

HANDS-ON PROCESSOR DESIGN EXPERIENCE FOR COMPUTER
ORGANIZATION AND ARCHITECTURE STUDENTS

Hala ElAarag

Department of Mathematics and Computer Science
Stetson University

421 N. Woodland Boulevard,
DeLand, FL 32723

Abstract

Computer organization and architecture are

core courses in the computing curricula.
Providing a good applied experience in these
courses is crucial for all computing disciplines.
In this paper we present the design of an
instruction set architecture to address the need
of providing a simple but realistic hands-on
experience on the hardware level to computer
organization and architecture students. The
control unit is the most tedious part of any
processor design. Our goal is to show students
how they can build a complete pipelined
processor in the lab with minimum cost using
TTL chips. In this paper we continue our
previous work and show two approaches to the
design of the control unit. We hope that with
this effort we provide students with a deep
insight on processor design that cannot be
provided with theory or simulation.

Introduction

 It is very important to combine theory and
practice when it comes to teaching computer
organization. There are many simplified
architectures designed for pedagogical purposes.
The Essentials of Computer Organization and
Architecture by Null [1] introduces assembly
language through MARIE. MARIE has a very
simplistic instruction set and datapath. Hennessy
and Patterson’s Computer Organization and
design [2] use MIPS as the example for
assembly language programming. Some
instruction set architectures are designed with
the goal of prototyping using FPGAs [3] while
others are based on Hardware description
Languages (HDL) [4, 5]. Though, most of them
are designed as simulators, some examples are
Ant32 [6] and MARS [7]. Yunten Labs [8]
provide an architectural kit called the Computer

Architecture Lab (CAL) to help students build a
simple processor. However, this system is a
very simple 4-bit architecture with a handful of
instructions.

Our goal was to design an instruction set

architecture that provide a rich experience and a
clear understanding of the details of instruction
execution at the hardware level. Students can
build their own processors from scratch and
follow the different stages of instruction
execution starting from the fetching, decoding,
executing and writing back to memory.

DLX is a simplified Reduced Instruction Set

Architecture (RISC) architecture that is
designed mainly for pedagogical purposes. In
[9], we took DLX one step further, and reduced
its instruction set based on the Standard
Performance Evaluation Corporation (SPEC)
benchmarks [2] to reach our proposed (HRISC)
instruction set. We presented the table of events
of HRISC that is considered as the
documentation that shows the steps of execution
of the different HRISC instructions in the
pipeline. We then presented a complete design
of HRISC and showed how to build it in a lab
using off the shelf TTL chips. The control unit
is the most difficult part in processor design. In
this paper, we provide the details of the design
of HRISC control unit using two approaches.
The first is a microcoded control unit while the
other is a hardwired control unit.

HRISC Instruction architecture

HRISC has two instruction formats: an
immediate type and a register to register type.
They are shown in Figure 1. There are 17
instructions in HRISC instruction set as shown
in Table 1.

COMPUTERS IN EDUCATON JOURNAL 51

Figure 1: HRISC Instruction Format.

Table 1: HRISC Instruction Set.

Microcoded Control Unit

HRISC can be divided into five basic
execution steps, where each step becomes a pipe
stage:

1. IF - instruction fetch
2. ID - instruction decode and register fetch
3. EX - execution and effective address

calculation
4. MEM - memory access
5. WB - write back

Figure 2 shows the block diagram of the
pipelined HRISC. It is divided into the five
stages to show clearly the flow of instructions in
the pipeline. Every stage contains its
microprogram PROM which contains the
corresponding microinstructions. These
microinstructions output the control lines used
to control the flow in this stage. Operations
performed in each stage are drawn horizontally
on the same level to indicate that they are
actually performed at the same time. For
example IR1 and PC1 are at the same level in
the IF stage. In the ID stage IR2, A, B, and PC2
are at the same level. The same thing applies for
IR3, OUT1, COND, MAR and MDR1 in the EX
stage. A more detailed block diagram can be
found in [9].

I-type (immediate)

31 26 25 21 20 16 15 0

This section shows the microinstruction

format of each PROM, and the possible entries
for each field.

