complex operations not defined by the basic
opcodes.

IR

REGS

MDR

MAR

MEM

12

A

B

R

12

A1 A2

PC

1

2
2

ALU

NZ

BUS A BUS B BUS C

M
U

X

STATUSM
U

X

STACK

Figure 1: Data Path for Instructional Processor.

Key to the management of the increased
memory capacity is a new memory model,
shown in Figure 4, defining locations of
memory-mapped input/output (I/O), data, and
programs. Both the I/O and data segments can
be accessed via the absolute addressing mode,
while additional data locations can be created at
the bottom of the memory space by using
register indirect addressing for pointers. The
location of the program segment determines the
initial value of the PC for the beginning of the
fetch sequence. This memory model provides
the necessary structure while still maintaining
enough flexibility for efficient resource
utilization.

48 COMPUTERS IN EDUCATION JOURNAL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OP SRC DST VALUE IR

 Mode REG # Name Syntax Effective Address

SRC
or

DST

00 00-11 Register Direct Rn EA = Rn
01 00-11 Register Indirect [Rn] EA = (Rn)
10 vv Absolute [Value] EA = Value
11 vv Immediate Value Operand = Value

OP Fn Assembly Language Register Transfer Notation
000 MOVE MOVE SRC,DST DST ← SRC
001 ADD ADD SRC,DST DST ← SRC + DST
010 INV INV SRC,DST DST ← not SRC
011 AND AND SRC,DST DST ← SRC and DST
100 SHL SHL SRC,DST DST ← SHL(SRC)
101 ASHR ASHR SRC,DST DST ← ASHR(SRC)
110 …

Figure 2: Data Instruction Format.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OP MD OFFSET IR

OP MD Fn Assembly Language Register Transfer Notation

111

000 BRA BRA Offset PC ← PC + Offset
001 BZ BZ Offset PC ← PC + Offset (Z = 1)
010 BNZ BNZ Offset PC ← PC + Offset (Z = 0)
011 BN BN Offset PC ← PC + Offset (N = 1)
100 BNN BNN Offset PC ← PC + Offset (N = 0)
101 …
110 BSR BSR Offset STACK ← PC; PC ← PC + Offset
111 RTN RTN PC ← STACK

Figure 3: Branch Instruction Format.

COMPUTERS IN EDUCATION JOUR NAL 49

 Memory

000
I/O

007

008
Data

07F

080

Program

FFF

Figure 4: Processor Memory Model.

VHDL Model

Design of the instructional processor is taught
in sections covering the instruction set architec-
ture, followed by implementation of the data
path, and finally the fetch, decode, and execute
sequences for the control unit. Each component
is modeled in VHDL and functionally verified
using the Xilinx ISE [7].

The VHDL model is created in phases with
new capabilities added in each phase. Phase 1,
for example, includes the components of the
data path, which have been developed
throughout the course. These include the
memory, registers, multiplexers, and ALU
shown in Figure 1. Implementation of the
controller follows the state machine design
techniques used in many previous examples. A
sample of the register transfer notation and
control signals for the instruction fetch sequence
is shown in Figure 5, and the resulting VHDL is
shown in Figure 6.

Programming Environment

In previous versions of the instructional

processor, programs were written in
hexadecimal machine code and loaded into
memory by modification of the VHDL
component model. The collaborative project
with the Department of Mathematics and
Computer Science has also produced a
programming environment that includes an
assembler for generation of machine code from
user programs. This binary machine code can
now be loaded into memory, via file input,
without modification of the VHDL model.

Step Register Transfer Notation Control Signals
T0 MAR ← PC, PC ← PC + 1 BUS_B <= PC

ALU_OP <= Pass_B
Load_MAR <= ‘1’
Inc_PC <= ‘1’

T1 MDR ← MEM(MAR) MEM_Read <= ‘1’
Load_MDR <= ‘1’

T2 IR ← MDR BUS_B <= MDR
ALU_OP <= Pass_B
Load_IR <= ‘1’

Figure 5: Instruction Fetch Sequence.

50 COMPUTERS IN EDUCATION JOURNAL

Control : process(STEP, IR, STATUS)
begin
 case STEP is -- Fetch
 when T0 =>
 BUS_B <= "0000" & PC;
 ALU_OP <= Pass_B;
 Load_MAR <= '1';
 Inc_PC <= '1';
 when T1 =>
 MEM_Read <= '1';
 Load_MDR <= '1';
 when T2 =>
 BUS_B <= MDR;
 ALU_OP <= Pass_B;
 Load_IR <= '1';

Figure 6. VHDL Model for Control Unit.

The assembler serves as an intermediate step

for a high-level language compiler to be taught
in a future Compiler Design course. It supports
all the syntax defined in the instruction formats
in Figures 2 and 3, as well as basic assembler
directives for program/data labels and macros.
A demonstration program, which illustrates
memory-mapped I/O, conditional branching,
looping, and a subroutine, is shown in Figure 7.

Test programs can be simulated using Xilinx

ISim [7] to verify their operation. A sample
simulation trace is shown in Figure 8. The
VHDL model, including the test program, can
also be synthesized for a target Xilinx Spartan
3e FPGA and loaded onto a Digilent BASYS 2
board [8]. The SWITCH port is mapped to
eight input switches on the board, while the
LED port is mapped to eight LEDs. The final
hardware implementation, shown in Figure 9,
utilizes approximately 50% of the FPGA
resources, while fully exploiting the available
4K of block RAM.

Student homework assignments involve

expansion of the instructional processor by
adding new addressing mode and opcode
combinations. For example the assembly
language instruction MOVE [Rs],Rd uses
register indirect addressing for the source and
register direct addressing for the destination.