PROM ID

• b1,b2 10 BEQZ
 11 BNEQZ
 01 JR, JALR
 00 otherwise

PROM EX
• EB 0 ADD, SUB, AND,

 XOR, SHIFT, SET
 1 ADDI, LOAD,

 STORE, LHI
 x O.W.
• New 1 LHI
 0 O.W.
• SETF 0 SEQ
 1 SLT, SGT
 x O.W.
• SR 1 SRL
 0 O.W.
• SL 1 SLL
 0 O.W.
• S3-S0 0001 ADD, ADDI, LHI
 0110 SUB,SEQ,SLT, SGT
 1011 AND
 0110 XOR
 x O.W.
• Cn 0 SLT
 1 ADD, ADDI, LHI,

 SUB, SEQ; SGT

Control
Branch BEQZ, BNEZ

Jump JR , JALR
Arithmetic/logical
Add ADD,ADDI
Subtract SUB
And Logical AND
Exclusive Or XOR
Shift Right Logical SRL

Shift Left Logical SLL
Load High Immediate LHI

Set SEQ, SLT, SGT

Data Transfer
Load LW
Store SW

op rs rd immediate/offset

R-type (register-to-register)

op rs rt rd

31 26 25 21 20 16 15 11 10 0

unused

52 COMPUTERS IN EDUCATION JOURNAL

 x O.W.
• M 0 ADD, ADDI, LHI,

 SUB, SEQ, SLT,
 SGT

 1 AND, XOR
 x O.W.
• OUTI A op B 1 ADD, ADDI, LHI,

 SUB, AND, XOR
 0 O.W.
• OUT3 A op B 1 SET
 0 O.W.

PROM MEM
• OUT2 OUT 1 1 ALU
 0 O.W.
• OUT2 OUT3 1 SET
 0 O.W.
• MDR2 DM [MAR] 1 LOAD
 0 O.W.
• DM [MAR] MDR1 1 STORE
 0 O.W.

PROM WB
• RD OUT2 1 ALU, SET
 0 O.W.
• R31 LINK3 1 JALR
 0 O.W.
• RD MDR2 1 LOAD
 0 O.W.

Hardwired Control Unit

 Since the PROMS happen to have most of
their entries as don’t cares, also they have very
few control lines, therefore it is better to
hardwire the control unit. This would lead to
less cost and better speed. The following section
describes how the HRISC control unit could be
hardwired.

Each instruction has a 6-bit opcode, they are
named a,b,c,d,e and f. To facilitate the job, the
instruction's opcode can be assigned values such
that each bit of the opcode decides which group
the instruction belongs to. That is, bit "a" decides
whether the instruction is R-type or I-type, "b" decides
whether it is a memory or a control instruction, bits "c”
and "d” differentiate between different memory/control
instructions, "e" decides whether it is a shift instruction
from the ALU R-type instructions, while "f" differentiates
between ALU and SET instructions, as follows:

The following Table shows the opcode bit
configuration of the instructions.

 a b c d e f
LW 1 0 0 0 X X
SW 1 0 0 1 X X
LHI 1 0 1 0 X X
ADDI 1 0 1 1 X X
ADD 0 X X X 1 0
SUB 0 X X X 1 0
AND 0 X X X 1 0
XOR 0 X X X 1 0
SRL 0 X X X 0 0
SLL 0 X X X 0 0
SEQ 0 X X X 1 1
SLT 0 X X X 1 1
SGT 0 X X X 1 1
BEQZ 1 1 0 0 X X
BNEQZ 1 1 0 1 X X
JR 1 1 1 0 X X
JALR 1 1 1 1 X X

Hardwiring PROM ID

PROM ID has two control lines b1 and b2,
they can be hardwired as follows:

c'
b1

c
d

a
b

b2

Hardwiring PROM EX

PROM EX has 13 control lines. Since the R-
type instruction format has 11 unused bits, then
these bits could be used as control bits for the R-

opcode
a 0 R-type

1 I-type
b 0 memory

1 control
e 0 shift

1 non-shift R-type

f 0 R-type ALU
1 R-type SET

COMPUTERS IN EDUCATON JOURNAL 53

type instructions. The 11 control lines that are
put in the R-type instruction are: S3-S0, Cn, M,
OUT1 A OP B, OUT3 A OP B, SETF,
SR, SL. Then the R- type instructions could be
assigned the following values:

 ADD 0xxx10 rs rt rd 00011010x00

SUB oxxx10 rs rt rd 01101010x00

AND 0xxx10 rs rt rd 1011x110x00

XOR 0xxx10 rs rt rd 0110x110x00

SLR 0xxx00 rs rt rd xxxxxx00x01

SLL 0xxx00 rs rt rd xxxxxx00x10

SEQ 0xxx11 rs rt rd 01101001000

SLT 0xxx11 rs rt rd 01100001100

SGT 0xxx11 rs rt rd 01101001100

As for the I-type instructions a decoder is used
to decode bits b, c and d of the opcode.

The PROM is hardwired as follows:

S3 (IR2)

S3 (ALU)

S2 (IR2)

S2 (ALU)

S1 (IR2)
S1 (ALU)a'

a'

a'

X

S0(ALU)

a'

a'

a'

a'

a'

S0 (IR2)

Cn (IR2)

OUT1 <- A op B

OUT1 <- A op B (IR2)

M (IR2)

Cn (ALU)

M (ALU)

EB

a

a

b'

b'

b'

c

c

d

NEW

Hardwiring PROM MEM

 PROM MEM has 4 control lines. They are
hardwired as follows:

a'
f '

R-ALU

X
OUT2 <- OUT1

a '
e
f

OUT2 <- OUT3

d '

MDR2 <- DM[MAR]

a

a

b '

b '

c '

c '

d

DM[MAR] <- MDR1

 Hardwiring PROM WB

PROM WB has 3 control lines. They can be
hardwired as follows:

d '

RD <- MDR2

a

a
b '

b

c '

c
d

R31 <- LINK3

X
a '

RD <- OUT2

CONCLUSION

Hands-on education is usually the most
effective. The ability to build processors using
hardware gives students an invaluable
experience. Although some may find it more
time consuming in comparison to simulation,
our experience shows that the hours the students
spent building their own processor really pays
off. Students pay attention to the minute details
and hence end up with a solid understanding of
processor design. Our goal is to provide an
instruction set architecture that is simple enough
so students can build it physically using
hardware. Yet realistic enough so it gives
insight on how real processors work. In this
paper we continue our previous work and
provide details of the most complex part of any
processor design: the control unit. We showed
two implementations for the control unit; one is
microcoded and the other is hardwired.

54 COMPUTERS IN EDUCATION JOURNAL

COMPUTERS IN EDUCATON JOURNAL 55

References 7. Vollmar K., “MARS: an education-oriented
assembly language simulator”, Proceedings
of the 37th SIGCSE technical symposium on
Computer science education, March 2006.

1. Linda Null, The Essentials of Computer

Organization And Architecture, Jones and
Bartlett publishing, 2006.

 8. Computer System Architecture Lab,
http://yuntenlabs.com/csalab.htm. 2. Patterson and Hennessy, Computer

Organization and Design: The
Hardware/Software Interface, Morgan
Kauffman, 2007.

9. ElAarag H., “A Complete Design of a RISC

Processor for Pedagogical Purposes”, to
appear Journal of Computing Sciences in
Colleges.

Biographical Information

Hala ElAarag received her Ph.D. degree in
Computer Science from the University of
Central Florida, Orlando, in 2001. She is
currently an associate professor of computer
science at Stetson University, DeLand, FL. Her
research interests include computer architecture,
network performance, Internet protocols,
wireless networks, network simulation, and
operating systems. Dr. ElAarag had obtained
Stetson University research award in 2005 and
Best Paper Award at the 11th Communication
and Networking Symposium (CNS’08). She
was co-general chair of Communication and
Networking Simulation Symposium 2009. She
serves on the technical committee for many
international conferences and reviews for
multiple journals.

3. M. Holland, J. Harris, and S. Hauck,

"Harnessing FPGAs for Computer
Architecture Education", Int. Conf. on
Microelectronic Systems Education, June
2003.

4. Nestor J., “Teaching Computer Organization

with HDLs: An Incremental Approach”,
Proceedings of the 2005 IEEE Int. Conf. on
Microelectronic Systems Education.

5. Calazans and Moaraes, “Integrating the

Teaching of Computer Organization and
Architecture with Digital Hardawre Design
Early in Undergraduate Courses”, IEEE
Transactions on Education, v.44 no. 2,
pp.109-119, 2001.

6. Ellard et al. “On the design of a new CPU

architecture for pedagogical purposes”,
Proceedings of the 2002 workshop on
Computer architecture education: Held in
conjunction with the 29th International
Symposium on Computer Architecture, May
2002.

http://yuntenlabs.com/csalab.htm

Figure 2: Pipelined HRISC Block Diagram.

 56

	HANDS-ON PROCESSOR DESIGN EXPERIENCE FOR COMPUTER ORGANIZATION AND ARCHITECTURE STUDENTS
	Microcoded Control Unit

	Hardwired Control Unit
	Hardwiring PROM ID
	Hardwiring PROM MEM
	 Hardwiring PROM WB