.define SWITCH [0]

.define LED [1]

.macro SUB arg1 arg2
 INV arg1, arg1
 ADD 1, arg1
 ADD arg1, arg2
.endm

.code
START: MOVE 0x67, R1
REPEAT: MOVE SWITCH, R0
 MOVE R0, R3
 AND 0x01, R0
 BNZ ON
 INV R1, R1
 BRA OUTLED
ON: ASHR R1, R1
OUTLED: MOVE R1, LED
 BSR DELAY
 BRA REPEAT
DELAY: MOVE 0, R2
LOOP: ADD 1, R2
 BNZ LOOP
 MOVE 1, R0
 SUB R0, R3
 BNZ DELAY
 RTN

Figure 7. Assembly Language Program.

COMPUTERS IN EDUCATION JOUR NAL 51

Figure 8: VHDL Simulation Waveform.

Figure 9. FPGA Implementation.

Students first determine the register transfer
notation sequence necessary to execute the
instruction, then they translate that into the
appropriate VHDL control signals for the data
path. A test program can then be written,

assembled, loaded, and simulated to verify the
correct function of the new instruction.

52 COMPUTERS IN EDUCATION JOUR NAL

Results and Conclusions

The instructional processor is now in its third
iteration with additional capabilities, an updated
controller design, and a new memory model.
The processor is used as a design example to
replace the existing MIPS microprocessor in the
current course text [1]. Because the new design
uses examples throughout the semester, it
integrates directly into the flow of the course.
Development of the model in phases allows
separate coverage of the data path and the
sequential controller.

Students already have familiarity with assem-

bly language programming from the prerequisite
ELEC 330 Digital Systems Engineering course,
allowing straightforward integration of the new
programming environment. Realization of only
a subset of the processor instructions provides
sufficient capabilities to demonstrate fundamen-
tal programming concepts. Additional instruc-
tions, implemented as student homework
assignments, allow direct application of the
design techniques taught in class.

Student feedback is very positive that the

VHDL model and FPGA implementation of the
processor illustrate fundamental design concepts
without unnecessary complexity. Responses
from the end of course Student Evaluation of
Learning indicate that 86% of the students either
agreed or strongly agreed that "My ability to
design a system to meet a specified requirement
improved as a result of this course."

Results from homework assignments demon-

strate that students can successfully design
modifications to the processor and test them via
program simulation. The average score for the
processor homework and corresponding final
exam question was 81%. When asked "What
did you like most about this course?" multiple
responses specifically cited the processor design
and VHDL projects.

The collaborative project between the Depart-

ment of Electrical and Computer Engineering
and the Department of Mathematics and

Computer Science at The Citadel has resulted in
the evolution of the instructional processor into
a more capable design with an improved
programming environment. The expanded
project continues to achieve its goal as a
valuable instructional tool for Advanced Digital
Systems with future utilization as an
implementation platform for a Compiler Design
course.

Bibliography

1. C. H. Roth, and L. K. John, Digital

Systems Design Using VHDL, 2nd ed.,
Thompson, Toronto, Canada, 2008.

2. S. Lee, Advanced Digital Logic Design:

Using VHDL, State Machines, and
Synthesis for FPGAs, Thompson,
Toronto, Canada, 2007.

3. D. M. Harris and S. L. Harris, Digital

Design and Computer Architecture,
Morgan Kaufmann, San Francisco, CA,
2007.

4. E. O. Hwang, Digital Logic and Micro-

processor Design with VHDL,
Thompson, Toronto, Canada, 2006.

5. R. J. Hayne, "An Instructional Processor

Design using VHDL and an FPGA,"
Computers in Education Journal, ASEE,
Vol. 3 No. 2, April - June 2012.

6. R. J. Hayne, "VHDL Projects to

Reinforce Computer Architecture
Classroom Instruction," Computers in
Education Journal, ASEE, Vol. XVIII
No. 2, April - June 2008.

7. Xilinx ISE 13.1i Software Manuals,

Xilinx, Inc., 2011.

8. Digilent Basys2 Board Reference

Manual, Digilent Inc., 2010.

COMPUTERS IN EDUCATION JOURNAL 53

Biographical Information

Ronald J. Hayne is an Associate Professor in
the Department of Electrical and Computer
Engineering at The Citadel. He received his
B.S. in Computer Science from the United
States Military Academy, his M.S. in Electrical
Engineering from the University of Arizona,
and his Ph.D. in Electrical Engineering from the
University of Virginia. Dr. Hayne's
professional areas of interest include digital
systems design and hardware description
languages. He is a retired Army Colonel with
experience in academics and Defense
laboratories.

John I. Moore, Jr. is a Professor in the Depart-

ment of Mathematics and Computer Science at
The Citadel. He received his B.S. in Mathemat-
ics from The Citadel, his M.S. in Computer
Science from Georgia Institute of Technology,
and his Ph.D. in Mathematics from the Univer-
sity of South Carolina. Dr. Moore has a wide
range of experience in both industry and
academia, with specific expertise in the areas of
object-oriented technology, mobile applications,
programming language translators, graph
theory, and e-commerce.

ASEE MEMBERS

How To Join Computers in Education Division
 (CoED)

1) Check ASEE annual dues statement
 for CoED Membership and add $7.00
 to ASEE dues payment.

2) Complete this form and send to
 American Society for Engineering
 Education, 1818 N. Street, N.W.,
 Suite 600, Washington, DC 20036.

I wish to join CoED. Enclosed is my check
for $7.00 for annual membership (make
check payable to ASEE).

 PLEASE PRINT

NAME: _____________________________________

MAILING
ADDRESS: _____________________________________

CITY: _____________________________________

STATE: _____________________________________

ZIP CODE: _____________________________________

	ASEE MEMBERS
	How To Join Computers in Education Division
	PLEASE PRINT
	NAME: _____________________________________

